@article{KuehneHerboldBendeletal.2024, author = {K{\"u}hne, Katharina and Herbold, Erika and Bendel, Oliver and Zhou, Yuefang and Fischer, Martin H.}, title = {"Ick bin een Berlina"}, series = {Frontiers in robotics and AI}, volume = {10}, journal = {Frontiers in robotics and AI}, publisher = {Frontiers Media S.A.}, address = {Lausanne}, issn = {2296-9144}, doi = {10.3389/frobt.2023.1241519}, pages = {15}, year = {2024}, abstract = {Background: Robots are increasingly used as interaction partners with humans. Social robots are designed to follow expected behavioral norms when engaging with humans and are available with different voices and even accents. Some studies suggest that people prefer robots to speak in the user's dialect, while others indicate a preference for different dialects. Methods: Our study examined the impact of the Berlin dialect on perceived trustworthiness and competence of a robot. One hundred and twenty German native speakers (Mage = 32 years, SD = 12 years) watched an online video featuring a NAO robot speaking either in the Berlin dialect or standard German and assessed its trustworthiness and competence. Results: We found a positive relationship between participants' self-reported Berlin dialect proficiency and trustworthiness in the dialect-speaking robot. Only when controlled for demographic factors, there was a positive association between participants' dialect proficiency, dialect performance and their assessment of robot's competence for the standard German-speaking robot. Participants' age, gender, length of residency in Berlin, and device used to respond also influenced assessments. Finally, the robot's competence positively predicted its trustworthiness. Discussion: Our results inform the design of social robots and emphasize the importance of device control in online experiments.}, language = {en} } @article{PlonerHessGrumetal.2020, author = {Ploner, Tina and Hess, Steffen and Grum, Marcus and Drewe-Boss, Philipp and Walker, Jochen}, title = {Using gradient boosting with stability selection on health insurance claims data to identify disease trajectories in chronic obstructive pulmonary disease}, series = {Statistical methods in medical research}, volume = {29}, journal = {Statistical methods in medical research}, number = {12}, publisher = {Sage Publ.}, address = {London [u.a.]}, issn = {0962-2802}, doi = {10.1177/0962280220938088}, pages = {3684 -- 3694}, year = {2020}, abstract = {Objective We propose a data-driven method to detect temporal patterns of disease progression in high-dimensional claims data based on gradient boosting with stability selection. Materials and methods We identified patients with chronic obstructive pulmonary disease in a German health insurance claims database with 6.5 million individuals and divided them into a group of patients with the highest disease severity and a group of control patients with lower severity. We then used gradient boosting with stability selection to determine variables correlating with a chronic obstructive pulmonary disease diagnosis of highest severity and subsequently model the temporal progression of the disease using the selected variables. Results We identified a network of 20 diagnoses (e.g. respiratory failure), medications (e.g. anticholinergic drugs) and procedures associated with a subsequent chronic obstructive pulmonary disease diagnosis of highest severity. Furthermore, the network successfully captured temporal patterns, such as disease progressions from lower to higher severity grades. Discussion The temporal trajectories identified by our data-driven approach are compatible with existing knowledge about chronic obstructive pulmonary disease showing that the method can reliably select relevant variables in a high-dimensional context. Conclusion We provide a generalizable approach for the automatic detection of disease trajectories in claims data. This could help to diagnose diseases early, identify unknown risk factors and optimize treatment plans.}, language = {en} } @article{WarmtFenzelHenkeletal.2021, author = {Warmt, Christian and Fenzel, Carolin Kornelia and Henkel, J{\"o}rg and Bier, Frank Fabian}, title = {Using Cy5-dUTP labelling of RPA-amplicons with downstream microarray analysis for the detection of antibiotic resistance genes}, series = {Scientific reports}, volume = {11}, journal = {Scientific reports}, number = {1}, publisher = {Macmillan Publishers Limited, part of Springer Nature}, address = {[London]}, issn = {2045-2322}, doi = {10.1038/s41598-021-99774-z}, pages = {9}, year = {2021}, abstract = {In this report we describe Cy5-dUTP labelling of recombinase-polymerase-amplification (RPA) products directly during the amplification process for the first time. Nucleic acid amplification techniques, especially polymerase-chain-reaction as well as various isothermal amplification methods such as RPA, becomes a promising tool in the detection of pathogens and target specific genes. Actually, RPA even provides more advantages. This isothermal method got popular in point of care diagnostics because of its speed and sensitivity but requires pre-labelled primer or probes for a following detection of the amplicons. To overcome this disadvantages, we performed an labelling of RPA-amplicons with Cy5-dUTP without the need of pre-labelled primers. The amplification results of various multiple antibiotic resistance genes indicating great potential as a flexible and promising tool with high specific and sensitive detection capabilities of the target genes. After the determination of an appropriate rate of 1\% Cy5-dUTP and 99\% unlabelled dTTP we were able to detect the bla(CTX-M15) gene in less than 1.6E-03 ng genomic DNA corresponding to approximately 200 cfu of Escherichia coli cells in only 40 min amplification time.}, language = {en} } @article{MetjeLeverMayeretal.2020, author = {Metje, Jan and Lever, Fabiano and Mayer, Dennis and Squibb, Richard James and Robinson, Matthew Scott and Niebuhr, Mario and Feifel, Raimund and D{\"u}sterer, Stefan and G{\"u}hr, Markus}, title = {URSA-PQ}, series = {Applied Sciences}, volume = {10}, journal = {Applied Sciences}, number = {21}, publisher = {MDPI}, address = {Basel}, issn = {2076-3417}, doi = {10.3390/app10217882}, pages = {13}, year = {2020}, abstract = {We present a highly flexible and portable instrument to perform pump-probe spectroscopy with an optical and an X-ray pulse in the gas phase. The so-called URSA-PQ (German for 'Ultraschnelle R{\"o}ntgenspektroskopie zur Abfrage der Photoenergiekonversion an Quantensystemen', Engl. 'ultrafast X-ray spectroscopy for probing photoenergy conversion in quantum systems') instrument is equipped with a magnetic bottle electron spectrometer (MBES) and tools to characterize the spatial and temporal overlap of optical and X-ray laser pulses. Its adherence to the CAMP instrument dimensions allows for a wide range of sample sources as well as other spectrometers to be included in the setup. We present the main design and technical features of the instrument. The MBES performance was evaluated using Kr M4,5NN Auger lines using backfilled Kr gas, with an energy resolution ΔE/E ≅ 1/40 in the integrating operative mode. The time resolution of the setup at FLASH 2 FL 24 has been characterized with the help of an experiment on 2-thiouracil that is inserted via the instruments' capillary oven. We find a time resolution of 190 fs using the molecular 2p photoline shift and attribute this to different origins in the UV-pump—the X-ray probe setup.}, language = {en} } @misc{MetjeLeverMayeretal.2020, author = {Metje, Jan and Lever, Fabiano and Mayer, Dennis and Squibb, Richard James and Robinson, Matthew Scott and Niebuhr, Mario and Feifel, Raimund and D{\"u}sterer, Stefan and G{\"u}hr, Markus}, title = {URSA-PQ}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {1016}, issn = {1866-8372}, doi = {10.25932/publishup-48307}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-483073}, pages = {15}, year = {2020}, abstract = {We present a highly flexible and portable instrument to perform pump-probe spectroscopy with an optical and an X-ray pulse in the gas phase. The so-called URSA-PQ (German for 'Ultraschnelle R{\"o}ntgenspektroskopie zur Abfrage der Photoenergiekonversion an Quantensystemen', Engl. 'ultrafast X-ray spectroscopy for probing photoenergy conversion in quantum systems') instrument is equipped with a magnetic bottle electron spectrometer (MBES) and tools to characterize the spatial and temporal overlap of optical and X-ray laser pulses. Its adherence to the CAMP instrument dimensions allows for a wide range of sample sources as well as other spectrometers to be included in the setup. We present the main design and technical features of the instrument. The MBES performance was evaluated using Kr M4,5NN Auger lines using backfilled Kr gas, with an energy resolution ΔE/E ≅ 1/40 in the integrating operative mode. The time resolution of the setup at FLASH 2 FL 24 has been characterized with the help of an experiment on 2-thiouracil that is inserted via the instruments' capillary oven. We find a time resolution of 190 fs using the molecular 2p photoline shift and attribute this to different origins in the UV-pump—the X-ray probe setup.}, language = {en} } @article{WiebelerVollbrechtNeubaetal.2021, author = {Wiebeler, Christian and Vollbrecht, Joachim and Neuba, Adam and Kitzerow, Heinz and Schumacher, Stefan}, title = {Unraveling the electrochemical and spectroscopic properties of neutral and negatively charged perylene tetraethylesters}, series = {Scientific reports}, volume = {11}, journal = {Scientific reports}, number = {1}, publisher = {Macmillan Publishers Limited, part of Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-021-95551-0}, pages = {11}, year = {2021}, abstract = {A detailed investigation of the energy levels of perylene-3,4,9,10-tetracarboxylic tetraethylester as a representative compound for the whole family of perylene esters was performed. It was revealed via electrochemical measurements that one oxidation and two reductions take place. The bandgaps determined via the electrochemical approach are in good agreement with the optical bandgap obtained from the absorption spectra via a Tauc plot. In addition, absorption spectra in dependence of the electrochemical potential were the basis for extensive quantum-chemical calculations of the neutral, monoanionic, and dianionic molecules. For this purpose, calculations based on density functional theory were compared with post-Hartree-Fock methods and the CAM-B3LYP functional proved to be the most reliable choice for the calculation of absorption spectra. Furthermore, spectral features found experimentally could be reproduced with vibronic calculations and allowed to understand their origins. In particular, the two lowest energy absorption bands of the anion are not caused by absorption of two distinct electronic states, which might have been expected from vertical excitation calculations, but both states exhibit a strong vibronic progression resulting in contributions to both bands.}, language = {en} } @article{StubningDenesGerhard2021, author = {Stubning, Tobias and Denes, Istvan and Gerhard, Reimund}, title = {Tuning electro-mechanical properties of EAP-based haptic actuators by adjusting layer thickness and number of stacked layers}, series = {Engineering research express}, volume = {3}, journal = {Engineering research express}, number = {1}, publisher = {Institute of Physics}, address = {London}, issn = {2631-8695}, doi = {10.1088/2631-8695/abd286}, pages = {13}, year = {2021}, abstract = {In our fast-changing world, human-machine interfaces (HMIs) are of ever-increasing importance. Among the most ubiquitous examples are touchscreens that most people are familiar with from their smartphones. The quality of such an HMI can be improved by adding haptic feedback-an imitation of using mechanical buttons-to the touchscreen. Thin-film actuators on the basis of electro-mechanically active polymers (EAPs), with the electroactive material sandwiched between two compliant electrodes, offer a promising technology for haptic surfaces. In thin-film technology, the thickness and the number of stacked layers of the electroactive dielectric are key parameters for tuning a system. Therefore, we have experimentally investigated the influence of the thickness of a single EAP layer on the electrical and the electro-mechanical performance of the transducer. In order to achieve high electro-mechanical actuator outputs, we have employed relaxor-ferroelectric ter-fluoropolymers that can be screen-printed. By means of a model-based approach, we have also directly compared single- and multi-layer actuators, thus providing guidelines for optimized transducer configurations with respect to the system requirements of haptic applications for which the operation frequency is of particular importance.}, language = {en} } @article{TrautmannZhouBrahmsetal.2021, author = {Trautmann, Justin and Zhou, Lin and Brahms, Clemens Markus and Tunca, Can and Ersoy, Cem and Granacher, Urs and Arnrich, Bert}, title = {TRIPOD}, series = {Data : open access ʻData in scienceʼ journal}, volume = {6}, journal = {Data : open access ʻData in scienceʼ journal}, number = {9}, publisher = {MDPI}, address = {Basel}, issn = {2306-5729}, doi = {10.3390/data6090095}, pages = {19}, year = {2021}, abstract = {Inertial measurement units (IMUs) enable easy to operate and low-cost data recording for gait analysis. When combined with treadmill walking, a large number of steps can be collected in a controlled environment without the need of a dedicated gait analysis laboratory. In order to evaluate existing and novel IMU-based gait analysis algorithms for treadmill walking, a reference dataset that includes IMU data as well as reliable ground truth measurements for multiple participants and walking speeds is needed. This article provides a reference dataset consisting of 15 healthy young adults who walked on a treadmill at three different speeds. Data were acquired using seven IMUs placed on the lower body, two different reference systems (Zebris FDMT-HQ and OptoGait), and two RGB cameras. Additionally, in order to validate an existing IMU-based gait analysis algorithm using the dataset, an adaptable modular data analysis pipeline was built. Our results show agreement between the pressure-sensitive Zebris and the photoelectric OptoGait system (r = 0.99), demonstrating the quality of our reference data. As a use case, the performance of an algorithm originally designed for overground walking was tested on treadmill data using the data pipeline. The accuracy of stride length and stride time estimations was comparable to that reported in other studies with overground data, indicating that the algorithm is equally applicable to treadmill data. The Python source code of the data pipeline is publicly available, and the dataset will be provided by the authors upon request, enabling future evaluations of IMU gait analysis algorithms without the need of recording new data.}, language = {en} } @article{WicaksonoBraunBernhardtetal.2022, author = {Wicaksono, Wisnu Adi and Braun, Maria and Bernhardt, J{\"o}rg and Riedel, Katharina and Cernava, Tomislav and Berg, Gabriele}, title = {Trade-off for survival}, series = {Environment international : a journal of science, technology, health, monitoring and policy}, volume = {168}, journal = {Environment international : a journal of science, technology, health, monitoring and policy}, publisher = {Elsevier Science}, address = {Amsterdam [u.a.]}, issn = {1873-6750}, doi = {10.1016/j.envint.2022.107474}, pages = {13}, year = {2022}, abstract = {The environmental micmbiota is increasingly exposed to chemical pollution. While the emergence of multi-resistant pathogens is recognized as a global challenge, our understanding of antimicrobial resistance (AMR) development from native microbiomes and the risks associated with chemical exposure is limited. By implementing a lichen as a bioindicator organism and model for a native microbiome, we systematically examined responses towards antimicrobials (colistin, tetracycline, glyphosate, and alkylpyrazine). Despite an unexpectedly high resilience, we identified potential evolutionary consequences of chemical exposure in terms of composition and functioning of native bacterial communities. Major shifts in bacterial composition were observed due to replacement of naturally abundant taxa; e.g. Chthoniobacterales by Pseudomonadales. A general response, which comprised activation of intrinsic resistance and parallel reduction of metabolic activity at RNA and protein levels was deciphered by a multi-omics approach. Targeted analyses of key taxa based on metagenome-assembled genomes reflected these responses but also revealed diversified strategies of their players. Chemical-specific responses were also observed, e.g., glyphosate enriched bacterial r-strategists and activated distinct ARGs. Our work demonstrates that the high resilience of the native micmbiota toward antimicrobial exposure is not only explained by the presence of antibiotic resistance genes but also adapted metabolic activity as a trade-off for survival. Moreover, our results highlight the importance of native microbiomes as important but so far neglected AMR reservoirs. We expect that this phenomenon is representative for a wide range of environmental microbiota exposed to chemicals that potentially contribute to the emergence of antibiotic-resistant bacteria from natural environments.}, language = {en} } @article{ToetzkeKardjilovHilgeretal.2021, author = {T{\"o}tzke, Christian and Kardjilov, Nikolay and Hilger, Andr{\´e} and Rudolph-Mohr, Nicole and Manke, Ingo and Oswald, Sascha}, title = {Three-dimensional in vivo analysis of water uptake and translocation in maize roots by fast neutron tomography}, series = {Scientific Reports}, volume = {11}, journal = {Scientific Reports}, publisher = {Macmillan Publishers Limited}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-021-90062-4}, pages = {10}, year = {2021}, abstract = {Root water uptake is an essential process for terrestrial plants that strongly affects the spatiotemporal distribution of water in vegetated soil. Fast neutron tomography is a recently established non-invasive imaging technique capable to capture the 3D architecture of root systems in situ and even allows for tracking of three-dimensional water flow in soil and roots. We present an in vivo analysis of local water uptake and transport by roots of soil-grown maize plants—for the first time measured in a three-dimensional time-resolved manner. Using deuterated water as tracer in infiltration experiments, we visualized soil imbibition, local root uptake, and tracked the transport of deuterated water throughout the fibrous root system for a day and night situation. This revealed significant differences in water transport between different root types. The primary root was the preferred water transport path in the 13-days-old plants while seminal roots of comparable size and length contributed little to plant water supply. The results underline the unique potential of fast neutron tomography to provide time-resolved 3D in vivo information on the water uptake and transport dynamics of plant root systems, thus contributing to a better understanding of the complex interactions of plant, soil and water.}, language = {en} } @misc{ToetzkeKardjilovHilgeretal.2021, author = {T{\"o}tzke, Christian and Kardjilov, Nikolay and Hilger, Andr{\´e} and Rudolph-Mohr, Nicole and Manke, Ingo and Oswald, Sascha}, title = {Three-dimensional in vivo analysis of water uptake and translocation in maize roots by fast neutron tomography}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, issn = {1866-8372}, doi = {10.25932/publishup-52991}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-529915}, pages = {12}, year = {2021}, abstract = {Root water uptake is an essential process for terrestrial plants that strongly affects the spatiotemporal distribution of water in vegetated soil. Fast neutron tomography is a recently established non-invasive imaging technique capable to capture the 3D architecture of root systems in situ and even allows for tracking of three-dimensional water flow in soil and roots. We present an in vivo analysis of local water uptake and transport by roots of soil-grown maize plants—for the first time measured in a three-dimensional time-resolved manner. Using deuterated water as tracer in infiltration experiments, we visualized soil imbibition, local root uptake, and tracked the transport of deuterated water throughout the fibrous root system for a day and night situation. This revealed significant differences in water transport between different root types. The primary root was the preferred water transport path in the 13-days-old plants while seminal roots of comparable size and length contributed little to plant water supply. The results underline the unique potential of fast neutron tomography to provide time-resolved 3D in vivo information on the water uptake and transport dynamics of plant root systems, thus contributing to a better understanding of the complex interactions of plant, soil and water.}, language = {en} } @article{FolikumahNeffeBehletal.2019, author = {Folikumah, Makafui Yao and Neffe, Axel T. and Behl, Marc and Lendlein, Andreas}, title = {Thiol Michael-Type reactions of optically active mercapto-acids in aqueous medium}, series = {MRS advances : a journal of the Materials Research Society}, volume = {4}, journal = {MRS advances : a journal of the Materials Research Society}, number = {46-47}, publisher = {Springer Nature Switzerland AG}, address = {Cham}, issn = {2059-8521}, doi = {10.1557/adv.2019.308}, pages = {2515 -- 2525}, year = {2019}, abstract = {Defined chemical reactions in a physiological environment are a prerequisite for the in situ synthesis of implant materials potentially serving as matrix for drug delivery systems, tissue fillers or surgical glues. 'Click' reactions like thiol Michael-type reactions have been successfully employed as bioorthogonal reaction. However, due to the individual stereo-electronic and physical properties of specific substrates, an exact understanding their chemical reactivity is required if they are to be used for in-situ biomaterial synthesis. The chiral (S)-2-mercapto-carboxylic acid analogues of L-phenylalanine (SH-Phe) and L-leucine (SH-Leu) which are subunits of certain collagenase sensitive synthetic peptides, were explored for their potential for in-situ biomaterial formation via the thiol Michael-type reaction. In model reactions were investigated the kinetics, the specificity and influence of stereochemistry of this reaction. We could show that only reactions involving SH-Leu yielded the expected thiol-Michael product. The inability of SH-Phe to react was attributed to the steric hindrance of the bulky phenyl group. In aqueous media, successful reaction using SH-Leu is thought to proceed via the sodium salt formed in-situ by the addition of NaOH solution, which was intented to aid the solubility of the mercapto-acid in water. Fast reaction rates and complete acrylate/maleimide conversion were only realized at pH 7.2 or higher suggesting the possible use of SH-Leu under physiological conditions for thiol Michael-type reactions. This method of in-situ formed alkali salts could be used as a fast approach to screen mercapto-acids for thio Michael-type reactions without the synthesis of their corresponding esters.}, language = {en} } @misc{KaastraPaerelsDurretetal.2008, author = {Kaastra, Jelle S. and Paerels, Frits B.S. and Durret, Florence and Schindler, Sabine and Richter, Philipp}, title = {Thermal radiation processes}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {891}, issn = {1866-8372}, doi = {10.25932/publishup-43622}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-436220}, pages = {155 -- 190}, year = {2008}, abstract = {We discuss the different physical processes that are important to understand the thermal X-ray emission and absorption spectra of the diffuse gas in clusters of galaxies and the warm-hot intergalactic medium. The ionisation balance, line and continuum emission and absorption properties are reviewed and several practical examples are given that illustrate the most important diagnostic features in the X-ray spectra.}, language = {en} } @article{SerranoMunozMishurovaThiedeetal.2020, author = {Serrano-Munoz, Itziar and Mishurova, Tatiana and Thiede, Tobias and Sprengel, Maximilian and Kromm, Arne and Nadammal, Naresh and Nolze, Gert and Saliwan-Neumann, Romeo and Evans, Alexander and Bruno, Giovanni}, title = {The residual stress in as-built laser powder bed fusion IN718 alloy as a consequence of the scanning strategy induced microstructure}, series = {Scientific reports}, volume = {10}, journal = {Scientific reports}, number = {1}, publisher = {Macmillan Publishers Limited, part of Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-020-71112-9}, pages = {15}, year = {2020}, abstract = {The effect of two types of scanning strategies on the grain structure and build-up of Residual Stress (RS) has been investigated in an as-built IN718 alloy produced by Laser Powder Bed Fusion (LPBF). The RS state has been investigated by X-ray diffraction techniques. The microstructural characterization was performed principally by Electron Backscatter Diffraction (EBSD), where the application of a post-measurement refinement technique enables small misorientations (< 2 degrees) to be resolved. Kernel average misorientation (KAM) distributions indicate that preferably oriented columnar grains contain higher levels of misorientation, when compared to elongated grains with lower texture. The KAM distributions combined with X-ray diffraction stress maps infer that the increased misorientation is induced via plastic deformation driven by the thermal stresses, acting to self-relieve stress. The possibility of obtaining lower RS states in the build direction as a consequence of the influence of the microstructure should be considered when envisaging scanning strategies aimed at the mitigation of RS.}, language = {en} } @misc{SarhanKoopmanSchuetzetal.2018, author = {Sarhan, Radwan Mohamed and Koopman, Wouter-Willem Adriaan and Schuetz, Roman and Schmid, Thomas and Liebig, Ferenc and Koetz, Joachim and Bargheer, Matias}, title = {The importance of plasmonic heating for the plasmondriven photodimerization of 4-nitrothiophenol}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {698}, issn = {1866-8372}, doi = {10.25932/publishup-42719}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427197}, pages = {8}, year = {2018}, abstract = {Metal nanoparticles form potent nanoreactors, driven by the optical generation of energetic electrons and nanoscale heat. The relative influence of these two factors on nanoscale chemistry is strongly debated. This article discusses the temperature dependence of the dimerization of 4-nitrothiophenol (4-NTP) into 4,4′-dimercaptoazobenzene (DMAB) adsorbed on gold nanoflowers by Surface-Enhanced Raman Scattering (SERS). Raman thermometry shows a significant optical heating of the particles. The ratio of the Stokes and the anti-Stokes Raman signal moreover demonstrates that the molecular temperature during the reaction rises beyond the average crystal lattice temperature of the plasmonic particles. The product bands have an even higher temperature than reactant bands, which suggests that the reaction proceeds preferentially at thermal hot spots. In addition, kinetic measurements of the reaction during external heating of the reaction environment yield a considerable rise of the reaction rate with temperature. Despite this significant heating effects, a comparison of SERS spectra recorded after heating the sample by an external heater to spectra recorded after prolonged illumination shows that the reaction is strictly photo-driven. While in both cases the temperature increase is comparable, the dimerization occurs only in the presence of light. Intensity dependent measurements at fixed temperatures confirm this finding.}, language = {en} } @article{SarhanKoopmanSchuetzetal.2019, author = {Sarhan, Radwan Mohamed and Koopman, Wouter-Willem Adriaan and Schuetz, Roman and Schmid, Thomas and Liebig, Ferenc and Koetz, Joachim and Bargheer, Matias}, title = {The importance of plasmonic heating for the plasmondriven photodimerization of 4-nitrothiophenol}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, publisher = {Macmillan Publishers Limited}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-019-38627-2}, pages = {8}, year = {2019}, abstract = {Metal nanoparticles form potent nanoreactors, driven by the optical generation of energetic electrons and nanoscale heat. The relative influence of these two factors on nanoscale chemistry is strongly debated. This article discusses the temperature dependence of the dimerization of 4-nitrothiophenol (4-NTP) into 4,4′-dimercaptoazobenzene (DMAB) adsorbed on gold nanoflowers by Surface-Enhanced Raman Scattering (SERS). Raman thermometry shows a significant optical heating of the particles. The ratio of the Stokes and the anti-Stokes Raman signal moreover demonstrates that the molecular temperature during the reaction rises beyond the average crystal lattice temperature of the plasmonic particles. The product bands have an even higher temperature than reactant bands, which suggests that the reaction proceeds preferentially at thermal hot spots. In addition, kinetic measurements of the reaction during external heating of the reaction environment yield a considerable rise of the reaction rate with temperature. Despite this significant heating effects, a comparison of SERS spectra recorded after heating the sample by an external heater to spectra recorded after prolonged illumination shows that the reaction is strictly photo-driven. While in both cases the temperature increase is comparable, the dimerization occurs only in the presence of light. Intensity dependent measurements at fixed temperatures confirm this finding.}, language = {en} } @misc{KuehneFischerZhou2020, author = {K{\"u}hne, Katharina and Fischer, Martin H. and Zhou, Yuefang}, title = {The Human Takes It All}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {700}, issn = {1866-8364}, doi = {10.25932/publishup-49162}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-491625}, pages = {17}, year = {2020}, abstract = {Background: The increasing involvement of social robots in human lives raises the question as to how humans perceive social robots. Little is known about human perception of synthesized voices. Aim: To investigate which synthesized voice parameters predict the speaker's eeriness and voice likability; to determine if individual listener characteristics (e.g., personality, attitude toward robots, age) influence synthesized voice evaluations; and to explore which paralinguistic features subjectively distinguish humans from robots/artificial agents. Methods: 95 adults (62 females) listened to randomly presented audio-clips of three categories: synthesized (Watson, IBM), humanoid (robot Sophia, Hanson Robotics), and human voices (five clips/category). Voices were rated on intelligibility, prosody, trustworthiness, confidence, enthusiasm, pleasantness, human-likeness, likability, and naturalness. Speakers were rated on appeal, credibility, human-likeness, and eeriness. Participants' personality traits, attitudes to robots, and demographics were obtained. Results: The human voice and human speaker characteristics received reliably higher scores on all dimensions except for eeriness. Synthesized voice ratings were positively related to participants' agreeableness and neuroticism. Females rated synthesized voices more positively on most dimensions. Surprisingly, interest in social robots and attitudes toward robots played almost no role in voice evaluation. Contrary to the expectations of an uncanny valley, when the ratings of human-likeness for both the voice and the speaker characteristics were higher, they seemed less eerie to the participants. Moreover, when the speaker's voice was more humanlike, it was more liked by the participants. This latter point was only applicable to one of the synthesized voices. Finally, pleasantness and trustworthiness of the synthesized voice predicted the likability of the speaker's voice. Qualitative content analysis identified intonation, sound, emotion, and imageability/embodiment as diagnostic features. Discussion: Humans clearly prefer human voices, but manipulating diagnostic speech features might increase acceptance of synthesized voices and thereby support human-robot interaction. There is limited evidence that human-likeness of a voice is negatively linked to the perceived eeriness of the speaker.}, language = {en} } @article{KuehneFischerZhou2020, author = {K{\"u}hne, Katharina and Fischer, Martin H. and Zhou, Yuefang}, title = {The Human Takes It All}, series = {Frontiers in Neurorobotics}, volume = {14}, journal = {Frontiers in Neurorobotics}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1662-5218}, doi = {10.3389/fnbot.2020.593732}, pages = {15}, year = {2020}, abstract = {Background: The increasing involvement of social robots in human lives raises the question as to how humans perceive social robots. Little is known about human perception of synthesized voices. Aim: To investigate which synthesized voice parameters predict the speaker's eeriness and voice likability; to determine if individual listener characteristics (e.g., personality, attitude toward robots, age) influence synthesized voice evaluations; and to explore which paralinguistic features subjectively distinguish humans from robots/artificial agents. Methods: 95 adults (62 females) listened to randomly presented audio-clips of three categories: synthesized (Watson, IBM), humanoid (robot Sophia, Hanson Robotics), and human voices (five clips/category). Voices were rated on intelligibility, prosody, trustworthiness, confidence, enthusiasm, pleasantness, human-likeness, likability, and naturalness. Speakers were rated on appeal, credibility, human-likeness, and eeriness. Participants' personality traits, attitudes to robots, and demographics were obtained. Results: The human voice and human speaker characteristics received reliably higher scores on all dimensions except for eeriness. Synthesized voice ratings were positively related to participants' agreeableness and neuroticism. Females rated synthesized voices more positively on most dimensions. Surprisingly, interest in social robots and attitudes toward robots played almost no role in voice evaluation. Contrary to the expectations of an uncanny valley, when the ratings of human-likeness for both the voice and the speaker characteristics were higher, they seemed less eerie to the participants. Moreover, when the speaker's voice was more humanlike, it was more liked by the participants. This latter point was only applicable to one of the synthesized voices. Finally, pleasantness and trustworthiness of the synthesized voice predicted the likability of the speaker's voice. Qualitative content analysis identified intonation, sound, emotion, and imageability/embodiment as diagnostic features. Discussion: Humans clearly prefer human voices, but manipulating diagnostic speech features might increase acceptance of synthesized voices and thereby support human-robot interaction. There is limited evidence that human-likeness of a voice is negatively linked to the perceived eeriness of the speaker.}, language = {en} } @misc{GallegoLlorenteSarahJonesetal.2016, author = {Gallego-Llorente, Marcos and Sarah, Connell and Jones, Eppie R. and Merrett, Deborah C. and Jeon, Y. and Eriksson, Anders and Siska, Veronika and Gamba, Cristina and Meiklejohn, Christopher and Beyer, Robert and Jeon, Sungwon and Cho, Yun Sung and Hofreiter, Michael and Bhak, Jong and Manica, Andrea and Pinhasi, Ron}, title = {The genetics of an early Neolithic pastoralist from the Zagros, Iran}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {952}, issn = {1866-8372}, doi = {10.25932/publishup-43935}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-439355}, pages = {9}, year = {2016}, abstract = {The agricultural transition profoundly changed human societies. We sequenced and analysed the first genome (1.39x) of an early Neolithic woman from Ganj Dareh, in the Zagros Mountains of Iran, a site with early evidence for an economy based on goat herding, ca. 10,000 BP. We show that Western Iran was inhabited by a population genetically most similar to hunter-gatherers from the Caucasus, but distinct from the Neolithic Anatolian people who later brought food production into Europe. The inhabitants of Ganj Dareh made little direct genetic contribution to modern European populations, suggesting those of the Central Zagros were somewhat isolated from other populations of the Fertile Crescent. Runs of homozygosity are of a similar length to those from Neolithic farmers, and shorter than those of Caucasus and Western Hunter-Gatherers, suggesting that the inhabitants of Ganj Dareh did not undergo the large population bottleneck suffered by their northern neighbours. While some degree of cultural diffusion between Anatolia, Western Iran and other neighbouring regions is possible, the genetic dissimilarity between early Anatolian farmers and the inhabitants of Ganj Dareh supports a model in which Neolithic societies in these areas were distinct.}, language = {en} } @misc{CeulemansGaedkeKlauschiesetal.2019, author = {Ceulemans, Ruben and Gaedke, Ursula and Klauschies, Toni and Guill, Christian}, title = {The effects of functional diversity on biomass production, variability, and resilience of ecosystem functions in a tritrophic system}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {744}, issn = {1866-8372}, doi = {10.25932/publishup-43543}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-435439}, pages = {16}, year = {2019}, abstract = {Diverse communities can adjust their trait composition to altered environmental conditions, which may strongly influence their dynamics. Previous studies of trait-based models mainly considered only one or two trophic levels, whereas most natural system are at least tritrophic. Therefore, we investigated how the addition of trait variation to each trophic level influences population and community dynamics in a tritrophic model. Examining the phase relationships between species of adjacent trophic levels informs about the strength of top-down or bottom-up control in non-steadystate situations. Phase relationships within a trophic level highlight compensatory dynamical patterns between functionally different species, which are responsible for dampening the community temporal variability. Furthermore, even without trait variation, our tritrophic model always exhibits regions with two alternative states with either weak or strong nutrient exploitation, and correspondingly low or high biomass production at the top level. However, adding trait variation increased the basin of attraction of the high-production state, and decreased the likelihood of a critical transition from the high- to the lowproduction state with no apparent early warning signals. Hence, our study shows that trait variation enhances resource use efficiency, production, stability, and resilience of entire food webs.}, language = {en} } @article{CeulemansGaedkeKlauschiesetal.2019, author = {Ceulemans, Ruben and Gaedke, Ursula and Klauschies, Toni and Guill, Christian}, title = {The effects of functional diversity on biomass production, variability, and resilience of ecosystem functions in a tritrophic system}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, publisher = {Macmillan Publishers Limited}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-019-43974-1}, pages = {16}, year = {2019}, abstract = {Diverse communities can adjust their trait composition to altered environmental conditions, which may strongly influence their dynamics. Previous studies of trait-based models mainly considered only one or two trophic levels, whereas most natural system are at least tritrophic. Therefore, we investigated how the addition of trait variation to each trophic level influences population and community dynamics in a tritrophic model. Examining the phase relationships between species of adjacent trophic levels informs about the strength of top-down or bottom-up control in non-steadystate situations. Phase relationships within a trophic level highlight compensatory dynamical patterns between functionally different species, which are responsible for dampening the community temporal variability. Furthermore, even without trait variation, our tritrophic model always exhibits regions with two alternative states with either weak or strong nutrient exploitation, and correspondingly low or high biomass production at the top level. However, adding trait variation increased the basin of attraction of the high-production state, and decreased the likelihood of a critical transition from the high- to the lowproduction state with no apparent early warning signals. Hence, our study shows that trait variation enhances resource use efficiency, production, stability, and resilience of entire food webs.}, language = {en} } @phdthesis{Harbart2024, author = {Harbart, Vanessa}, title = {The effect of protected cultivation on the nutritional quality of lettuce (Lactuca sativa var capitata L.) with a focus on antifogging additives in polyolefin covers}, doi = {10.25932/publishup-62937}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-629375}, school = {Universit{\"a}t Potsdam}, pages = {IV, 115}, year = {2024}, abstract = {Protected cultivation in greenhouses or polytunnels offers the potential for sustainable production of high-yield, high-quality vegetables. This is related to the ability to produce more on less land and to use resources responsibly and efficiently. Crop yield has long been considered the most important factor. However, as plant-based diets have been proposed for a sustainable food system, the targeted enrichment of health-promoting plant secondary metabolites should be addressed. These metabolites include carotenoids and flavonoids, which are associated with several health benefits, such as cardiovascular health and cancer protection. Cover materials generally have an influence on the climatic conditions, which in turn can affect the levels of secondary metabolites in vegetables grown underneath. Plastic materials are cost-effective and their properties can be modified by incorporating additives, making them the first choice. However, these additives can migrate and leach from the material, resulting in reduced service life, increased waste and possible environmental release. Antifogging additives are used in agricultural films to prevent the formation of droplets on the film surface, thereby increasing light transmission and preventing microbiological contamination. This thesis focuses on LDPE/EVA covers and incorporated antifogging additives for sustainable protected cultivation, following two different approaches. The first addressed the direct effects of leached antifogging additives using simulation studies on lettuce leaves (Lactuca sativa var capitata L). The second determined the effect of antifog polytunnel covers on lettuce quality. Lettuce is usually grown under protective cover and can provide high nutritional value due to its carotenoid and flavonoid content, depending on the cultivar. To study the influence of simulated leached antifogging additives on lettuce leaves, a GC-MS method was first developed to analyze these additives based on their fatty acid moieties. Three structurally different antifogging additives (reference material) were characterized outside of a polymer matrix for the first time. All of them contained more than the main fatty acid specified by the manufacturer. Furthermore, they were found to adhere to the leaf surface and could not be removed by water or partially by hexane. The incorporation of these additives into polytunnel covers affects carotenoid levels in lettuce, but not flavonoids, caffeic acid derivatives and chlorophylls. Specifically, carotenoids were higher in lettuce grown under polytunnels without antifog than with antifog. This has been linked to their effect on the light regime and was suggested to be related to carotenoid function in photosynthesis. In terms of protected cultivation, the use of LDPE/EVA polytunnels affected light and temperature, and both are closely related. The carotenoid and flavonoid contents of lettuce grown under polytunnels was reversed, with higher carotenoid and lower flavonoid levels. At the individual level, the flavonoids detected in lettuce did not differ however, lettuce carotenoids adapted specifically depending on the time of cultivation. Flavonoid reduction was shown to be transcriptionally regulated (CHS) in response to UV light (UVR8). In contrast, carotenoids are thought to be regulated post-transcriptionally, as indicated by the lack of correlation between carotenoid levels and transcripts of the first enzyme in carotenoid biosynthesis (PSY) and a carotenoid degrading enzyme (CCD4), as well as the increased carotenoid metabolic flux. Understanding the regulatory mechanisms and metabolite adaptation strategies could further advance the strategic development and selection of cover materials.}, language = {en} } @misc{EppKruseKathetal.2018, author = {Epp, Laura Saskia and Kruse, Stefan and Kath, Nadja J. and Stoof-Leichsenring, Kathleen Rosemarie and Tiedemann, Ralph and Pestryakova, Luidmila Agafyevna and Herzschuh, Ulrike}, title = {Temporal and spatial patterns of mitochondrial haplotype and species distributions in Siberian larches inferred from ancient environmental DNA and modeling}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1052}, issn = {1866-8372}, doi = {10.25932/publishup-46835}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-468352}, pages = {11}, year = {2018}, abstract = {Changes in species' distributions are classically projected based on their climate envelopes. For Siberian forests, which have a tremendous significance for vegetation-climate feedbacks, this implies future shifts of each of the forest-forming larch (Larix) species to the north-east. However, in addition to abiotic factors, reliable projections must assess the role of historical biogeography and biotic interactions. Here, we use sedimentary ancient DNA and individual-based modelling to investigate the distribution of larch species and mitochondrial haplotypes through space and time across the treeline ecotone on the southern Taymyr peninsula, which at the same time presents a boundary area of two larch species. We find spatial and temporal patterns, which suggest that forest density is the most influential driver determining the precise distribution of species and mitochondrial haplotypes. This suggests a strong influence of competition on the species' range shifts. These findings imply possible climate change outcomes that are directly opposed to projections based purely on climate envelopes. Investigations of such fine-scale processes of biodiversity change through time are possible using paleoenvironmental DNA, which is available much more readily than visible fossils and can provide information at a level of resolution that is not reached in classical palaeoecology.}, language = {en} } @misc{JiangMansfeldFangetal.2018, author = {Jiang, Yi and Mansfeld, Ulrich and Fang, Liang and Kratz, Karl and Lendlein, Andreas}, title = {Temperature-induced evolution of microstructures on poly[ethylene-co-(vinyl acetate)] substrates switches their underwater wettability}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {639}, issn = {1866-8372}, doi = {10.25932/publishup-42460}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-424601}, pages = {10}, year = {2018}, abstract = {Material surfaces with tailored aerophobicity are crucial for applications where gas bubble wettability has to be controlled, e.g., gas storage and transport, electrodes, bioreactors or medical devices. Here, we present switchable underwater aerophobicity of hydrophobic polymeric substrates, which respond to heat with multilevel micro- and nanotopographical changes. The cross-linked poly[ethylene-co-(vinyl acetate)] substrates possess arrays of microcylinders with a nanorough top surface. It is hypothesized that the specific micro-/nanotopography of the surface allows trapping of a water film at the micro interspace and in this way generates the aerophobic behavior. The structured substrates were programmed to a temporarily stable, nanoscale flat substrate showing aerophilic behavior. Upon heating, the topographical changes caused a switch in contact angle from aerophilic to aerophobic for approaching air bubbles. In this way, the initial adhesion of air bubbles to the programmed flat substrate could be turned into repellence for the recovered substrate surface. The temperature at which the repellence of air bubbles starts can be adjusted from 58 ± 3 °C to 73 ± 3 °C by varying the deformation temperature applied during the temperature-memory programming procedure. The presented actively switching polymeric substrates are attractive candidates for applications, where an on-demand gas bubble repellence is advantageous.}, language = {en} } @article{ParaskevopoulouDennisWeithoffetal.2020, author = {Paraskevopoulou, Sofia and Dennis, Alice B. and Weithoff, Guntram and Tiedemann, Ralph}, title = {Temperature-dependent life history and transcriptomic responses in heat-tolerant versus heat-sensitive Brachionus rotifers}, series = {Scientific Reports}, volume = {10}, journal = {Scientific Reports}, publisher = {Macmillan Publishers Limited, part of Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-020-70173-0}, pages = {15}, year = {2020}, abstract = {Thermal stress response is an essential physiological trait that determines occurrence and temporal succession in nature, including response to climate change. We compared temperature-related demography in closely related heat-tolerant and heat-sensitive Brachionus rotifer species. We found significant differences in heat response, with the heat-sensitive species adopting a strategy of long survival and low population growth, while the heat-tolerant followed the opposite strategy. In both species, we examined the genetic basis of physiological variation by comparing gene expression across increasing temperatures. Comparative transcriptomic analyses identified shared and opposing responses to heat. Interestingly, expression of heat shock proteins (hsps) was strikingly different in the two species and mirrored differences in population growth rates, showing that hsp genes are likely a key component of a species' adaptation to different temperatures. Temperature induction caused opposing patterns of expression in further functional categories including energy, carbohydrate and lipid metabolism, and in genes related to ribosomal proteins. In the heat-sensitive species, elevated temperatures caused up-regulation of genes related to meiosis induction and post-translational histone modifications. This work demonstrates the sweeping reorganizations of biological functions that accompany temperature adaptation in these two species and reveals potential molecular mechanisms that might be activated for adaptation to global warming.}, language = {en} } @misc{ParaskevopoulouDennisWeithoffetal.2020, author = {Paraskevopoulou, Sofia and Dennis, Alice B. and Weithoff, Guntram and Tiedemann, Ralph}, title = {Temperature-dependent life history and transcriptomic responses in heat-tolerant versus heat-sensitive Brachionus rotifers}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {1012}, issn = {1866-8372}, doi = {10.25932/publishup-48228}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-482280}, pages = {17}, year = {2020}, abstract = {Thermal stress response is an essential physiological trait that determines occurrence and temporal succession in nature, including response to climate change. We compared temperature-related demography in closely related heat-tolerant and heat-sensitive Brachionus rotifer species. We found significant differences in heat response, with the heat-sensitive species adopting a strategy of long survival and low population growth, while the heat-tolerant followed the opposite strategy. In both species, we examined the genetic basis of physiological variation by comparing gene expression across increasing temperatures. Comparative transcriptomic analyses identified shared and opposing responses to heat. Interestingly, expression of heat shock proteins (hsps) was strikingly different in the two species and mirrored differences in population growth rates, showing that hsp genes are likely a key component of a species' adaptation to different temperatures. Temperature induction caused opposing patterns of expression in further functional categories including energy, carbohydrate and lipid metabolism, and in genes related to ribosomal proteins. In the heat-sensitive species, elevated temperatures caused up-regulation of genes related to meiosis induction and post-translational histone modifications. This work demonstrates the sweeping reorganizations of biological functions that accompany temperature adaptation in these two species and reveals potential molecular mechanisms that might be activated for adaptation to global warming.}, language = {en} } @misc{PaulyHelleMiramontetal.2018, author = {Pauly, Maren and Helle, Gerhard and Miramont, C{\´e}cile and B{\"u}ntgen, Ulf and Treydte, Kerstin and Reinig, Frederick and Guibal, Fr{\´e}d{\´e}ric and Sivan, Olivier and Heinrich, Ingo and Riedel, Frank and Kromer, Bernd and Balanzategui, Daniel and Wacker, Lukas and Sookdeo, Adam Sookdeo and Brauer, Achim}, title = {Subfossil trees suggest enhanced Mediterranean hydroclimate variability at the onset of the Younger Dryas}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1135}, issn = {1866-8372}, doi = {10.25932/publishup-45916}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-459169}, pages = {10}, year = {2018}, abstract = {Nearly 13,000 years ago, the warming trend into the Holocene was sharply interrupted by a reversal to near glacial conditions. Climatic causes and ecological consequences of the Younger Dryas (YD) have been extensively studied, however proxy archives from the Mediterranean basin capturing this period are scarce and do not provide annual resolution. Here, we report a hydroclimatic reconstruction from stable isotopes (delta O-18, delta C-13) in subfossil pines from southern France. Growing before and during the transition period into the YD (12 900-12 600 cal BP), the trees provide an annually resolved, continuous sequence of atmospheric change. Isotopic signature of tree sourcewater (delta O-18(sw)) and estimates of relative air humidity were reconstructed as a proxy for variations in air mass origin and precipitation regime. We find a distinct increase in inter-annual variability of sourcewater isotopes (delta O-18(sw)), with three major downturn phases of increasing magnitude beginning at 12 740 cal BP. The observed variation most likely results from an amplified intensity of North Atlantic (low delta O-18(sw)) versus Mediterranean (high delta O-18(sw)) precipitation. This marked pattern of climate variability is not seen in records from higher latitudes and is likely a consequence of atmospheric circulation oscillations at the margin of the southward moving polar front.}, language = {en} } @misc{BiterovaEsmaeeliMoghaddamTabalvandaniAlanenetal.2018, author = {Biterova, Ekaterina and Esmaeeli Moghaddam Tabalvandani, Mariam and Alanen, Heli I. and Saaranen, Mirva and Ruddock, Lloyd W.}, title = {Structures of Angptl3 and Angptl4}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1048}, issn = {1866-8372}, doi = {10.25932/publishup-46794}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-467943}, pages = {14}, year = {2018}, abstract = {Coronary artery disease is the most common cause of death globally and is linked to a number of risk factors including serum low density lipoprotein, high density lipoprotein, triglycerides and lipoprotein(a). Recently two proteins, angiopoietin-like protein 3 and 4, have emerged from genetic studies as being factors that significantly modulate plasma triglyceride levels and coronary artery disease. The exact function and mechanism of action of both proteins remains to be elucidated, however, mutations in these proteins results in up to 34\% reduction in coronary artery disease and inhibition of function results in reduced plasma triglyceride levels. Here we report the crystal structures of the fibrinogen-like domains of both proteins. These structures offer new insights into the reported loss of function mutations, the mechanisms of action of the proteins and open up the possibility for the rational design of low molecular weight inhibitors for intervention in coronary artery disease.}, language = {en} } @article{LeonardZhangKrebsetal.2020, author = {L{\´e}onard, Fabien and Zhang, Zhen and Krebs, Holger and Bruno, Giovanni}, title = {Structural and morphological quantitative 3D characterisation of ammonium nitrate prills by X-ray computed tomography}, series = {Materials}, volume = {13}, journal = {Materials}, number = {5}, publisher = {MDPI}, address = {Basel}, issn = {1996-1944}, doi = {10.3390/ma13051230}, pages = {16}, year = {2020}, abstract = {The mixture of ammonium nitrate (AN) prills and fuel oil (FO), usually referred to as ANFO, is extensively used in the mining industry as a bulk explosive. One of the major performance predictors of ANFO mixtures is the fuel oil retention, which is itself governed by the complex pore structure of the AN prills. In this study, we present how X-ray computed tomography (XCT), and the associated advanced data processing workflow, can be used to fully characterise the structure and morphology of AN prills. We show that structural parameters such as volume fraction of the different phases and morphological parameters such as specific surface area and shape factor can be reliably extracted from the XCT data, and that there is a good agreement with the measured oil retention values. Importantly, oil retention measurements (qualifying the efficiency of ANFO as explosives) correlate well with the specific surface area determined by XCT. XCT can therefore be employed non-destructively; it can accurately evaluate and characterise porosity in ammonium nitrate prills, and even predict their efficiency.}, language = {en} } @misc{SenczukHavensteinMilanaetal.2018, author = {Senczuk, Gabriele and Havenstein, Katja and Milana, Valentina and Ripa, Chiara and De Simone, Emanuela and Tiedemann, Ralph and Castiglia, Riccardo}, title = {Spotlight on islands}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {991}, issn = {1866-8372}, doi = {10.25932/publishup-44636}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-446360}, pages = {14}, year = {2018}, abstract = {Groups of proximate continental islands may conceal more tangled phylogeographic patterns than oceanic archipelagos as a consequence of repeated sea level changes, which allow populations to experience gene flow during periods of low sea level stands and isolation by vicariant mechanisms during periods of high sea level stands. Here, we describe for the first time an ancient and diverging lineage of the Italian wall lizard Podarcis siculus from the western Pontine Islands. We used nuclear and mitochondrial DNA sequences of 156 individuals with the aim of unraveling their phylogenetic position, while microsatellite loci were used to test several a priori insular biogeographic models of migration with empirical data. Our results suggest that the western Pontine populations colonized the islands early during their Pliocene volcanic formation, while populations from the eastern Pontine Islands seem to have been introduced recently. The inter-island genetic makeup indicates an important role of historical migration, probably due to glacial land bridges connecting islands followed by a recent vicariant mechanism of isolation. Moreover, the most supported migration model predicted higher gene flow among islands which are geographically arranged in parallel. Considering the threatened status of small insular endemic populations, we suggest this new evolutionarily independent unit be given priority in conservation efforts.}, language = {en} } @misc{CrawfordKaramatLehotaietal.2020, author = {Crawford, Tim and Karamat, Fazeelat and Lehotai, N{\´o}ra and Rentoft, Matilda and Blomberg, Jeanette and Strand, {\AA}sa and Bj{\"o}rklund, Stefan}, title = {Specific functions for mediator complex subunits from different modules in the transcriptional response of arabidopsis thaliana to abiotic stress}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-51366}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-513666}, pages = {20}, year = {2020}, abstract = {Adverse environmental conditions are detrimental to plant growth and development. Acclimation to abiotic stress conditions involves activation of signaling pathways which often results in changes in gene expression via networks of transcription factors (TFs). Mediator is a highly conserved co-regulator complex and an essential component of the transcriptional machinery in eukaryotes. Some Mediator subunits have been implicated in stress-responsive signaling pathways; however, much remains unknown regarding the role of plant Mediator in abiotic stress responses. Here, we use RNA-seq to analyze the transcriptional response of Arabidopsis thaliana to heat, cold and salt stress conditions. We identify a set of common abiotic stress regulons and describe the sequential and combinatorial nature of TFs involved in their transcriptional regulation. Furthermore, we identify stress-specific roles for the Mediator subunits MED9, MED16, MED18 and CDK8, and putative TFs connecting them to different stress signaling pathways. Our data also indicate different modes of action for subunits or modules of Mediator at the same gene loci, including a co-repressor function for MED16 prior to stress. These results illuminate a poorly understood but important player in the transcriptional response of plants to abiotic stress and identify target genes and mechanisms as a prelude to further biochemical characterization.}, language = {en} } @article{CrawfordKaramatLehotaietal.2020, author = {Crawford, Tim and Karamat, Fazeelat and Lehotai, N{\´o}ra and Rentoft, Matilda and Blomberg, Jeanette and Strand, {\AA}sa and Bj{\"o}rklund, Stefan}, title = {Specific functions for mediator complex subunits from different modules in the transcriptional response of arabidopsis thaliana to abiotic stress}, series = {Scientific reports}, volume = {10}, journal = {Scientific reports}, number = {1}, publisher = {Macmillan Publishers Limited, part of Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-020-61758-w}, pages = {1 -- 18}, year = {2020}, abstract = {Adverse environmental conditions are detrimental to plant growth and development. Acclimation to abiotic stress conditions involves activation of signaling pathways which often results in changes in gene expression via networks of transcription factors (TFs). Mediator is a highly conserved co-regulator complex and an essential component of the transcriptional machinery in eukaryotes. Some Mediator subunits have been implicated in stress-responsive signaling pathways; however, much remains unknown regarding the role of plant Mediator in abiotic stress responses. Here, we use RNA-seq to analyze the transcriptional response of Arabidopsis thaliana to heat, cold and salt stress conditions. We identify a set of common abiotic stress regulons and describe the sequential and combinatorial nature of TFs involved in their transcriptional regulation. Furthermore, we identify stress-specific roles for the Mediator subunits MED9, MED16, MED18 and CDK8, and putative TFs connecting them to different stress signaling pathways. Our data also indicate different modes of action for subunits or modules of Mediator at the same gene loci, including a co-repressor function for MED16 prior to stress. These results illuminate a poorly understood but important player in the transcriptional response of plants to abiotic stress and identify target genes and mechanisms as a prelude to further biochemical characterization.}, language = {en} } @misc{LemaireInfossiChaoucheetal.2018, author = {Lemaire, Olivier N. and Infossi, Pascale and Chaouche, Amine Ali and Espinosa, Leon and Leimk{\"u}hler, Silke and Giudici-Orticoni, Marie-Th{\´e}r{\`e}se and M{\´e}jean, Vincent and Iobbi-Nivol, Chantal}, title = {Small membranous proteins of the TorE/NapE family, crutches for cognate respiratory systems in Proteobacteria}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {933}, issn = {1866-8372}, doi = {10.25932/publishup-45920}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-459208}, pages = {15}, year = {2018}, abstract = {In this report, we investigate small proteins involved in bacterial alternative respiratory systems that improve the enzymatic efficiency through better anchorage and multimerization of membrane components. Using the small protein TorE of the respiratory TMAO reductase system as a model, we discovered that TorE is part of a subfamily of small proteins that are present in proteobacteria in which they play a similar role for bacterial respiratory systems. We reveal by microscopy that, in Shewanella oneidensis MR1, alternative respiratory systems are evenly distributed in the membrane contrary to what has been described for Escherichia coli. Thus, the better efficiency of the respiratory systems observed in the presence of the small proteins is not due to a specific localization in the membrane, but rather to the formation of membranous complexes formed by TorE homologs with their c-type cytochrome partner protein. By an in vivo approach combining Clear Native electrophoresis and fluorescent translational fusions, we determined the 4: 4 stoichiometry of the complexes. In addition, mild solubilization of the cytochrome indicates that the presence of the small protein reinforces its anchoring to the membrane. Therefore, assembly of the complex induced by this small protein improves the efficiency of the respiratory system.}, language = {en} } @article{LemaireInfossiChaoucheetal.2018, author = {Lemaire, Olivier N. and Infossi, Pascale and Chaouche, Amine Ali and Espinosa, Leon and Leimk{\"u}hler, Silke and Giudici-Orticoni, Marie-Therese and Mejean, Vincent and Iobbi-Nivol, Chantal}, title = {Small membranous proteins of the TorE/NapE family, crutches for cognate respiratory systems in Proteobacteria}, series = {Scientific reports}, volume = {8}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-018-31851-2}, pages = {13}, year = {2018}, abstract = {In this report, we investigate small proteins involved in bacterial alternative respiratory systems that improve the enzymatic efficiency through better anchorage and multimerization of membrane components. Using the small protein TorE of the respiratory TMAO reductase system as a model, we discovered that TorE is part of a subfamily of small proteins that are present in proteobacteria in which they play a similar role for bacterial respiratory systems. We reveal by microscopy that, in Shewanella oneidensis MR1, alternative respiratory systems are evenly distributed in the membrane contrary to what has been described for Escherichia coli. Thus, the better efficiency of the respiratory systems observed in the presence of the small proteins is not due to a specific localization in the membrane, but rather to the formation of membranous complexes formed by TorE homologs with their c-type cytochrome partner protein. By an in vivo approach combining Clear Native electrophoresis and fluorescent translational fusions, we determined the 4: 4 stoichiometry of the complexes. In addition, mild solubilization of the cytochrome indicates that the presence of the small protein reinforces its anchoring to the membrane. Therefore, assembly of the complex induced by this small protein improves the efficiency of the respiratory system.}, language = {en} } @misc{OmoriWinterShinoharaetal.2018, author = {Omori, Toshihiro and Winter, Katja and Shinohara, Kyosuke and Hamada, Hiroshi and Ishikawa, Takuji}, title = {Simulation of the nodal flow of mutant embryos with a small number of cilia}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {1056}, issn = {1866-8372}, doi = {10.25932/publishup-46873}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-468734}, pages = {17}, year = {2018}, abstract = {Left-right (L-R) asymmetry in the body plan is determined by nodal flow in vertebrate embryos. Shinohara et al. (Shinohara K et al. 2012 Nat. Commun. 3, 622 (doi:10.1038/ncomms1624)) used Dpcd and Rfx3 mutant mouse embryos and showed that only a few cilia were sufficient to achieve L-R asymmetry. However, the mechanism underlying the breaking of symmetry by such weak ciliary flow is unclear. Flow-mediated signals associated with the L-R asymmetric organogenesis have not been clarified, and two different hypotheses-vesicle transport and mechanosensing-are now debated in the research field of developmental biology. In this study, we developed a computational model of the node system reported by Shinohara et al. and examined the feasibilities of the two hypotheses with a small number of cilia. With the small number of rotating cilia, flow was induced locally and global strong flow was not observed in the node. Particles were then effectively transported only when they were close to the cilia, and particle transport was strongly dependent on the ciliary positions. Although the maximum wall shear rate was also influenced by ciliary position, the mean wall shear rate at the perinodal wall increased monotonically with the number of cilia. We also investigated the membrane tension of immotile cilia, which is relevant to the regulation of mechanotransduction. The results indicated that tension of about 0.1 mu Nm(-1) was exerted at the base even when the fluid shear rate was applied at about 0.1 s(-1). The area of high tension was also localized at the upstream side, and negative tension appeared at the downstream side. Such localization may be useful to sense the flow direction at the periphery, as time-averaged anticlockwise circulation was induced in the node by rotation of a few cilia. Our numerical results support the mechanosensing hypothesis, and we expect that our study will stimulate further experimental investigations of mechanotransduction in the near future.}, language = {en} } @article{OmoriWinterShinoharaetal.2018, author = {Omori, Toshihiro and Winter, Katja and Shinohara, Kyosuke and Hamada, Hiroshi and Ishikawa, Takuji}, title = {Simulation of the nodal flow of mutant embryos with a small number of cilia}, series = {Royal Society Open Science}, volume = {5}, journal = {Royal Society Open Science}, number = {8}, publisher = {Royal Society}, address = {London}, issn = {2054-5703}, doi = {10.1098/rsos.180601}, pages = {15}, year = {2018}, abstract = {Left-right (L-R) asymmetry in the body plan is determined by nodal flow in vertebrate embryos. Shinohara et al. (Shinohara K et al. 2012 Nat. Commun. 3, 622 (doi:10.1038/ncomms1624)) used Dpcd and Rfx3 mutant mouse embryos and showed that only a few cilia were sufficient to achieve L-R asymmetry. However, the mechanism underlying the breaking of symmetry by such weak ciliary flow is unclear. Flow-mediated signals associated with the L-R asymmetric organogenesis have not been clarified, and two different hypotheses-vesicle transport and mechanosensing-are now debated in the research field of developmental biology. In this study, we developed a computational model of the node system reported by Shinohara et al. and examined the feasibilities of the two hypotheses with a small number of cilia. With the small number of rotating cilia, flow was induced locally and global strong flow was not observed in the node. Particles were then effectively transported only when they were close to the cilia, and particle transport was strongly dependent on the ciliary positions. Although the maximum wall shear rate was also influenced by ciliary position, the mean wall shear rate at the perinodal wall increased monotonically with the number of cilia. We also investigated the membrane tension of immotile cilia, which is relevant to the regulation of mechanotransduction. The results indicated that tension of about 0.1 mu Nm(-1) was exerted at the base even when the fluid shear rate was applied at about 0.1 s(-1). The area of high tension was also localized at the upstream side, and negative tension appeared at the downstream side. Such localization may be useful to sense the flow direction at the periphery, as time-averaged anticlockwise circulation was induced in the node by rotation of a few cilia. Our numerical results support the mechanosensing hypothesis, and we expect that our study will stimulate further experimental investigations of mechanotransduction in the near future.}, language = {en} } @article{SchallerScherwietesGerberetal.2021, author = {Schaller, J{\"o}rg and Scherwietes, Eric and Gerber, Lukas and Vaidya, Shrijana and Kaczorek, Danuta and Pausch, Johanna and Barkusky, Dietmar and Sommer, Michael and Hoffmann, Mathias}, title = {Silica fertilization improved wheat performance and increased phosphorus concentrations during drought at the field scale}, series = {Scientific reports}, volume = {11}, journal = {Scientific reports}, number = {1}, publisher = {Macmillan Publishers Limited, part of Springer Nature}, address = {[London]}, issn = {2045-2322}, doi = {10.1038/s41598-021-00464-7}, pages = {12}, year = {2021}, abstract = {Drought and the availability of mineable phosphorus minerals used for fertilization are two of the important issues agriculture is facing in the future. High phosphorus availability in soils is necessary to maintain high agricultural yields. Drought is one of the major threats for terrestrial ecosystem performance and crop production in future. Among the measures proposed to cope with the upcoming challenges of intensifying drought stress and to decrease the need for phosphorus fertilizer application is the fertilization with silica (Si). Here we tested the importance of soil Si fertilization on wheat phosphorus concentration as well as wheat performance during drought at the field scale. Our data clearly showed a higher soil moisture for the Si fertilized plots. This higher soil moisture contributes to a better plant performance in terms of higher photosynthetic activity and later senescence as well as faster stomata responses ensuring higher productivity during drought periods. The plant phosphorus concentration was also higher in Si fertilized compared to control plots. Overall, Si fertilization or management of the soil Si pools seem to be a promising tool to maintain crop production under predicted longer and more serve droughts in the future and reduces phosphorus fertilizer requirements.}, language = {en} } @misc{SperberWelkePetazzietal.2019, author = {Sperber, Hannah Sabeth and Welke, Robert-William and Petazzi, Roberto Arturo and Bergmann, Ronny and Schade, Matthias and Shai, Yechiel and Chiantia, Salvatore and Herrmann, Andreas and Schwarzer, Roland}, title = {Self-association and subcellular localization of Puumala hantavirus envelope proteins}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {648}, issn = {1866-8372}, doi = {10.25932/publishup-42504}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-425040}, pages = {15}, year = {2019}, abstract = {Hantavirus assembly and budding are governed by the surface glycoproteins Gn and Gc. In this study, we investigated the glycoproteins of Puumala, the most abundant Hantavirus species in Europe, using fluorescently labeled wild-type constructs and cytoplasmic tail (CT) mutants. We analyzed their intracellular distribution, co-localization and oligomerization, applying comprehensive live, single-cell fluorescence techniques, including confocal microscopy, imaging flow cytometry, anisotropy imaging and Number\&Brightness analysis. We demonstrate that Gc is significantly enriched in the Golgi apparatus in absence of other viral components, while Gn is mainly restricted to the endoplasmic reticulum (ER). Importantly, upon co-expression both glycoproteins were found in the Golgi apparatus. Furthermore, we show that an intact CT of Gc is necessary for efficient Golgi localization, while the CT of Gn influences protein stability. Finally, we found that Gn assembles into higher-order homo-oligomers, mainly dimers and tetramers, in the ER while Gc was present as mixture of monomers and dimers within the Golgi apparatus. Our findings suggest that PUUV Gc is the driving factor of the targeting of Gc and Gn to the Golgi region, while Gn possesses a significantly stronger self-association potential.}, language = {en} } @article{EnssleWeylandt2021, author = {Enssle, J{\"o}rg and Weylandt, Karsten-Henrich}, title = {Secure and optimized detection of PNPLA3 rs738409 genotype by an improved PCR-restriction fragment length polymorphism method}, series = {BioTechniques : the international journal of life science methods}, volume = {70}, journal = {BioTechniques : the international journal of life science methods}, number = {6}, publisher = {Future Science Ltd.}, address = {London}, issn = {0736-6205}, doi = {10.2144/btn-2020-0163}, pages = {345 -- 349}, year = {2021}, abstract = {The PNPLA3 reference single-nucleotide polymorphism rs738409 has been identified as a predisposing factor for nonalcoholic fatty liver disease. A simple method based on PCR and restriction fragment length polymorphism (RFLP) analysis had been published to detect the nonpathogenic allele PNPLA3 rs738409 variant. The presence of the pathogenic variant was deduced by the indigestibility of the corresponding PCR product with BtsCI recognizing the nonpathogenic allele. However, one cannot exclude that an enzymatic reaction does not occur for other, more trivial, reasons. For safe and secure detection of the pathogenic PNPLA3 rs738409, we have further developed the PCR-restriction fragment length polymorphism method by adding a second restriction enzyme digest, clearly identifying the correct PNPLA3 alleles and in particular the pathogenic variant.
METHOD SUMMARY
The method presented here represents an improved genetic diagnosis of the PNPLA3 rs738409 alleles based on conventional and inexpensive molecular biological methods. We used methodology based on PCR and restriction fragment length polymorphisms and clearly identified both described alleles by the use of two restriction enzymes. Digestion of individuals' specific PNPLA3 PCR fragments with both enzymes in independent reactions clearly showed the PNPLA3 rs738409 genotype.}, language = {en} } @misc{IgualGilOstKaschetal.2019, author = {Igual Gil, Carla and Ost, Mario and Kasch, Juliane and Schumann, Sara and Heider, Sarah and Klaus, Susanne}, title = {Role of GDF15 in active lifestyle induced metabolic adaptations and acute exercise response in mice}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1090}, issn = {1866-8372}, doi = {10.25932/publishup-46054}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-460541}, pages = {11}, year = {2019}, abstract = {Physical activity is an important contributor to muscle adaptation and metabolic health. Growth differentiation factor 15 (GDF15) is established as cellular and nutritional stress-induced cytokine but its physiological role in response to active lifestyle or acute exercise is unknown. Here, we investigated the metabolic phenotype and circulating GDF15 levels in lean and obese male C57BI/6J mice with long-term voluntary wheel running (VWR) intervention. Additionally, treadmill running capacity and exercise-induced muscle gene expression was examined in GDF15-ablated mice. Active lifestyle mimic via VWR improved treadmill running performance and, in obese mice, also metabolic phenotype. The post-exercise induction of skeletal muscle transcriptional stress markers was reduced by VWR. Skeletal muscle GDF15 gene expression was very low and only transiently increased post-exercise in sedentary but not in active mice. Plasma GDF15 levels were only marginally affected by chronic or acute exercise. In obese mice, VWR reduced GDF15 gene expression in different tissues but did not reverse elevated plasma GDF15. Genetic ablation of GDF15 had no effect on exercise performance but augmented the post exercise expression of transcriptional exercise stress markers (Atf3, Atf6, and Xbp1s) in skeletal muscle. We conclude that skeletal muscle does not contribute to circulating GDF15 in mice, but muscle GDF15 might play a protective role in the exercise stress response.}, language = {en} } @article{Fritsch2022, author = {Fritsch, Daniel}, title = {Revisiting the Cu-Zn disorder in kesterite type Cu2ZnSnSe4 employing a novel approach to hybrid functional calculations}, series = {Applied Sciences : open access journal}, volume = {12}, journal = {Applied Sciences : open access journal}, number = {5}, publisher = {MDPI}, address = {Basel}, issn = {2076-3417}, doi = {10.3390/app12052576}, pages = {10}, year = {2022}, abstract = {In recent years, the search for more efficient and environmentally friendly materials to be employed in the next generation of thin film solar cell devices has seen a shift towards hybrid halide perovskites and chalcogenide materials crystallising in the kesterite crystal structure. Prime examples for the latter are Cu2ZnSnS4, Cu2ZnSnSe4, and their solid solution Cu2ZnSn(SxSe1-x)(4), where actual devices already demonstrated power conversion efficiencies of about 13 \%. However, in their naturally occurring kesterite crystal structure, the so-called Cu-Zn disorder plays an important role and impacts the structural, electronic, and optical properties. To understand the influence of Cu-Zn disorder, we perform first-principles calculations based on density functional theory combined with special quasirandom structures to accurately model the cation disorder. Since the electronic band gaps and derived optical properties are severely underestimated by (semi)local exchange and correlation functionals, supplementary hybrid functional calculations have been performed. Concerning the latter, we additionally employ a recently devised technique to speed up structural relaxations for hybrid functional calculations. Our calculations show that the Cu-Zn disorder leads to a slight increase in the unit cell volume compared to the conventional kesterite structure showing full cation order, and that the band gap gets reduced by about 0.2 eV, which is in very good agreement with earlier experimental and theoretical findings. Our detailed results on structural, electronic, and optical properties will be discussed with respect to available experimental data, and will provide further insights into the atomistic origin of the disorder-induced band gap lowering in these promising kesterite type materials.}, language = {en} } @article{QuanteWillnerMiddelanisetal.2021, author = {Quante, Lennart and Willner, Sven N. and Middelanis, Robin and Levermann, Anders}, title = {Regions of intensification of extreme snowfall under future warming}, series = {Scientific reports}, volume = {11}, journal = {Scientific reports}, number = {1}, publisher = {Macmillan Publishers Limited, part of Springer Nature}, address = {Berlin}, issn = {2045-2322}, doi = {10.1038/s41598-021-95979-4}, pages = {9}, year = {2021}, abstract = {Due to climate change the frequency and character of precipitation are changing as the hydrological cycle intensifies. With regards to snowfall, global warming has two opposing influences; increasing humidity enables intense snowfall, whereas higher temperatures decrease the likelihood of snowfall. Here we show an intensification of extreme snowfall across large areas of the Northern Hemisphere under future warming. This is robust across an ensemble of global climate models when they are bias-corrected with observational data. While mean daily snowfall decreases, both the 99th and the 99.9th percentiles of daily snowfall increase in many regions in the next decades, especially for Northern America and Asia. Additionally, the average intensity of snowfall events exceeding these percentiles as experienced historically increases in many regions. This is likely to pose a challenge to municipalities in mid to high latitudes. Overall, extreme snowfall events are likely to become an increasingly important impact of climate change in the next decades, even if they will become rarer, but not necessarily less intense, in the second half of the century.}, language = {en} } @misc{LaraNitzeGrosseetal.2018, author = {Lara, Mark J. and Nitze, Ingmar and Grosse, Guido and Martin, Philip and McGuire, A. David}, title = {Reduced arctic tundra productivity linked with landform and climate change interactions}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {550}, issn = {1866-8372}, doi = {10.25932/publishup-42313}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-423132}, pages = {10}, year = {2018}, abstract = {Arctic tundra ecosystems have experienced unprecedented change associated with climate warming over recent decades. Across the Pan-Arctic, vegetation productivity and surface greenness have trended positively over the period of satellite observation. However, since 2011 these trends have slowed considerably, showing signs of browning in many regions. It is unclear what factors are driving this change and which regions/landforms will be most sensitive to future browning. Here we provide evidence linking decadal patterns in arctic greening and browning with regional climate change and local permafrost-driven landscape heterogeneity. We analyzed the spatial variability of decadal-scale trends in surface greenness across the Arctic Coastal Plain of northern Alaska (similar to 60,000 km(2)) using the Landsat archive (1999-2014), in combination with novel 30 m classifications of polygonal tundra and regional watersheds, finding landscape heterogeneity and regional climate change to be the most important factors controlling historical greenness trends. Browning was linked to increased temperature and precipitation, with the exception of young landforms (developed following lake drainage), which will likely continue to green. Spatiotemporal model forecasting suggests carbon uptake potential to be reduced in response to warmer and/or wetter climatic conditions, potentially increasing the net loss of carbon to the atmosphere, at a greater degree than previously expected.}, language = {en} } @article{RosenblumPikovskijKuehnetal.2021, author = {Rosenblum, Michael and Pikovskij, Arkadij and K{\"u}hn, Andrea A. and Busch, Johannes Leon}, title = {Real-time estimation of phase and amplitude with application to neural data}, series = {Scientific reports}, volume = {11}, journal = {Scientific reports}, publisher = {Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-021-97560-5}, pages = {11}, year = {2021}, abstract = {Computation of the instantaneous phase and amplitude via the Hilbert Transform is a powerful tool of data analysis. This approach finds many applications in various science and engineering branches but is not proper for causal estimation because it requires knowledge of the signal's past and future. However, several problems require real-time estimation of phase and amplitude; an illustrative example is phase-locked or amplitude-dependent stimulation in neuroscience. In this paper, we discuss and compare three causal algorithms that do not rely on the Hilbert Transform but exploit well-known physical phenomena, the synchronization and the resonance. After testing the algorithms on a synthetic data set, we illustrate their performance computing phase and amplitude for the accelerometer tremor measurements and a Parkinsonian patient's beta-band brain activity.}, language = {en} } @article{SeepRazaghiMoghadamNikoloski2021, author = {Seep, Lea and Razaghi-Moghadam, Zahra and Nikoloski, Zoran}, title = {Reaction lumping in metabolic networks for application with thermodynamic metabolic flux analysis}, series = {Scientific reports}, volume = {11}, journal = {Scientific reports}, number = {1}, publisher = {Macmillan Publishers Limited, part of Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-021-87643-8}, pages = {11}, year = {2021}, abstract = {Thermodynamic metabolic flux analysis (TMFA) can narrow down the space of steady-state flux distributions, but requires knowledge of the standard Gibbs free energy for the modelled reactions. The latter are often not available due to unknown Gibbs free energy change of formation ,Delta fG0, of metabolites. To optimize the usage of data on thermodynamics in constraining a model, reaction lumping has been proposed to eliminate metabolites with unknown Delta fG0. However, the lumping procedure has not been formalized nor implemented for systematic identification of lumped reactions. Here, we propose, implement, and test a combined procedure for reaction lumping, applicable to genome-scale metabolic models. It is based on identification of groups of metabolites with unknown Delta fG0 whose elimination can be conducted independently of the others via: (1) group implementation, aiming to eliminate an entire such group, and, if this is infeasible, (2) a sequential implementation to ensure that a maximal number of metabolites with unknown Delta fG0 are eliminated. Our comparative analysis with genome-scale metabolic models of Escherichia coli, Bacillus subtilis, and Homo sapiens shows that the combined procedure provides an efficient means for systematic identification of lumped reactions. We also demonstrate that TMFA applied to models with reactions lumped according to the proposed procedure lead to more precise predictions in comparison to the original models. The provided implementation thus ensures the reproducibility of the findings and their application with standard TMFA.}, language = {en} } @article{WetzelKempkaKuehn2018, author = {Wetzel, Maria and Kempka, Thomas and K{\"u}hn, Michael}, title = {Quantifying rock weakening due to decreasing calcite mineral content by numerical simulations}, series = {Materials}, volume = {11}, journal = {Materials}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {1996-1944}, doi = {10.3390/ma11040542}, pages = {19}, year = {2018}, abstract = {The quantification of changes in geomechanical properties due to chemical reactions is of paramount importance for geological subsurface utilisation, since mineral dissolution generally reduces rock stiffness. In the present study, the effective elastic moduli of two digital rock samples, the Fontainebleau and Bentheim sandstones, are numerically determined based on micro-CT images. Reduction in rock stiffness due to the dissolution of 10\% calcite cement by volume out of the pore network is quantified for three synthetic spatial calcite distributions (coating, partial filling and random) using representative sub-cubes derived from the digital rock samples. Due to the reduced calcite content, bulk and shear moduli decrease by 34\% and 38\% in maximum, respectively. Total porosity is clearly the dominant parameter, while spatial calcite distribution has a minor impact, except for a randomly chosen cement distribution within the pore network. Moreover, applying an initial stiffness reduced by 47\% for the calcite cement results only in a slightly weaker mechanical behaviour. Using the quantitative approach introduced here substantially improves the accuracy of predictions in elastic rock properties compared to general analytical methods, and further enables quantification of uncertainties related to spatial variations in porosity and mineral distribution.}, language = {en} } @misc{WetzelKempkaKuehn2018, author = {Wetzel, Maria and Kempka, Thomas and K{\"u}hn, Michael}, title = {Quantifying rock weakening due to decreasing calcite mineral content by numerical simulations}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1092}, issn = {1866-8372}, doi = {10.25932/publishup-47308}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-473089}, pages = {21}, year = {2018}, abstract = {The quantification of changes in geomechanical properties due to chemical reactions is of paramount importance for geological subsurface utilisation, since mineral dissolution generally reduces rock stiffness. In the present study, the effective elastic moduli of two digital rock samples, the Fontainebleau and Bentheim sandstones, are numerically determined based on micro-CT images. Reduction in rock stiffness due to the dissolution of 10\% calcite cement by volume out of the pore network is quantified for three synthetic spatial calcite distributions (coating, partial filling and random) using representative sub-cubes derived from the digital rock samples. Due to the reduced calcite content, bulk and shear moduli decrease by 34\% and 38\% in maximum, respectively. Total porosity is clearly the dominant parameter, while spatial calcite distribution has a minor impact, except for a randomly chosen cement distribution within the pore network. Moreover, applying an initial stiffness reduced by 47\% for the calcite cement results only in a slightly weaker mechanical behaviour. Using the quantitative approach introduced here substantially improves the accuracy of predictions in elastic rock properties compared to general analytical methods, and further enables quantification of uncertainties related to spatial variations in porosity and mineral distribution.}, language = {en} } @misc{ZiegeTheodorouJuenglingetal.2020, author = {Ziege, Madlen and Theodorou, Panagiotis and J{\"u}ngling, Hannah and Merker, Stefan and Plath, Martin and Streit, Bruno and Lerp, Hannes}, title = {Population genetics of the European rabbit along a rural-to-urban gradient}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {880}, issn = {1866-8372}, doi = {10.25932/publishup-46035}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-460354}, pages = {14}, year = {2020}, abstract = {The European rabbit (Oryctolagus cuniculus) is declining in large parts of Europe but populations in some German cities remained so far unaffected by this decline. The question arises of how urbanization affects patterns of population genetic variation and differentiation in German rabbit populations, as urban habitat fragmentation may result in altered meta-population dynamics. To address this question, we used microsatellite markers to genotype rabbit populations occurring along a rural-to-urban gradient in and around the city of Frankfurt, Germany. We found no effect of urbanization on allelic richness. However, the observed heterozygosity was significantly higher in urban than rural populations and also the inbreeding coefficients were lower, most likely reflecting the small population sizes and possibly on-going loss of genetic diversity in structurally impoverished rural areas. Global FST and G'ST-values suggest moderate but significant differentiation between populations. Multiple matrix regression with randomization ascribed this differentiation to isolation-by-environment rather than isolation-by-distance. Analyses of migration rates revealed asymmetrical gene flow, which was higher from rural into urban populations than vice versa and may again reflect intensified agricultural land-use practices in rural areas. We discuss that populations inhabiting urban areas will likely play an important role in the future distribution of European rabbits.}, language = {en} } @article{ZiegeTheodorouJuenglingetal.2020, author = {Ziege, Madlen and Theodorou, Panagiotis and J{\"u}ngling, Hannah and Merker, Stefan and Plath, Martin and Streit, Bruno and Lerp, Hannes}, title = {Population genetics of the European rabbit along a rural-to-urban gradient}, series = {Scientific Reports}, volume = {10}, journal = {Scientific Reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-020-57962-3}, pages = {12}, year = {2020}, abstract = {The European rabbit (Oryctolagus cuniculus) is declining in large parts of Europe but populations in some German cities remained so far unaffected by this decline. The question arises of how urbanization affects patterns of population genetic variation and differentiation in German rabbit populations, as urban habitat fragmentation may result in altered meta-population dynamics. To address this question, we used microsatellite markers to genotype rabbit populations occurring along a rural-to-urban gradient in and around the city of Frankfurt, Germany. We found no effect of urbanization on allelic richness. However, the observed heterozygosity was significantly higher in urban than rural populations and also the inbreeding coefficients were lower, most likely reflecting the small population sizes and possibly on-going loss of genetic diversity in structurally impoverished rural areas. Global FST and G'ST-values suggest moderate but significant differentiation between populations. Multiple matrix regression with randomization ascribed this differentiation to isolation-by-environment rather than isolation-by-distance. Analyses of migration rates revealed asymmetrical gene flow, which was higher from rural into urban populations than vice versa and may again reflect intensified agricultural land-use practices in rural areas. We discuss that populations inhabiting urban areas will likely play an important role in the future distribution of European rabbits.}, language = {en} } @misc{NiebuurPuchmayrHeroldetal.2018, author = {Niebuur, Bart-Jan and Puchmayr, Jonas and Herold, Christian and Kreuzer, Lucas and Hildebrand, Viet and M{\"u}ller-Buschbaum, Peter and Laschewsky, Andr{\´e} and Papadakis, Christine M.}, title = {Polysulfobetaines in aqueous solution and in thin film geometry}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {713}, issn = {1866-8372}, doi = {10.25932/publishup-42736}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427363}, pages = {11}, year = {2018}, abstract = {Polysulfobetaines in aqueous solution show upper critical solution temperature (UCST) behavior. We investigate here the representative of this class of materials, poly (N,N-dimethyl-N-(3-methacrylamidopropyl) ammonio propane sulfonate) (PSPP), with respect to: (i) the dynamics in aqueous solution above the cloud point as function of NaBr concentration; and (ii) the swelling behavior of thin films in water vapor as function of the initial film thickness. For PSPP solutions with a concentration of 5 wt.\%, the temperature dependence of the intensity autocorrelation functions is measured with dynamic light scattering as function of molar mass and NaBr concentration (0-8 mM). We found a scaling of behavior for the scattered intensity and dynamic correlation length. The resulting spinodal temperatures showed a maximum at a certain (small) NaBr concentration, which is similar to the behavior of the cloud points measured previously by turbidimetry. The critical exponent of susceptibility depends on NaBr concentration, with a minimum value where the spinodal temperature is maximum and a trend towards the mean-field value of unity with increasing NaBr concentration. In contrast, the critical exponent of the correlation length does not depend on NaBr concentration and is lower than the value of 0.5 predicted by mean-field theory. For PSPP thin films, the swelling behavior was found to depend on film thickness. A film thickness of about 100 nm turns out to be the optimum thickness needed to obtain fast hydration with H 2 O.}, language = {en} }