@article{MaesPerringVanhellemontetal.2018, author = {Maes, Sybryn L. and Perring, Michael P. and Vanhellemont, Margot and Depauw, Leen and Van den Bulcke, Jan and Brumelis, Guntis and Brunet, Jorg and Decocq, Guillaume and den Ouden, Jan and H{\"a}rdtle, Werner and Hedl, Radim and Heinken, Thilo and Heinrichs, Steffi and Jaroszewicz, Bogdan and Kopeck{\´y}, Martin and Malis, Frantisek and Wulf, Monika and Verheyen, Kris}, title = {Environmental drivers interactively affect individual tree growth across temperate European forests}, series = {Global change biology}, volume = {25}, journal = {Global change biology}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {1354-1013}, doi = {10.1111/gcb.14493}, pages = {201 -- 217}, year = {2018}, abstract = {Forecasting the growth of tree species to future environmental changes requires abetter understanding of its determinants. Tree growth is known to respond to global-change drivers such as climate change or atmospheric deposition, as well as to localland-use drivers such as forest management. Yet, large geographical scale studiesexamining interactive growth responses to multiple global-change drivers are relativelyscarce and rarely consider management effects. Here, we assessed the interactiveeffects of three global-change drivers (temperature, precipitation and nitrogen deposi-tion) on individual tree growth of three study species (Quercus robur/petraea, Fagus syl-vatica and Fraxinus excelsior). We sampled trees along spatial environmental gradientsacross Europe and accounted for the effects of management for Quercus. We collectedincrement cores from 267 trees distributed over 151 plots in 19 forest regions andcharacterized their neighbouring environment to take into account potentially confounding factors such as tree size, competition, soil conditions and elevation. Wedemonstrate that growth responds interactively to global-change drivers, with species -specific sensitivities to the combined factors. Simultaneously high levels of precipita-tion and deposition benefited Fraxinus, but negatively affected Quercus' growth, high-lighting species-specific interactive tree growth responses to combined drivers. ForFagus, a stronger growth response to higher temperatures was found when precipita-tion was also higher, illustrating the potential negative effects of drought stress underwarming for this species. Furthermore, we show that past forest management canmodulate the effects of changing temperatures on Quercus' growth; individuals in plotswith a coppicing history showed stronger growth responses to higher temperatures.Overall, our findings highlight how tree growth can be interactively determined by glo-bal-change drivers, and how these growth responses might be modulated by past for-est management. By showing future growth changes for scenarios of environmentalchange, we stress the importance of considering multiple drivers, including past man-agement and their interactions, when predicting tree growth.}, language = {en} } @phdthesis{Jing2020, author = {Jing, Yue}, title = {Characterization of Serine Carboxypeptidase-like (SCPL) gene family in Brassicaceae}, school = {Universit{\"a}t Potsdam}, year = {2020}, language = {en} } @article{JoseClementeMorenoOmranianSaezetal.2019, author = {Jose Clemente-Moreno, Maria and Omranian, Nooshin and Saez, Patricia and Maria Figueroa, Carlos and Del-Saz, Nestor and Elso, Mhartyn and Poblete, Leticia and Orf, Isabel and Cuadros-Inostroza, Alvaro and Cavieres, Lohengrin and Bravo, Leon and Fernie, Alisdair R. and Ribas-Carbo, Miquel and Flexas, Jaume and Nikoloski, Zoran and Brotman, Yariv and Gago, Jorge}, title = {Cytochrome respiration pathway and sulphur metabolism sustain stress tolerance to low temperature in the Antarctic species Colobanthus quitensis}, series = {New phytologist : international journal of plant science}, volume = {225}, journal = {New phytologist : international journal of plant science}, number = {2}, publisher = {Wiley}, address = {Hoboken}, issn = {0028-646X}, doi = {10.1111/nph.16167}, pages = {754 -- 768}, year = {2019}, abstract = {Understanding the strategies employed by plant species that live in extreme environments offers the possibility to discover stress tolerance mechanisms. We studied the physiological, antioxidant and metabolic responses to three temperature conditions (4, 15, and 23 degrees C) of Colobanthus quitensis (CQ), one of the only two native vascular species in Antarctica. We also employed Dianthus chinensis (DC), to assess the effects of the treatments in a non-Antarctic species from the same family. Using fused LASSO modelling, we associated physiological and biochemical antioxidant responses with primary metabolism. This approach allowed us to highlight the metabolic pathways driving the response specific to CQ. Low temperature imposed dramatic reductions in photosynthesis (up to 88\%) but not in respiration (sustaining rates of 3.0-4.2 mu mol CO2 m(-2) s(-1)) in CQ, and no change in the physiological stress parameters was found. Its notable antioxidant capacity and mitochondrial cytochrome respiratory activity (20 and two times higher than DC, respectively), which ensure ATP production even at low temperature, was significantly associated with sulphur-containing metabolites and polyamines. Our findings potentially open new biotechnological opportunities regarding the role of antioxidant compounds and respiratory mechanisms associated with sulphur metabolism in stress tolerance strategies to low temperature.}, language = {en} } @article{MuellerBochPratietal.2018, author = {M{\"u}ller, J{\"o}rg and Boch, Steffen and Prati, Daniel and Socher, Stephanie A. and Pommer, Ulf and Hessenm{\"o}ller, Dominik and Schall, Peter and Schulze, Ernst Detlef and Fischer, Markus}, title = {Effects of forest management on bryophyte species richness in Central European forests}, series = {Forest ecology and management}, volume = {432}, journal = {Forest ecology and management}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0378-1127}, doi = {10.1016/j.foreco.2018.10.019}, pages = {850 -- 859}, year = {2018}, abstract = {We studied the effect of three major forest management types (unmanaged beech, selection beech, and age class forests) and stand variables (SMId, soil pH, proportion of conifers, litter cover, deadwood cover, rock cover and cumulative cover of woody trees and shrubs) on bryophyte species richness in 1050 forest plots in three regions in Germany. In addition, we analysed the species richness of four ecological guilds of bryophytes according to their colonized substrates (deadwood, rock, soil, bark) and the number of woodland indicator bryophyte species. Beech selection forests turned out to be the most species rich management type, whereas unmanaged beech forests revealed even lower species numbers than age-class forests. Increasing conifer proportion increased bryophyte species richness but not the number of woodland indicator bryophyte species. The richness of the four ecological guilds mainly responded to the abundance of their respective substrate. We conclude that the permanent availability of suitable substrates is most important for bryophyte species richness in forests, which is not stringently linked to management type. Therefore, managed age-class forests and selection forests may even exceed unmanaged forests in bryophyte species richness due to higher substrate supply and therefore represent important habitats for bryophytes. Typical woodland indicator bryophytes and their species richness were negatively affected by SMId (management intensity) and therefore better indicate forest integrity than the species richness of all bryophytes. Nature conservation efforts should focus on the reduction of management intensity. Moreover, maintaining and increasing a variability of substrates and habitats, such as coarse woody debris, increasing structural heterogeneity by retaining patches with groups of old, mature to over-mature trees in managed forests, maintaining forest climate conditions by silvicultural methods that assure stand continuity, e.g. by selection cutting rather than clear cutting and shelterwood logging might promote bryophyte diversity and in particular the one of woodland indicator bryophytes.}, language = {en} } @phdthesis{Kubis2020, author = {Kubis, Armin}, title = {Synthetic carbon neutral photorespiration bypasses}, school = {Universit{\"a}t Potsdam}, pages = {68}, year = {2020}, abstract = {With populations growing worldwide and climate change threatening food production there is an urgent need to find ways to ensure food security. Increasing carbon fixation rate in plants is a promising approach to boost crop yields. The carbon-fixing enzyme Rubisco catalyzes, beside the carboxylation reaction, also an oxygenation reaction that generates glycolate-2P, which needs to be recycled via a metabolic route termed photorespiration. Photorespiration dissipates energy and most importantly releases previously fixed CO2, thus significantly lowering carbon fixation rate and yield. Engineering plants to omit photorespiratory CO2 release is the goal of the FutureAgriculture consortium and this thesis is part of this collaboration. The consortium aims to establish alternative glycolate-2P recycling routes that do not release CO2. Ultimately, they are expected to increase carbon fixation rates and crop yields. Natural and novel reactions, which require enzyme engineering, were considered in the pathway design process. Here I describe the engineering of two pathways, the arabinose-5P and the erythrulose shunt. They were designed to recycle glycolate-2P via glycolaldehyde into a sugar phosphate and thereby reassimilate glycolate-2P to the Calvin cycle. I used Escherichia coli gene deletion strains to validate and characterize the activity of both synthetic shunts. The strains' auxotrophies can be alleviated by the activity of the synthetic route, thus providing a direct way to select for pathway activity. I introduced all pathway components to these dedicated selection strains and discovered inhibitions, limitations and metabolic cross talk interfering with pathway activity. After resolving these issues, I was able to show the in vivo activity of all pathway components and combine them into functional modules.. Specifically, I demonstrate the activity of a new-to-nature module of glycolate reduction to glycolaldehyde. Also, I successfully show a new glycolaldehyde assimilation route via arabinose-5P to ribulose-5P. In addition, all necessary enzymes for glycolaldehyde assimilation via L-erythrulose were shown to be active and an L-threitol assimilation route via L-erythrulose was established in E. coli. On their own, these findings demonstrate the power of using an easily engineerable microbe to test novel pathways; combined, they will form the basis for implementing photorespiration bypasses in plants.}, language = {en} } @article{Xu2022, author = {Xu, Ying}, title = {Study on transport mechanism of m5C-edited mRNAs}, pages = {133}, year = {2022}, language = {en} } @article{BoernkeRocksch2018, author = {B{\"o}rnke, Frederik and Rocksch, Thorsten}, title = {Thigmomorphogenesis}, series = {Scientia horticulturae : an international journal sponsored by the International Society for Horticultural Science}, volume = {234}, journal = {Scientia horticulturae : an international journal sponsored by the International Society for Horticultural Science}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-4238}, doi = {10.1016/j.scienta.2018.02.059}, pages = {344 -- 353}, year = {2018}, abstract = {Controlled regulation of plant growth is a general prerequisite for the production of marketable ornamental plants. Consumers as well as retailers prefer stronger, more compact plants with greener leaves as these not only better meet a certain desired visual quality but also allow for a maximization of production per unit area as well as facilitation of packaging and transport. The same applies for the production of young vegetable plants. Special attention is paid to solid, compact and resilient plants that survive transport and planting without any problems. During the last decades plant growth control has mainly been achieved through the application of chemical plant growth regulators that generally interfere with the function of growth regulating hormones. However, there is an increasing demand to replace chemical treatments by other means such as the modulation of growth conditions, including temperature, light and fertilization. Alternatively, the application of mechanical stimulation has been shown to induce plant responses that yield some of the commercially relevant phenotypes including increased compactness, higher girth, darker leaves and a delay in flowering. The ability of plants to sense and respond to mechanical stimuli is an adaptive trait associated with increased fitness in many environmental settings. Mechanical stimulation in nature occurs e.g. through wind, rain, neighboring plants or predatory animals and induces a range of morphogenic responses that have been summarized under the term thigmomorphogenesis. We are only just about to begin to understand the molecular mechanisms underlying mechanosensing and the associated morphogenic changes in plants. However, a number of examples suggest that mechanical stimulation applied in a greenhouse setting can be used to alter plant growth in order to produce marketable plants. In this review will briefly summarize the current knowledge concerning the biological principles of thigmomorphogenesis and discuss the potential of mechanical growth regulation in commercial plant production especially with respect to organic horticulture.}, language = {en} } @misc{NakamuraGrebe2018, author = {Nakamura, Moritaka and Grebe, Markus}, title = {Outer, inner and planar polarity in the Arabidopsis root}, series = {Current opinion in plant biology}, volume = {41}, journal = {Current opinion in plant biology}, publisher = {Elsevier}, address = {London}, issn = {1369-5266}, doi = {10.1016/j.pbi.2017.08.002}, pages = {46 -- 53}, year = {2018}, abstract = {Plant roots control uptake of water and nutrients and cope with environmental challenges. The root epidermis provides the first selective interface for nutrient absorption, while the endodermis produces the main apoplastic diffusion barrier in the form of a structure called the Casparian strip. The positioning of root hairs on epidermal cells, and of the Casparian strip around endodermal cells, requires asymmetries along cellular axes (cell polarity). Cell polarity is termed planar polarity, when coordinated within the plane of a given tissue layer. Here, we review recent molecular advances towards understanding both the polar positioning of the proteo-lipid membrane domain instructing root hair initiation, and the cytoskeletal, trafficking and polar tethering requirements of proteins at outer or inner plasma membrane domains. Finally, we highlight progress towards understanding mechanisms of Casparian strip formation and underlying endodermal cell polarity.}, language = {en} } @article{SprengerErbanSeddigetal.2017, author = {Sprenger, Heike and Erban, Alexander and Seddig, Sylvia and Rudack, Katharina and Thalhammer, Anja and Le, Mai Q. and Walther, Dirk and Zuther, Ellen and Koehl, Karin I. and Kopka, Joachim and Hincha, Dirk K.}, title = {Metabolite and transcript markers for the prediction of potato drought tolerance}, series = {Plant Biotechnology Journal}, volume = {16}, journal = {Plant Biotechnology Journal}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {1467-7644}, doi = {10.1111/pbi.12840}, pages = {939 -- 950}, year = {2017}, abstract = {Potato (Solanum tuberosum L.) is one of the most important food crops worldwide. Current potato varieties are highly susceptible to drought stress. In view of global climate change, selection of cultivars with improved drought tolerance and high yield potential is of paramount importance. Drought tolerance breeding of potato is currently based on direct selection according to yield and phenotypic traits and requires multiple trials under drought conditions. Marker-assisted selection (MAS) is cheaper, faster and reduces classification errors caused by noncontrolled environmental effects. We analysed 31 potato cultivars grown under optimal and reduced water supply in six independent field trials. Drought tolerance was determined as tuber starch yield. Leaf samples from young plants were screened for preselected transcript and nontargeted metabolite abundance using qRT-PCR and GC-MS profiling, respectively. Transcript marker candidates were selected from a published RNA-Seq data set. A Random Forest machine learning approach extracted metabolite and transcript markers for drought tolerance prediction with low error rates of 6\% and 9\%, respectively. Moreover, by combining transcript and metabolite markers, the prediction error was reduced to 4.3\%. Feature selection from Random Forest models allowed model minimization, yielding a minimal combination of only 20 metabolite and transcript markers that were successfully tested for their reproducibility in 16 independent agronomic field trials. We demonstrate that a minimum combination of transcript and metabolite markers sampled at early cultivation stages predicts potato yield stability under drought largely independent of seasonal and regional agronomic conditions.}, language = {en} } @article{ScharfBurkart2021, author = {Scharf, Uwe and Burkart, Michael}, title = {Sansevieria pfennigii (Ruscaceae, Asparagales)}, series = {Phytotaxa : a rapid international journal for accelerating the publication of botanical taxonomy}, volume = {483}, journal = {Phytotaxa : a rapid international journal for accelerating the publication of botanical taxonomy}, number = {1}, publisher = {Magnolia Press}, address = {Auckland}, issn = {1179-3155}, doi = {10.11646/phytotaxa.483.1.1}, pages = {1 -- 8}, year = {2021}, abstract = {Sansevieria pfennigii, which to date has been a doubtful species, is confirmed as extant by a recent collection from the Lindi Region in southern Tanzania. The original description of the species, which is based on herbarium material only, is here emended based on additional observations recorded from living plants, including fruits that were previously unknown. Sansevieria pfennigii distinguishes from S. canaliculata, to which it was repeatedly assigned, by its capitate instead of elongate inflorescence, rough rather than smooth leaves, non-pungent instead of pungent leaf tips, dull green leaf colour, more delicate overall appearance, alongside other traits. The difference in inflorescence architecture indicates that these species belong to different groups within Sansevieria and are not closely related; the closest relatives of S. pfennigii are probably S. fischeri and S. stuckyi. Sansevieria pfennigii occurs on well-drained soil in forests, close to S. canaliculata populations. According to the extent of the population seen and the species' overall rarity, it is tentatively assessed as critically endangered.}, language = {en} } @article{GarciaCamachoMetzBiltonetal.2017, author = {Garc{\´i}a-Camacho, Ra{\´u}l and Metz, Johannes and Bilton, Mark C. and Tielboerger, Katja}, title = {Phylogenetic structure of annual plant communities along an aridity gradient}, series = {Israel Journal of Plant Sciences}, volume = {64}, journal = {Israel Journal of Plant Sciences}, number = {1-2}, publisher = {Taylor \& Francis}, address = {London}, issn = {0792-9978}, doi = {10.1080/07929978.2017.1288477}, pages = {122 -- 134}, year = {2017}, abstract = {The phylogenetic structure of communities (PSC) reveals how evolutionary history affects community assembly processes. However, there are important knowledge gaps on PSC patterns for annual communities and there is a need for studies along environmental gradients in dry ecosystems where several processes shape PSC. Here, we investigated the PSC of annual plants along an aridity gradient in Israel, including eight years, two spatial scales, the effects of shrubs on understory, and the phylogenetic signal of important traits. Increasing drought stress led to overdispersed PSC at the drier end of the gradient, indicating that species were less related than expected by chance. This was supported at a smaller spatial scale, where within the drier sites, communities in open- more arid- habitats were more overdispersed than those under nurse shrubs. Interestingly, some key traits related to drought resistance were not conserved in the phylogeny. Together, our findings suggested that while habitat filtering selected for drought resistance strategies, these strategies evolved independently along multiple contrasting evolutionary lineages. Our comprehensive PSC study provides strong evidence for the interacting effects of habitat filtering and plant- plant interactions, particularly highlighting that the conservative evolution of traits should not be assumed in future interpretations of PSC patterns.}, language = {en} } @article{Trindade2021, author = {Trindade, In{\^e}s}, title = {License to flower}, series = {Molecular plant}, volume = {14}, journal = {Molecular plant}, number = {5}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {1674-2052}, doi = {10.1016/j.molp.2021.04.007}, pages = {719 -- 720}, year = {2021}, language = {en} } @phdthesis{Heinze2016, author = {Heinze, Johannes}, title = {The impact of soil microbiota on plant species performance and diversity in semi-natural grasslands}, school = {Universit{\"a}t Potsdam}, pages = {157}, year = {2016}, language = {en} } @misc{KoechyTielboerger2006, author = {K{\"o}chy, Martin and Tielb{\"o}rger, Katja}, title = {Hydrothermal time model of germination : parameters for 36 Mediterranean annual species based on a simplified approach}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-12406}, year = {2006}, abstract = {Germination rates and germination fractions of seeds can be predicted well by the hydrothermal time (HTT) model. Its four parameters hydrothermal time, minimum soil temperature, minimum soil moisture, and variation of minimum soil moisture, however, must be determined by lengthy germination experiments at combinations of several levels of soil temperature and moisture. For some applications of the HTT model it is more important to have approximate estimates for many species rather than exact values for only a few species. We suggest that minimum temperature and variation of minimum moisture can be estimated from literature data and expert knowledge. This allows to derive hydrothermal time and minimum moisture from existing data from germination experiments with one level of temperature and moisture. We applied our approach to a germination experiment comparing germination fractions of wild annual species along an aridity gradient in Israel. Using this simplified approach we estimated hydrothermal time and minimum moisture of 36 species. Comparison with exact data for three species shows that our method is a simple but effective method for obtaining parameters for the HTT model. Hydrothermal time and minimum moisture supposedly indicate climate related germination strategies. We tested whether these two parameters varied with the climate at the site where the seeds had been collected. We found no consistent variation with climate across species, suggesting that variation is more strongly controlled by site-specific factors.}, language = {en} } @misc{Koechy2006, author = {K{\"o}chy, Martin}, title = {Photodegradation of grass litter in semi-arid grasslands : a global perspective}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-12006}, year = {2006}, abstract = {In a recent contribution in Nature (vol. 442, pp. 555-558) Austin \& Vivanco showed that sunlight is the dominant factor for decomposition of grass litter in a semi-arid grassland in Argentine. The quantification of this effect was portrayed as a novel finding. I put this result in the context of three other publications from as early as 1980 that quantified photodegradation. My synopsis shows that photodegradation is an important process in semi-arid grasslands in South America, North America and eastern Europe.}, language = {en} } @article{KuekenGennermannNikoloski2020, author = {K{\"u}ken, Anika and Gennermann, Kristin and Nikoloski, Zoran}, title = {Characterization of maximal enzyme catalytic rates in central metabolism of Arabidopsis thaliana}, series = {The plant journal}, volume = {103}, journal = {The plant journal}, number = {6}, publisher = {Wiley}, address = {Oxford}, issn = {0960-7412}, doi = {10.1111/tpj.14890}, pages = {2168 -- 2177}, year = {2020}, abstract = {Availability of plant-specific enzyme kinetic data is scarce, limiting the predictive power of metabolic models and precluding identification of genetic factors of enzyme properties. Enzyme kinetic data are measuredin vitro, often under non-physiological conditions, and conclusions elicited from modeling warrant caution. Here we estimate maximalin vivocatalytic rates for 168 plant enzymes, including photosystems I and II, cytochrome-b6f complex, ATP-citrate synthase, sucrose-phosphate synthase as well as enzymes from amino acid synthesis with previously undocumented enzyme kinetic data in BRENDA. The estimations are obtained by integrating condition-specific quantitative proteomics data, maximal rates of selected enzymes, growth measurements fromArabidopsis thalianarosette with and fluxes through canonical pathways in a constraint-based model of leaf metabolism. In comparison to findings inEscherichia coli, we demonstrate weaker concordance between the plant-specificin vitroandin vivoenzyme catalytic rates due to a low degree of enzyme saturation. This is supported by the finding that concentrations of nicotinamide adenine dinucleotide (phosphate), adenosine triphosphate and uridine triphosphate, calculated based on our maximalin vivocatalytic rates, and available quantitative metabolomics data are below reportedKMvalues and, therefore, indicate undersaturation of respective enzymes. Our findings show that genome-wide profiling of enzyme kinetic properties is feasible in plants, paving the way for understanding resource allocation.}, language = {en} } @article{OberkoflerBaeurle2022, author = {Oberkofler, Vicky and B{\"a}urle, Isabel}, title = {Inducible epigenome editing probes for the role of histone H3K4 methylation in Arabidopsis heat stress memory}, series = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, volume = {189}, journal = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, number = {2}, publisher = {Oxford University Press}, address = {Oxford}, issn = {0032-0889}, doi = {10.1093/plphys/kiac113}, pages = {703 -- 714}, year = {2022}, abstract = {A temperature-inducible epigenome editing system to knock down histone methylation can be used to study the role of histone H3K4 methylation during heat stress memory in Arabidopsis.
Histone modifications play a crucial role in the integration of environmental signals to mediate gene expression outcomes. However, genetic and pharmacological interference often causes pleiotropic effects, creating the urgent need for methods that allow locus-specific manipulation of histone modifications, preferably in an inducible manner. Here, we report an inducible system for epigenome editing in Arabidopsis (Arabidopsis thaliana) using a heat-inducible dCas9 to target a JUMONJI (JMJ) histone H3 lysine 4 (H3K4) demethylase domain to a locus of interest. As a model locus, we target the ASCORBATE PEROXIDASE2 (APX2) gene that shows transcriptional memory after heat stress (HS), correlating with H3K4 hyper-methylation. We show that dCas9-JMJ is targeted in a HS-dependent manner to APX2 and that the HS-induced overaccumulation of H3K4 trimethylation (H3K4me3) decreases when dCas9-JMJ binds to the locus. This results in reduced HS-mediated transcriptional memory at the APX2 locus. Targeting an enzymatically inactive JMJ protein in an analogous manner affected transcriptional memory less than the active JMJ protein; however, we still observed a decrease in H3K4 methylation levels. Thus, the inducible targeting of dCas9-JMJ to APX2 was effective in reducing H3K4 methylation levels. As the effect was not fully dependent on enzyme activity of the eraser domain, the dCas9-JMJ fusion protein may act in part independently of its demethylase activity. This underlines the need for caution in the design and interpretation of epigenome editing studies. We expect our versatile inducible epigenome editing system to be especially useful for studying temporal dynamics of chromatin modifications.}, language = {en} } @article{OberkoflerPratxBaeurle2021, author = {Oberkofler, Vicky and Pratx, Loris and B{\"a}urle, Isabel}, title = {Epigenetic regulation of abiotic stress memory}, series = {Current opinion in plant biology}, volume = {61}, journal = {Current opinion in plant biology}, publisher = {Elsevier}, address = {London}, issn = {1369-5266}, doi = {10.1016/j.pbi.2021.102007}, pages = {7}, year = {2021}, abstract = {As sessile organisms, plants have evolved sophisticated ways to constantly gauge and adapt to changing environmental conditions including extremes that may be harmful to their growth and development and are thus perceived as stress. In nature, stressful events are often chronic or recurring and thus an initial stress may prime a plant to respond more efficiently to a subsequent stress event. An epigenetic basis of such stress memory was long postulated and in recent years it has been shown that this is indeed the case. High temperature stress has proven an excellent system to unpick the molecular basis of somatic stress memory, which includes histone modifications and nucleosome occupancy. This review discusses recent findings and pinpoints open questions in the field.}, language = {en} } @misc{MaoNakamuraViottietal.2016, author = {Mao, Hailiang and Nakamura, Moritaka and Viotti, Corrado and Grebe, Markus}, title = {A framework for lateral membrane trafficking and polar tethering of the PEN3 ATP-Binding cassette transporter}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {909}, issn = {1866-8372}, doi = {10.25932/publishup-44130}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-441302}, pages = {2245 -- 2260}, year = {2016}, abstract = {The outermost cell layer of plants, the epidermis, and its outer (lateral) membrane domain facing the environment are continuously challenged by biotic and abiotic stresses. Therefore, the epidermis and the outer membrane domain provide important selective and protective barriers. However, only a small number of specifically outer membrane-localized proteins are known. Similarly, molecular mechanisms underlying the trafficking and the polar placement of outer membrane domain proteins require further exploration. Here, we demonstrate that ACTIN7 (ACT7) mediates trafficking of the PENETRATION3 (PEN3) outer membrane protein from the trans-Golgi network (TGN) to the plasma membrane in the root epidermis of Arabidopsis (Arabidopsis thaliana) and that actin function contributes to PEN3 endocytic recycling. In contrast to such generic ACT7-dependent trafficking from the TGN, the EXOCYST84b (EXO84b) tethering factor mediates PEN3 outer-membrane polarity. Moreover, precise EXO84b placement at the outer membrane domain itself requires ACT7 function. Hence, our results uncover spatially and mechanistically distinct requirements for ACT7 function during outer lateral membrane cargo trafficking and polarity establishment. They further identify an exocyst tethering complex mediator of outer lateral membrane cargo polarity.}, language = {en} } @misc{RajasundaramSelbig2016, author = {Rajasundaram, Dhivyaa and Selbig, Joachim}, title = {More effort — more results}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {923}, issn = {1866-8372}, doi = {10.25932/publishup-44263}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-442639}, pages = {57 -- 61}, year = {2016}, abstract = {The development of 'omics' technologies has progressed to address complex biological questions that underlie various plant functions thereby producing copious amounts of data. The need to assimilate large amounts of data into biologically meaningful interpretations has necessitated the development of statistical methods to integrate multidimensional information. Throughout this review, we provide examples of recent outcomes of 'omics' data integration together with an overview of available statistical methods and tools.}, language = {en} } @article{Heinze2020, author = {Heinze, Johannes}, title = {Herbivory by aboveground insects impacts plant root morphological traits}, series = {Plant ecology : an international journal}, volume = {221}, journal = {Plant ecology : an international journal}, number = {8}, publisher = {Springer}, address = {Dordrecht}, issn = {1385-0237}, doi = {10.1007/s11258-020-01045-w}, pages = {725 -- 732}, year = {2020}, abstract = {Aboveground herbivory induces physiological responses, like the release of belowground chemical defense and storage of secondary metabolites, as well as physical responses in plants, like increased root biomass production. However, studies on effects of aboveground herbivory on root morphology are scarce and until now no study tested herbivory effects under natural conditions for a large set of plant species. Therefore, in a field experiment on plant-soil interactions, I investigated the effect of aboveground insect herbivory on root morphological traits of 20 grassland plant species. For 9 of the 20 species, all individuals showed shoot damage in the presence of insect herbivores, but no damage in insect herbivore exclusions. In these 9 species root biomass increased and root morphological traits changed under herbivory towards thinner roots with increased specific root surface. In contrast, the remaining species did not differ in the number of individuals damaged, root biomass nor morphological traits with herbivores present vs. absent. The fact that aboveground herbivory resulted in thinner roots with increased specific root surface area for all species in which the herbivore exclusion manipulation altered shoot damage might indicate that plants increase nutrient uptake in response to herbivory. However, more importantly, results provide empirical evidence that aboveground herbivory impacts root morphological traits of plants. As these traits are important for the occupation of soil space, uptake processes, decomposition and interactions with soil biota, results suggest that herbivory-induced changes in root morphology might be of importance for plant-soil feedbacks and plant-plant competition.}, language = {en} } @misc{NakamuraClaesGrebeetal.2018, author = {Nakamura, Moritaka and Claes, Andrea R. and Grebe, Tobias and Hermkes, Rebecca and Viotti, Corrado and Ikeda, Yoshihisa and Grebe, Markus}, title = {Auxin and ROP GTPase signaling of polar nuclear migration in root epidermal hair cells}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {992}, issn = {1866-8372}, doi = {10.25932/publishup-44127}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-441278}, pages = {378 -- 391}, year = {2018}, abstract = {Polar nuclear migration is crucial during the development of diverse eukaryotes. In plants, root hair growth requires polar nuclear migration into the outgrowing hair. However, knowledge about the dynamics and the regulatory mechanisms underlying nuclear movements in root epidermal cells remains limited. Here, we show that both auxin and Rho-of-Plant (ROP) signaling modulate polar nuclear position at the inner epidermal plasma membrane domain oriented to the cortical cells during cell elongation as well as subsequent polar nuclear movement to the outer domain into the emerging hair bulge in Arabidopsis (Arabidopsis thaliana). Auxin signaling via the nuclear AUXIN RESPONSE FACTOR7 (ARF7)/ARF19 and INDOLE ACETIC ACID7 pathway ensures correct nuclear placement toward the inner membrane domain. Moreover, precise inner nuclear placement relies on SPIKE1 Rho-GEF, SUPERCENTIPEDE1 Rho-GDI, and ACTIN7 (ACT7) function and to a lesser extent on VTI11 vacuolar SNARE activity. Strikingly, the directionality and/or velocity of outer polar nuclear migration into the hair outgrowth along actin strands also are ACT7 dependent, auxin sensitive, and regulated by ROP signaling. Thus, our findings provide a founding framework revealing auxin and ROP signaling of inner polar nuclear position with some contribution by vacuolar morphology and of actin-dependent outer polar nuclear migration in root epidermal hair cells.}, language = {en} } @misc{NakamuraGrebe2018, author = {Nakamura, Moritaka and Grebe, Markus}, title = {Outer, inner and planar polarity in the Arabidopsis root}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {911}, issn = {1866-8372}, doi = {10.25932/publishup-44126}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-441266}, pages = {46 -- 53}, year = {2018}, abstract = {Plant roots control uptake of water and nutrients and cope with environmental challenges. The root epidermis provides the first selective interface for nutrient absorption, while the endodermis produces the main apoplastic diffusion barrier in the form of a structure called the Casparian strip. The positioning of root hairs on epidermal cells, and of the Casparian strip around endodermal cells, requires asymmetries along cellular axes (cell polarity). Cell polarity is termed planar polarity, when coordinated within the plane of a given tissue layer. Here, we review recent molecular advances towards understanding both the polar positioning of the proteo-lipid membrane domain instructing root hair initiation, and the cytoskeletal, trafficking and polar tethering requirements of proteins at outer or inner plasma membrane domains. Finally, we highlight progress towards understanding mechanisms of Casparian strip formation and underlying endodermal cell polarity.}, language = {en} } @article{Heinze2022, author = {Heinze, Johannes}, title = {Correction to: Heinze, Johannes: Herbivory by aboveground insects impacts plant root morphological traits. - Plant Ecology. - 221 (2020). - S. 725 - 732}, series = {Plant ecology : an international journal}, volume = {223}, journal = {Plant ecology : an international journal}, number = {115}, publisher = {Springer}, address = {Dordrecht}, issn = {1385-0237}, doi = {10.1007/s11258-021-01194-6}, year = {2022}, language = {en} } @article{SchittkoBernardVerdierHegeretal.2020, author = {Schittko, Conrad and Bernard-Verdier, Maud and Heger, Tina and Buchholz, Sascha and Kowarik, Ingo and von der Lippe, Moritz and Seitz, Birgit and Joshi, Jasmin Radha and Jeschke, Jonathan M.}, title = {A multidimensional framework for measuring biotic novelty: How novel is a community?}, series = {Global Change Biology}, volume = {26}, journal = {Global Change Biology}, number = {8}, publisher = {John Wiley \& Sons, Inc.}, address = {New Jersey}, pages = {17}, year = {2020}, abstract = {Anthropogenic changes in climate, land use, and disturbance regimes, as well as introductions of non-native species can lead to the transformation of many ecosystems. The resulting novel ecosystems are usually characterized by species assemblages that have not occurred previously in a given area. Quantifying the ecological novelty of communities (i.e., biotic novelty) would enhance the understanding of environmental change. However, quantification remains challenging since current novelty metrics, such as the number and/or proportion of non-native species in a community, fall short of considering both functional and evolutionary aspects of biotic novelty. Here, we propose the Biotic Novelty Index (BNI), an intuitive and flexible multidimensional measure that combines (a) functional differences between native and non-native introduced species with (b) temporal dynamics of species introductions. We show that the BNI is an additive partition of Rao's quadratic entropy, capturing the novel interaction component of the community's functional diversity. Simulations show that the index varies predictably with the relative amount of functional novelty added by recently arrived species, and they illustrate the need to provide an additional standardized version of the index. We present a detailed R code and two applications of the BNI by (a) measuring changes of biotic novelty of dry grassland plant communities along an urbanization gradient in a metropolitan region and (b) determining the biotic novelty of plant species assemblages at a national scale. The results illustrate the applicability of the index across scales and its flexibility in the use of data of different quality. Both case studies revealed strong connections between biotic novelty and increasing urbanization, a measure of abiotic novelty. We conclude that the BNI framework may help building a basis for better understanding the ecological and evolutionary consequences of global change.}, language = {en} } @article{GeisslerHahnJoubertetal.2019, author = {Geißler, Katja and Hahn, Claudia and Joubert, David and Blaum, Niels}, title = {Functional responses of the herbaceous plant community explain ecohydrological impacts of savanna shrub encroachment}, series = {Perspectives in plant ecology, evolution and systematics}, volume = {39}, journal = {Perspectives in plant ecology, evolution and systematics}, publisher = {Elsevier}, address = {M{\"u}nchen}, issn = {1433-8319}, doi = {10.1016/j.ppees.2019.125458}, pages = {10}, year = {2019}, abstract = {Major drivers of savanna shrub encroachment are climatic conditions, CO2 and unsustainable grazing management including fire prevention. Although all drivers affect ecohydrological processes, and given that water is a seasonally scarce resource in savannas, it remains largely unclear how shrub encroachment itself affects hydrological conditions that feed back into water use and community assembly of the remaining plant community. Hence, understanding direct ecohydrological effects of shrubs that may limit the recovery of the perennial herbaceous vegetation in grazed areas and promote the establishment of shrub seedlings facilitates the identification of areas that are most sensitive to further encroachment. In our trait-based approach, we determined relationships among shrub cover, soil and plant trait characteristics sensitive to water limitation in 120 plots along a shrub cover gradient. We focused on two functional response traits indicating immediate drought stress and subsequent water use for drought stress recovery with associated competition for water (midday leaf/xylem water potential and diurnally recovery rate of leaf water potential), and three functional response traits indicating long-term stress adaptation and related resource use strategies (SLA, plant height and seed release height). To understand species assembly and the associated mechanisms of resource use, we calculated community weighted mean traits, intraspecific trait variability as a proxy for the mechanism of coexistence, and mean traits at plant functional type level including 2-year-old Acacia mellifera-saplings. We found a low intraspecific trait variability in drought stress recovery rate and height suggesting that competitive exclusion via active resource acquisition (i.e. water exploitation) played a minor role for community assembly in a shrub encroaching savanna. The dominant community assembly process was passive stress avoidance via resource conservation up to stress tolerance indicated by the high variability in SLA and midday leaf water potential. Correlations of traits with soil moisture suggest a rooting niche differentiation between annual and perennial grasses and that Acacia-shrub saplings within the first 50 cm of soil already escaped the highest drought stress. Interestingly, immediate drought stress for the herbaceous community was lowest on moderately shrub encroached sites and not on grass dominated sites. Since passive stress avoidance accompanied by a distinct stress tolerance in semi-arid savannas is more important than active competition, and assuming that the low drought stress of the herbaceous community at intermediate levels of shrub cover also applies to newly emerging shrub seedlings, these areas are likely to be most sensitive to further encroachment. As such, they should be considered as focal areas for prevention management.}, language = {en} } @article{DittmannHeinkenSchmidt2018, author = {Dittmann, Thea and Heinken, Thilo and Schmidt, Marcus}, title = {Die W{\"a}lder von Magdeburgerforth (Fl{\"a}ming, Sachsen-Anhalt)}, series = {Tuexenia : Mitteilungen der Floristisch-Soziologischen Arbeitsgemeinschaft}, journal = {Tuexenia : Mitteilungen der Floristisch-Soziologischen Arbeitsgemeinschaft}, number = {38}, publisher = {Floristisch-Soziologische Arbeitsgemeinschaft}, address = {G{\"o}ttingen}, issn = {0722-494X}, doi = {10.14471/2018.38.009}, pages = {11 -- 42}, year = {2018}, abstract = {In einem rund 2.200 ha großen Waldgebiet bei Magdeburgerforth (Fl{\"a}ming, Sachsen-Anhalt) wurden 1948 bis 1950 von Harro Passarge 120 Vegetationsaufnahmen sowie eine Vegetationskartierung erstellt. Das Gebiet zeichnet sich durch eine große Vielfalt an Waldtypen aus den Verb{\"a}nden Agrostio-Quercion petraeae, Alnion glutinosae, Alnion incanae, Carpinion betuli, Dicrano-Pinion und Quercion roboris aus. Daher und weil viele der heute in W{\"a}ldern wirksamen Prozesse (z. B. Stickstoffeintrag, Klimawandel) vor 60 Jahren noch nicht sp{\"u}rbar waren, bietet sich das Gebiet f{\"u}r eine Wiederholungsuntersuchung besonders an. Da die Aufnahmefl{\"a}chen von Passarge nicht punktgenau verortet waren, wurden im Jahr 2014 in einem {\"u}ber die Forstabteilungen und die Vegetationskarte definierten Suchraum immer die der Erstaufnahme {\"a}hnlichsten Waldbest{\"a}nde erfasst. Insgesamt konnten 97 (81 \%) der Aufnahmen wiederholt werden. Vegetationsver{\"a}nderungen werden mithilfe einer NMDS-Ordination, der Gegen{\"u}berstellung von α -Diversit{\"a}t, Zeigerwerten und Waldbindungskategorien f{\"u}r die beiden Aufnahmezeitpunkte sowie {\"u}ber die Identifikation von Gewinner- und Verlierer-Arten analysiert. Auch wenn methodenbedingt bei der Wiederholungsuntersuchung nur die jeweils geringstm{\"o}gliche Vegetationsver{\"a}nderung abgebildet wird, konnten Ergebnisse erzielt werden, die mit denen quasi permanenter Plots {\"u}bereinstimmen. Die beobachteten allgemeinen Trends (Eutrophierung, Sukzession nach Nutzungswandel, Verlust lichtliebender und magerkeitszeigender Arten, Ausbreitung von stickstoffliebenden Arten und mesophilen Waldarten, Einwanderung von Neophyten, keine generelle Abnahme der Artenzahl) stimmen gut mit den in zahlreichen Studien aus mitteleurop{\"a}ischen W{\"a}ldern festgestellten {\"u}berein. Durch das von nassen bis trockenen sowie von bodensauer-n{\"a}hrstoffarmen bis zu relativ basenreichen B{\"o}den reichende Standortsspektrum innerhalb des Untersuchungsgebietes konnte aber - deutlicher als in den meisten bisherigen Fallstudien - gezeigt werden, dass sich die Resilienz der W{\"a}lder gegen{\"u}ber Vegetationsver{\"a}nderung je nach Ausgangsgesellschaft stark unterscheidet und jeweils unterschiedliche Treiber wirksam sind. Stellario-Carpinetum und Luzulo-Quercetum erwiesen sich als relativ stabil, und auch in den Feuchtw{\"a}ldern des Circaeo-Alnetum gab es trotz eines Artenwechsels wenig Hinweise auf Umweltver{\"a}nderungen. Dagegen wiesen die W{\"a}lder n{\"a}hrstoffarmer Standorte (Sphagno-Alnetum, Betulo-Quercetum, Dicrano-Pinion) viele Verliererarten und eine starke Eutrophierungstendenz auf. Die in besonderem Maße von historischen Waldnutzungsformen abh{\"a}ngigen thermophilen W{\"a}lder und die Flechten-Kiefernw{\"a}lder gingen weitgehend verloren.}, language = {de} } @article{BochMuellerPratietal.2018, author = {Boch, Steffen and M{\"u}ller, J{\"o}rg and Prati, Daniel and Fischer, Markus}, title = {Low-intensity management promotes bryophyte diversity in grasslands}, series = {Tuexenia : Mitteilungen der Floristisch-Soziologischen Arbeitsgemeinschaft}, journal = {Tuexenia : Mitteilungen der Floristisch-Soziologischen Arbeitsgemeinschaft}, number = {38}, publisher = {Floristisch-Soziologische Arbeitsgemeinschaft}, address = {G{\"o}ttingen}, issn = {0722-494X}, doi = {10.14471/2018.38.014}, pages = {311 -- 328}, year = {2018}, abstract = {Bryophytes constitute an important and permanent component of the grassland flora and diversity in Europe. As most bryophyte species are sensitive to habitat change, their diversity is likely to decline following land-use intensification. Most previous studies on bryophyte diversity focused on specific habitats of high bryophyte diversity, such as bogs, montane grasslands, or calcareous dry grasslands. In contrast, mesic grasslands are rarely studied, although they are the most common grassland habitat in Europe. They are secondary vegetation, maintained by agricultural use and thus, are influenced by different forms of land use. We studied bryophyte species richness in three regions in Germany, in 707 plots of 16 m(2) representing different land-use types and environmental conditions. Our study is one of the few to inspect the relationships between bryophyte richness and land use across contrasting regions and using a high number of replicates. Among the managed grasslands, pastures harboured 2.5 times more bryophyte species than meadows and mown pastures. Similarly, bryophyte cover was about twice as high in fallows and pastures than in meadows and mown pastures. Among the pastures, bryophyte species richness was about three times higher in sheep grazed plots than in the ones grazed by cattle or horses. In general, bryophyte species richness and cover was more than 50\% lower in fertilized than in unfertilized plots. Moreover, the amount of suitable substrates was linked to bryophyte diversity. Species richness of bryophytes growing on stones increased with stone cover, and the one of bryophytes growing on bark and deadwood increased with larger values of woody plant species and deadwood cover. Our findings highlight the importance of low-intensity land use and high structural heterogeneity for bryophyte conservation. They also caution against an intensification of traditionally managed pastures. In the light of our results, we recommend to maintain low-intensity sheep grazing on sites with low productivity, such as slopes on shallow soils.}, language = {en} } @phdthesis{Mavrothalassiti2020, author = {Mavrothalassiti, Eleni}, title = {A.thaliana root and shoot single-cell transcriptomes and detection of mobile transcripts}, school = {Universit{\"a}t Potsdam}, pages = {133}, year = {2020}, language = {en} } @article{PyšekPerglEssletal.2017, author = {Pyšek, Petr and Pergl, Jan and Essl, Franz and Lenzner, Bernd and Dawson, Wayne and Kreft, Holger and Weigelt, Patrick and Winter, Marten and Kartesz, John and Nishino, Misako and Antonova, Liubov A. and Barcelona, Julie F. and Cabezas, Francisco Jos{\´e} and C{\´a}rdenas L{\´o}pez, Dairon and C{\´a}rdenas-Toro, Juliana and Castańo, Nicol{\´a}s and Chac{\´o}n, Eduardo and Chatelain, Cyrille and Dullinger, Stefan and Ebel, Aleksandr L. and Figueiredo, Estrela and Fuentes, Nicol and Genovesi, Piero and Groom, Quentin J. and Henderson, Lesley and Inderjit, and Kupriyanov, Andrey and Masciadri, Silvana and Maurel, No{\"e}lie and Meerman, Jan and Morozova, Olʹga V. and Moser, Dietmar and Nickrent, Daniel and Nowak, Pauline M. and Pagad, Shyama and Patzelt, Annette and Pelser, Pieter B. and Seebens, Hanno and Shu, Wen-sheng and Thomas, Jacob and Velayos, Mauricio and Weber, Ewald and Wieringa, Jan J. and Baptiste, Maria P. and Kleunen, Mark van}, title = {Naturalized alien flora of the world}, series = {Preslia : the journal of the Czech Botanical Society}, volume = {89}, journal = {Preslia : the journal of the Czech Botanical Society}, number = {3}, publisher = {Czech Botanical Soc.}, address = {Praha}, issn = {0032-7786}, doi = {10.23855/preslia.2017.203}, pages = {203 -- 274}, year = {2017}, abstract = {Using the recently built Global Naturalized Alien Flora (GloNAF) database, containing data on the distribution of naturalized alien plants in 483 mainland and 361 island regions of the world, we describe patterns in diversity and geographic distribution of naturalized and invasive plant species, taxonomic, phylogenetic and life-history structure of the global naturalized flora as well as levels of naturalization and their determinants. The mainland regions with the highest numbers of naturalized aliens are some Australian states (with New South Wales being the richest on this continent) and several North American regions (of which California with 1753 naturalized plant species represents the world’s richest region in terms of naturalized alien vascular plants). England, Japan, New Zealand and the Hawaiian archipelago harbour most naturalized plants among islands or island groups. These regions also form the main hotspots of the regional levels of naturalization, measured as the percentage of naturalized aliens in the total flora of the region. Such hotspots of relative naturalized species richness appear on both the western and eastern coasts of North America, in north-western Europe, South Africa, south-eastern Australia, New Zealand, and India. High levels of island invasions by naturalized plants are concentrated in the Pacific, but also occur on individual islands across all oceans. The numbers of naturalized species are closely correlated with those of native species, with a stronger correlation and steeper increase for islands than mainland regions, indicating a greater vulnerability of islands to invasion by species that become successfully naturalized. South Africa, India, California, Cuba, Florida, Queensland and Japan have the highest numbers of invasive species. Regions in temperate and tropical zonobiomes harbour in total 9036 and 6774 naturalized species, respectively, followed by 3280 species naturalized in the Mediterranean zonobiome, 3057 in the subtropical zonobiome and 321 in the Arctic. The New World is richer in naturalized alien plants, with 9905 species compared to 7923 recorded in the Old World. While isolation is the key factor driving the level of naturalization on islands, zonobiomes differing in climatic regimes, and socioeconomy represented by per capita GDP, are central for mainland regions. The 11 most widely distributed species each occur in regions covering about one third of the globe or more in terms of the number of regions where they are naturalized and at least 35\% of the Earth’s land surface in terms of those regions’ areas, with the most widely distributed species Sonchus oleraceus occuring in 48\% of the regions that cover 42\% of the world area. Other widely distributed species are Ricinus communis, Oxalis corniculata, Portulaca oleracea, Eleusine indica, Chenopodium album, Capsella bursa-pastoris, Stellaria media, Bidens pilosa, Datura stramonium and Echinochloa crus-galli. Using the occurrence as invasive rather than only naturalized yields a different ranking, with Lantana camara (120 regions out of 349 for which data on invasive status are known), Calotropis procera (118), Eichhornia crassipes (113), Sonchus oleraceus (108) and Leucaena leucocephala (103) on top. As to the life-history spectra, islands harbour more naturalized woody species (34.4\%) thanmainland regions (29.5\%), and fewer annual herbs (18.7\% compared to 22.3\%). Ranking families by their absolute numbers of naturalized species reveals that Compositae (1343 species), Poaceae (1267) and Leguminosae (1189) contribute most to the global naturalized alien flora. Some families are disproportionally represented by naturalized aliens on islands (Arecaceae, Araceae, Acanthaceae, Amaryllidaceae, Asparagaceae, Convolvulaceae, Rubiaceae, Malvaceae), and much fewer so on mainland (e.g. Brassicaceae, Caryophyllaceae, Boraginaceae). Relating the numbers of naturalized species in a family to its total global richness shows that some of the large species-rich families are over-represented among naturalized aliens (e.g. Poaceae, Leguminosae, Rosaceae, Amaranthaceae, Pinaceae), some under-represented (e.g. Euphorbiaceae, Rubiaceae), whereas the one richest in naturalized species, Compositae, reaches a value expected from its global species richness. Significant phylogenetic signal indicates that families with an increased potential of their species to naturalize are not distributed randomly on the evolutionary tree. Solanum (112 species), Euphorbia (108) and Carex (106) are the genera richest in terms of naturalized species; over-represented on islands are Cotoneaster, Juncus, Eucalyptus, Salix, Hypericum, Geranium and Persicaria, while those relatively richer in naturalized species on the mainland are Atriplex, Opuntia, Oenothera, Artemisia, Vicia, Galium and Rosa. The data presented in this paper also point to where information is lacking and set priorities for future data collection. The GloNAF database has potential for designing concerted action to fill such data gaps, and provide a basis for allocating resources most efficiently towards better understanding and management of plant invasions worldwide.}, language = {en} } @misc{YangTangZhuetal.2008, author = {Yang, Lei and Tang, Renjie and Zhu, Jinqi and Liu, Hua and Mueller-Roeber, Bernd and Xia, Huijun and Zhang, Hongxia}, title = {Enhancement of stress tolerance in transgenic tobacco plants constitutively expressing AtIpk2β, an inositol polyphosphate 6-/3-kinase from Arabidopsis thaliana}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {954}, issn = {1866-8372}, doi = {10.25932/publishup-43122}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-431225}, pages = {17}, year = {2008}, abstract = {Inositol phosphates (IPs) and their turnover products have been implicated to play important roles in stress signaling in eukaryotic cells. In higher plants genes encoding inositol polyphosphate kinases have been identified previously, but their physiological functions have not been fully resolved. Here we expressed Arabidopsis inositol polyphosphate 6-/3-kinase (AtIpk2 beta) in two heterologous systems, i.e. the yeast Saccharomyces cerevisiae and in tobacco (Nicotiana tabacum), and tested the effect on abiotic stress tolerance. Expression of AtIpk2 beta rescued the salt-, osmotic- and temperature-sensitive growth defects of a yeast mutant strain (arg82 Delta) that lacks inositol polyphosphate multikinase activity encoded by the ARG82/IPK2 gene. Transgenic tobacco plants constitutively expressing AtIpk2 beta under the control of the Cauliflower Mosaic Virus 35S promoter were generated and found to exhibit improved tolerance to diverse abiotic stresses when compared to wild type plants. Expression patterns of various stress responsive genes were enhanced, and the activities of anti-oxidative enzymes were elevated in transgenic plants, suggesting a possible involvement of AtIpk2 beta in plant stress responses.}, language = {en} } @misc{BareitherScheffelMetz2017, author = {Bareither, Nils and Scheffel, Andr{\´e} and Metz, Johannes}, title = {Distribution of polyploid plants in the common annual Brachypodium distachyon (s.l.) in Israel is not linearly correlated with aridity}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-395293}, pages = {10}, year = {2017}, abstract = {The ecological benefits of polyploidy are intensely debated. Some authors argue that plants with duplicated chromosome sets (polyploids) are more stress-resistant and superior colonizers and may thus outnumber their low ploidy conspecifics in more extreme habitats. Brachypodium distachyon (sensu lato), for example, a common annual grass in Israel and the entire Mediterranean basin, comprises three cytotypes of differing chromosome numbers that were recently proposed as distinct species. It was suggested that increased aridity increases the occurrence of its polyploid cytotype. Here, we tested at two spatial scales whether polyploid plants of B. distachyon s.l. are more frequently found in drier habitats in Israel. We collected a total of 430 specimens (i) along a largescale climatic gradient with 15 thoroughly selected sites (spanning 114-954 mm annual rainfall), and (ii) from corresponding Northern (more mesic) and Southern (more arid) hill slopes to assess the micro-climatic difference between contrasting exposures. Cytotypes were then determined via flow cytometry. Polyploid plants comprised 90\% of all specimens and their proportion ranged between 0\% and 100\% per site. However, this proportion was not correlated with aridity along the large-scale gradient, nor were polyploids more frequently found on Southern exposures. Our results show for both spatial scales that increasing aridity is not the principal driver for the distribution of polyploids in B. distachyon s.l. in Israel. Notably, though, diploid plants were restricted essentially to four intermediate sites, while polyploids dominated the most arid and the most mesic sites. This, to some degree, clustered pattern suggests that the distribution of cytotypes is not entirely random and calls for future studies to assess further potential drivers.}, language = {en} } @article{BareitherScheffelMetz2017, author = {Bareither, Nils and Scheffel, Andre and Metz, Johannes}, title = {Distribution of polyploid plants in the common annual Brachypodium distachyon (s.l.) in Israel is not linearly correlated with aridity}, series = {Israel Journal of Plant Sciences}, volume = {64}, journal = {Israel Journal of Plant Sciences}, publisher = {Taylor \& Francis}, address = {London}, issn = {0792-9978}, pages = {83 -- 92}, year = {2017}, abstract = {The ecological benefits of polyploidy are intensely debated. Some authors argue that plants with duplicated chromosome sets (polyploids) are more stress- resistant and superior colonizers and may thus outnumber their low ploidy conspecifics in more extreme habitats. Brachypodium distachyon (sensu lato), for example, a common annual grass in Israel and the entire Mediterranean basin, comprises three cytotypes of differing chromosome numbers that were recently proposed as distinct species. It was suggested that increased aridity increases the occurrence of its polyploid cytotype. Here, we tested at two spatial scales whether polyploid plants of B. distachyon s. l. are more frequently found in drier habitats in Israel. We collected a total of 430 specimens (i) along a largescale climatic gradient with 15 thoroughly selected sites (spanning 114- 954 mm annual rainfall), and (ii) from corresponding Northern (more mesic) and Southern (more arid) hill slopes to assess the micro- climatic difference between contrasting exposures. Cytotypes were then determined via flow cytometry. Polyploid plants comprised 90\% of all specimens and their proportion ranged between 0\% and 100\% per site. However, this proportion was not correlated with aridity along the large- scale gradient, nor were polyploids more frequently found on Southern exposures. Our results show for both spatial scales that increasing aridity is not the principal driver for the distribution of polyploids in B. distachyon s. l. in Israel. Notably, though, diploid plants were restricted essentially to four intermediate sites, while polyploids dominated the most arid and the most mesic sites. This, to some degree, clustered pattern suggests that the distribution of cytotypes is not entirely random and calls for future studies to assess further potential drivers.}, language = {en} } @misc{ShirzadianKhorramabadJingEvertsetal.2010, author = {Shirzadian-Khorramabad, Reza and Jing, Hai-Chun and Everts, Gerja E. and Schippers, Jos H. M. and Hille, Jacques and Dijkwel, Paul P.}, title = {A mutation in the cytosolic O-acetylserine (thiol) lyase induces a genome-dependent early leaf death phenotype in Arabidopsis}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {833}, issn = {1866-8372}, doi = {10.25932/publishup-42757}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427574}, pages = {14}, year = {2010}, abstract = {Background: Cysteine is a component in organic compounds including glutathione that have been implicated in the adaptation of plants to stresses. O-acetylserine (thiol) lyase (OAS-TL) catalyses the final step of cysteine biosynthesis. OAS-TL enzyme isoforms are localised in the cytoplasm, the plastids and mitochondria but the contribution of individual OAS-TL isoforms to plant sulphur metabolism has not yet been fully clarified. Results: The seedling lethal phenotype of the Arabidopsis onset of leaf death3-1 (old3-1) mutant is due to a point mutation in the OAS-A1 gene, encoding the cytosolic OAS-TL. The mutation causes a single amino acid substitution from Gly(162) to Glu(162), abolishing old3-1 OAS-TL activity in vitro. The old3-1 mutation segregates as a monogenic semidominant trait when backcrossed to its wild type accession Landsberg erecta (Ler-0) and the Di-2 accession. Consistent with its semi-dominant behaviour, wild type Ler-0 plants transformed with the mutated old3-1 gene, displayed the early leaf death phenotype. However, the old3-1 mutation segregates in an 11: 4: 1 (wild type: semi-dominant: mutant) ratio when backcrossed to the Colombia-0 and Wassilewskija accessions. Thus, the early leaf death phenotype depends on two semi-dominant loci. The second locus that determines the old3-1 early leaf death phenotype is referred to as odd-ler (for old3 determinant in the Ler accession) and is located on chromosome 3. The early leaf death phenotype is temperature dependent and is associated with increased expression of defence-response and oxidative-stress marker genes. Independent of the presence of the odd-ler gene, OAS-A1 is involved in maintaining sulphur and thiol levels and is required for resistance against cadmium stress. Conclusions: The cytosolic OAS-TL is involved in maintaining organic sulphur levels. The old3-1 mutation causes genome-dependent and independent phenotypes and uncovers a novel function for the mutated OAS-TL in cell death regulation.}, language = {en} } @misc{KoehlBaslerLuedemannetal.2008, author = {K{\"o}hl, Karin I. and Basler, Georg and L{\"u}demann, Alexander and Selbig, Joachim and Walther, Dirk}, title = {A plant resource and experiment management system based on the Golm Plant Database as a basic tool for omics research}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {830}, doi = {10.25932/publishup-42759}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427595}, pages = {13}, year = {2008}, abstract = {Background: For omics experiments, detailed characterisation of experimental material with respect to its genetic features, its cultivation history and its treatment history is a requirement for analyses by bioinformatics tools and for publication needs. Furthermore, meta-analysis of several experiments in systems biology based approaches make it necessary to store this information in a standardised manner, preferentially in relational databases. In the Golm Plant Database System, we devised a data management system based on a classical Laboratory Information Management System combined with web-based user interfaces for data entry and retrieval to collect this information in an academic environment. Results: The database system contains modules representing the genetic features of the germplasm, the experimental conditions and the sampling details. In the germplasm module, genetically identical lines of biological material are generated by defined workflows, starting with the import workflow, followed by further workflows like genetic modification (transformation), vegetative or sexual reproduction. The latter workflows link lines and thus create pedigrees. For experiments, plant objects are generated from plant lines and united in so-called cultures, to which the cultivation conditions are linked. Materials and methods for each cultivation step are stored in a separate ACCESS database of the plant cultivation unit. For all cultures and thus every plant object, each cultivation site and the culture's arrival time at a site are logged by a barcode-scanner based system. Thus, for each plant object, all site-related parameters, e. g. automatically logged climate data, are available. These life history data and genetic information for the plant objects are linked to analytical results by the sampling module, which links sample components to plant object identifiers. This workflow uses controlled vocabulary for organs and treatments. Unique names generated by the system and barcode labels facilitate identification and management of the material. Web pages are provided as user interfaces to facilitate maintaining the system in an environment with many desktop computers and a rapidly changing user community. Web based search tools are the basis for joint use of the material by all researchers of the institute. Conclusion: The Golm Plant Database system, which is based on a relational database, collects the genetic and environmental information on plant material during its production or experimental use at the Max-Planck-Institute of Molecular Plant Physiology. It thus provides information according to the MIAME standard for the component 'Sample' in a highly standardised format. The Plant Database system thus facilitates collaborative work and allows efficient queries in data analysis for systems biology research.}, language = {en} } @article{SinghCompartALRawietal.2022, author = {Singh, Aakanksha and Compart, Julia and AL-Rawi, Shadha Abduljaleel and Mahto, Harendra and Ahmad, Abubakar Musa and Fettke, J{\"o}rg}, title = {LIKE EARLY STARVATION 1 alters the glucan structures at the starch granule surface and thereby influences the action of both starch-synthesizing and starch-degrading enzymes}, series = {The plant journal}, volume = {111}, journal = {The plant journal}, number = {3}, publisher = {Wiley-Blackwell}, address = {Oxford}, issn = {0960-7412}, doi = {10.1111/tpj.15855}, pages = {819 -- 835}, year = {2022}, abstract = {For starch metabolism to take place correctly, various enzymes and proteins acting on the starch granule surface are crucial. Recently, two non-catalytic starch-binding proteins, pivotal for normal starch turnover in Arabidopsis leaves, namely, EARLY STARVATION 1 (ESV1) and its homolog LIKE EARLY STARVATION 1 (LESV), have been identified. Both share nearly 38\% sequence homology. As ESV1 has been found to influence glucan phosphorylation via two starch-related dikinases, alpha-glucan, water dikinase (GWD) and phosphoglucan, water dikinase (PWD), through modulating the surface glucan structures of the starch granules and thus affecting starch degradation, we assess the impact of its homolog LESV on starch metabolism. Thus, the 65-kDa recombinant protein LESV and the 50-kDa ESV1 were analyzed regarding their influence on the action of GWD and PWD on the surface of the starch granules. We included starches from various sources and additionally assessed the effect of these non-enzymatic proteins on other starch-related enzymes, such as starch synthases (SSI and SSIII), starch phosphorylases (PHS1), isoamylase and beta-amylase. The data obtained indicate that starch phosphorylation, hydrolyses and synthesis were affected by LESV and ESV1. Furthermore, incubation with LESV and ESV1 together exerted an additive effect on starch phosphorylation. In addition, a stable alteration of the glucan structures at the starch granule surface following treatment with LESV and ESV1 was observed. Here, we discuss all the observed changes that point to modifications in the glucan structures at the surface of the native starch granules and present a model to explain the existing processes.}, language = {en} } @article{Trindade2021, author = {Trindade, In{\^e}s}, title = {A drop of immunity}, series = {Molecular plant}, volume = {14}, journal = {Molecular plant}, number = {9}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {1674-2052}, doi = {10.1016/j.molp.2021.07.022}, pages = {1437 -- 1438}, year = {2021}, language = {en} } @phdthesis{Fichtner2017, author = {Fichtner, Franziska}, title = {The role of Trehalose 6-Phosphate synthase 1 and trehalose 6-phosphate in plant metabolism and development}, school = {Universit{\"a}t Potsdam}, pages = {225}, year = {2017}, language = {en} } @phdthesis{Mengin2016, author = {Mengin, Virginie}, title = {Role of the clock in the regulation of growth and metabolism in stable and fluctuating environmental conditions}, school = {Universit{\"a}t Potsdam}, pages = {284}, year = {2016}, language = {en} } @phdthesis{Moraes2017, author = {Moraes, Thiago Alexandre}, title = {Exploring the role of the circadian clock in the regulation of starch turnover in changing light conditions in Arabidopsis}, school = {Universit{\"a}t Potsdam}, pages = {354}, year = {2017}, language = {en} } @article{OlasFichtnerApelt2020, author = {Olas, Justyna Jadwiga and Fichtner, Franziska and Apelt, Federico}, title = {All roads lead to growth}, series = {Journal of experimental botany}, volume = {71}, journal = {Journal of experimental botany}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0022-0957}, doi = {10.1093/jxb/erz406}, pages = {11 -- 21}, year = {2020}, abstract = {Plant growth is a highly complex biological process that involves innumerable interconnected biochemical and signalling pathways. Many different techniques have been developed to measure growth, unravel the various processes that contribute to plant growth, and understand how a complex interaction between genotype and environment determines the growth phenotype. Despite this complexity, the term 'growth' is often simplified by researchers; depending on the method used for quantification, growth is viewed as an increase in plant or organ size, a change in cell architecture, or an increase in structural biomass. In this review, we summarise the cellular and molecular mechanisms underlying plant growth, highlight state-of-the-art imaging and non-imaging-based techniques to quantitatively measure growth, including a discussion of their advantages and drawbacks, and suggest a terminology for growth rates depending on the type of technique used.}, language = {en} } @phdthesis{deSouza2017, author = {de Souza, Laise Rosado}, title = {Metabolic signalling between organelles}, school = {Universit{\"a}t Potsdam}, pages = {112}, year = {2017}, language = {en} } @misc{LukoszekFeistIgnatova2016, author = {Lukoszek, Radoslaw and Feist, Peter and Ignatova, Zoya}, title = {Insights into the adaptive response of Arabidopsis thaliana to prolonged thermal stress by ribosomal profiling and RNA-Seq}, series = {BMC plant biology}, journal = {BMC plant biology}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407262}, pages = {13}, year = {2016}, abstract = {Background: Environmental stress puts organisms at risk and requires specific stress-tailored responses to maximize survival. Long-term exposure to stress necessitates a global reprogramming of the cellular activities at different levels of gene expression. Results: Here, we use ribosome profiling and RNA sequencing to globally profile the adaptive response of Arabidopsis thaliana to prolonged heat stress. To adapt to long heat exposure, the expression of many genes is modulated in a coordinated manner at a transcriptional and translational level. However, a significant group of genes opposes this trend and shows mainly translational regulation. Different secondary structure elements are likely candidates to play a role in regulating translation of those genes. Conclusions: Our data also uncover on how the subunit stoichiometry of multimeric protein complexes in plastids is maintained upon heat exposure.}, language = {en} } @misc{SprengerErbanSeddigetal.2018, author = {Sprenger, Heike and Erban, Alexander and Seddig, Sylvia and Rudack, Katharina and Thalhammer, Anja and Le, Mai Q. and Walther, Dirk and Zuther, Ellen and K{\"o}hl, Karin I. and Kopka, Joachim and Hincha, Dirk K.}, title = {Metabolite and transcript markers for the prediction of potato drought tolerance}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {673}, issn = {1866-8372}, doi = {10.25932/publishup-42463}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-424630}, pages = {12}, year = {2018}, abstract = {Potato (Solanum tuberosum L.) is one of the most important food crops worldwide. Current potato varieties are highly susceptible to drought stress. In view of global climate change, selection of cultivars with improved drought tolerance and high yield potential is of paramount importance. Drought tolerance breeding of potato is currently based on direct selection according to yield and phenotypic traits and requires multiple trials under drought conditions. Marker-assisted selection (MAS) is cheaper, faster and reduces classification errors caused by noncontrolled environmental effects. We analysed 31 potato cultivars grown under optimal and reduced water supply in six independent field trials. Drought tolerance was determined as tuber starch yield. Leaf samples from young plants were screened for preselected transcript and nontargeted metabolite abundance using qRT-PCR and GC-MS profiling, respectively. Transcript marker candidates were selected from a published RNA-Seq data set. A Random Forest machine learning approach extracted metabolite and transcript markers for drought tolerance prediction with low error rates of 6\% and 9\%, respectively. Moreover, by combining transcript and metabolite markers, the prediction error was reduced to 4.3\%. Feature selection from Random Forest models allowed model minimization, yielding a minimal combination of only 20 metabolite and transcript markers that were successfully tested for their reproducibility in 16 independent agronomic field trials. We demonstrate that a minimum combination of transcript and metabolite markers sampled at early cultivation stages predicts potato yield stability under drought largely independent of seasonal and regional agronomic conditions.}, language = {en} } @phdthesis{Goa, author = {Goa, Yang}, title = {Chloroplast translational regulation during acclimation to low temperature and impact of knockouts of non-essential chloroplast tRNAs on ribosome behavior}, school = {Universit{\"a}t Potsdam}, pages = {124}, language = {en} } @misc{GoslingJulierAduBreduetal.2017, author = {Gosling, William D. and Julier, Adele C. M. and Adu-Bredu, Stephen and Djagbletey, Gloria D. and Fraser, Wesley T. and Jardine, Phillip E. and Lomax, Barry H. and Malhi, Yadvinder and Manu, Emmanuel A. and Mayle, Francis E. and Moore, Sam}, title = {Pollen-vegetation richness and diversity relationships in the tropics}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {562}, issn = {1866-8372}, doi = {10.25932/publishup-42308}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-423081}, pages = {8}, year = {2017}, abstract = {Tracking changes in biodiversity through time requires an understanding of the relationship between modern diversity and how this diversity is preserved in the fossil record. Fossil pollen is one way in which past vegetation diversity can be reconstructed. However, there is limited understanding of modern pollen-vegetation diversity relationships from biodiverse tropical ecosystems. Here, pollen (palynological) richness and diversity (Hill N (1)) are compared with vegetation richness and diversity from forest and savannah ecosystems in the New World and Old World tropics (Neotropics and Palaeotropics). Modern pollen data were obtained from artificial pollen traps deployed in 1-ha vegetation study plots from which vegetation inventories had been completed in Bolivia and Ghana. Pollen counts were obtained from 15 to 22 traps per plot, and aggregated pollen sums for each plot were > 2,500. The palynological richness/diversity values from the Neotropics were moist evergreen forest = 86/6.8, semi-deciduous dry forest = 111/21.9, wooded savannah = 138/31.5, and from the Palaeotropics wet evergreen forest = 144/28.3, semi-deciduous moist forest = 104/4.4, forest-savannah transition = 121/14.1; the corresponding vegetation richness/diversity was 100/36.7, 80/38.7 and 71/39.4 (Neotropics), and 101/54.8, 87/45.5 and 71/34.5 (Palaeotropics). No consistent relationship was found between palynological richness/diversity, and plot vegetation richness/diversity, due to the differential influence of other factors such as landscape diversity, pollination strategy, and pollen source area. Palynological richness exceeded vegetation richness, while pollen diversity was lower than vegetation diversity. The relatively high global diversity of tropical vegetation was found to be reflected in the pollen rain.}, language = {en} } @misc{WagnerPywellKnoppetal.2011, author = {Wagner, Markus and Pywell, Richard F. and Knopp, Tatjana and Bullock, James M. and Heard, Matthew S.}, title = {The germination niches of grassland species targeted for restoration}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {675}, issn = {1866-8372}, doi = {10.25932/publishup-41343}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-413438}, pages = {117 -- 131}, year = {2011}, abstract = {Restoration of semi-natural grassland communities involves a combination of (1) sward disturbance to create a temporal window for establishment, and (2) target species introduction, the latter usually by seed sowing. With great regularity, particular species establish only poorly. More reliable establishment could improve outcome of restoration projects and increase cost-effectiveness. We investigated the abiotic germination niche of ten poorly establishing calcareous grassland species by simultaneously exploring the effects of moisture and light availability and temperature fluctuation on percentage germina- tion and speed of germination. We also investigated the effects of three different pre-treatments used to enhance seed germination - cold-stratification, osmo- tic priming and priming in combination with gibberellic acid (GA 3 ) - and how these affected abiotic germination niches. Species varied markedly in width of abiotic germination niche, ranging from Carex flacca with very strict abiotic requirements, to several species reliably germinating across the whole range of abiotic conditions. Our results suggest pronounced differ- ences between species in gap requirements for establishment. Germination was improved in most species by at least one pre-treatment. Evidence for positive effects of adding GA 3 to seed priming solutions was limited. In several species, pre-treated seeds germinated under a wider range of abiotic conditions than untreated seeds. Improved knowledge of species-specific germination niches and the effects of seed pre-treatments may help to improve species establishment by sowing, and to identify species for which sowing at a later stage of restoration or introduction as small plants may represent a more viable strategy.}, language = {en} } @misc{MuellerSchulzLauterbachetal.2016, author = {M{\"u}ller, Christina M. and Schulz, Benjamin and Lauterbach, Daniel and Ristow, Michael and Wissemann, Volker and Gemeinholzer, Birgit}, title = {Geropogon hybridus (L.) Sch.Bip. (Asteraceae) exhibits micro-geographic genetic divergence at ecological range limits along a steep precipitation gradient}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {832}, issn = {1866-8372}, doi = {10.25932/publishup-42706}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427061}, pages = {16}, year = {2016}, abstract = {We analyzed the population genetic pattern of 12 fragmented Geropogon hybridus ecological range edge populations in Israel along a steep precipitation gradient. In the investigation area (45 x 20 km(2)), the annual mean precipitation changes rapidly from 450 mm in the north (Mediterranean-influenced climate zone) to 300 mm in the south (semiarid climate zone) without significant temperature changes. Our analysis (91 individuals, 12 populations, 123 polymorphic loci) revealed strongly structured populations (AMOVA I broken vertical bar(ST) = 0.35; P < 0.001); however, differentiation did not change gradually toward range edge. IBD was significant (Mantel test r = 0.81; P = 0.001) and derived from sharply divided groups between the northernmost populations and the others further south, due to dispersal or environmental limitations. This was corroborated by the PCA and STRUCTURE analyses. IBD and IBE were significant despite the micro-geographic scale of the study area, which indicates that reduced precipitation toward range edge leads to population genetic divergence. However, this pattern diminished when the hypothesized gene flow barrier was taken into account. Applying the spatial analysis method revealed 11 outlier loci that were correlated to annual precipitation and, moreover, were indicative for putative precipitation-related adaptation (BAYESCAN, MCHEZA). The results suggest that even on micro-geographic scales, environmental factors play prominent roles in population divergence, genetic drift, and directional selection. The pattern is typical for strong environmental gradients, e.g., at species range edges and ecological limits, and if gene flow barriers and mosaic-like structures of fragmented habitats hamper dispersal.}, language = {en} } @misc{BrzezinkaAltmannBaeurle2018, author = {Brzezinka, Krzysztof and Altmann, Simone and B{\"a}urle, Isabel}, title = {BRUSHY1/TONSOKU/MGOUN3 is required for heat stress memory}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {788}, issn = {1866-8372}, doi = {10.25932/publishup-43621}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-436219}, pages = {11}, year = {2018}, abstract = {Plants encounter biotic and abiotic stresses many times during their life cycle and this limits their productivity. Moderate heat stress (HS) primes a plant to survive higher temperatures that are lethal in the naive state. Once temperature stress subsides, the memory of the priming event is actively retained for several days preparing the plant to better cope with recurring HS. Recently, chromatin regulation at different levels has been implicated in HS memory. Here, we report that the chromatin protein BRUSHY1 (BRU1)/TONSOKU/MGOUN3 plays a role in the HS memory in Arabidopsis thaliana. BRU1 is also involved in transcriptional gene silencing and DNA damage repair. This corresponds with the functions of its mammalian orthologue TONSOKU-LIKE/NF Kappa BIL2. During HS memory, BRU1 is required to maintain sustained induction of HS memory-associated genes, whereas it is dispensable for the acquisition of thermotolerance. In summary, we report that BRU1 is required for HS memory in A. thaliana, and propose a model where BRU1 mediates the epigenetic inheritance of chromatin states across DNA replication and cell division.}, language = {en} } @phdthesis{Xu2016, author = {Xu, Ke}, title = {Functional characterization of two MYB transcription factors, MYB95 and MYB47, in Arabidopsis thaliana}, school = {Universit{\"a}t Potsdam}, pages = {108}, year = {2016}, language = {en} } @article{NakamuraSteupColleonietal.2022, author = {Nakamura, Yasunori and Steup, Martin and Colleoni, Christophe and Iglesias, Alberto A. and Bao, Jinsong and Fujita, Naoko and Tetlow, Ian}, title = {Molecular regulation of starch metabolism}, series = {Plant molecular biology : an international journal of fundamental research and genetic engineering}, volume = {108}, journal = {Plant molecular biology : an international journal of fundamental research and genetic engineering}, number = {4-5}, publisher = {Springer}, address = {Dordrecht}, issn = {0167-4412}, doi = {10.1007/s11103-022-01253-0}, pages = {289 -- 290}, year = {2022}, language = {en} } @misc{ScarpeciZanorCarrilloetal.2007, author = {Scarpeci, Telma E. and Zanor, Mar{\´i}a I. and Carrillo, N{\´e}stor and Mueller-Roeber, Bernd and Valle, Estela M.}, title = {Generation of superoxide anion in chloroplasts of Arabidopsis thaliana during active photosynthesis}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {866}, issn = {1866-8372}, doi = {10.25932/publishup-43425}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-434254}, pages = {361 -- 378}, year = {2007}, abstract = {The antioxidant defense system involves complex functional coordination of multiple components in different organelles within the plant cell. Here, we have studied the Arabidopsis thaliana early response to the generation of superoxide anion in chloroplasts during active photosynthesis. We exposed plants to methyl viologen (MV), a superoxide anion propagator in the light, and performed biochemical and expression profiling experiments using Affymetrix ATH1 GeneChip(R) microarrays under conditions in which photosynthesis and antioxidant enzymes were active. Data analysis identified superoxide-responsive genes that were compared with available microarray results. Examples include genes encoding proteins with unknown function, transcription factors and signal transduction components. A common GAAAAGTCAAAC motif containing the W-box consensus sequence of WRKY transcription factors, was found in the promoters of genes highly up-regulated by superoxide. Band shift assays showed that oxidative treatments enhanced the specific binding of leaf protein extracts to this motif. In addition, GUS reporter gene fused to WRKY30 promoter, which contains this binding motif, was induced by MV and H2O2. Overall, our study suggests that genes involved in signalling pathways and with unknown functions are rapidly activated by superoxide anion generated in photosynthetically active chloroplasts, as part of the early antioxidant response of Arabidopsis leaves.}, language = {en} } @phdthesis{Kontbay2022, author = {Kontbay, K{\"u}bra}, title = {Nin-Like Protein (NLP) transcription factors}, pages = {113}, year = {2022}, language = {en} } @misc{RazaghiMoghadamNikoloski2020, author = {Razaghi-Moghadam, Zahra and Nikoloski, Zoran}, title = {Supervised learning of gene regulatory networks}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, issn = {1866-8372}, doi = {10.25932/publishup-51656}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-516561}, pages = {9}, year = {2020}, abstract = {Identifying the entirety of gene regulatory interactions in a biological system offers the possibility to determine the key molecular factors that affect important traits on the level of cells, tissues, and whole organisms. Despite the development of experimental approaches and technologies for identification of direct binding of transcription factors (TFs) to promoter regions of downstream target genes, computational approaches that utilize large compendia of transcriptomics data are still the predominant methods used to predict direct downstream targets of TFs, and thus reconstruct genome-wide gene-regulatory networks (GRNs). These approaches can broadly be categorized into unsupervised and supervised, based on whether data about known, experimentally verified gene-regulatory interactions are used in the process of reconstructing the underlying GRN. Here, we first describe the generic steps of supervised approaches for GRN reconstruction, since they have been recently shown to result in improved accuracy of the resulting networks? We also illustrate how they can be used with data from model organisms to obtain more accurate prediction of gene regulatory interactions.}, language = {en} } @phdthesis{UlbrichtJones2017, author = {Ulbricht-Jones, Elena Sofia}, title = {The virescent and narrow leaf phenotype of a plastome-genome-incompatible Oenothera hybrid is associated with the plastid gene accD and fatty acid synthesis}, school = {Universit{\"a}t Potsdam}, pages = {124}, year = {2017}, language = {en} } @misc{SchittkoBernardVerdierHegeretal.2020, author = {Schittko, Conrad and Bernard-Verdier, Maud and Heger, Tina and Buchholz, Sascha and Kowarik, Ingo and von der Lippe, Moritz and Seitz, Birgit and Joshi, Jasmin Radha and Jeschke, Jonathan M.}, title = {A multidimensional framework for measuring biotic novelty: How novel is a community?}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {8}, issn = {1866-8372}, doi = {10.25932/publishup-52565}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-525657}, pages = {19}, year = {2020}, abstract = {Anthropogenic changes in climate, land use, and disturbance regimes, as well as introductions of non-native species can lead to the transformation of many ecosystems. The resulting novel ecosystems are usually characterized by species assemblages that have not occurred previously in a given area. Quantifying the ecological novelty of communities (i.e., biotic novelty) would enhance the understanding of environmental change. However, quantification remains challenging since current novelty metrics, such as the number and/or proportion of non-native species in a community, fall short of considering both functional and evolutionary aspects of biotic novelty. Here, we propose the Biotic Novelty Index (BNI), an intuitive and flexible multidimensional measure that combines (a) functional differences between native and non-native introduced species with (b) temporal dynamics of species introductions. We show that the BNI is an additive partition of Rao's quadratic entropy, capturing the novel interaction component of the community's functional diversity. Simulations show that the index varies predictably with the relative amount of functional novelty added by recently arrived species, and they illustrate the need to provide an additional standardized version of the index. We present a detailed R code and two applications of the BNI by (a) measuring changes of biotic novelty of dry grassland plant communities along an urbanization gradient in a metropolitan region and (b) determining the biotic novelty of plant species assemblages at a national scale. The results illustrate the applicability of the index across scales and its flexibility in the use of data of different quality. Both case studies revealed strong connections between biotic novelty and increasing urbanization, a measure of abiotic novelty. We conclude that the BNI framework may help building a basis for better understanding the ecological and evolutionary consequences of global change.}, language = {en} } @article{YanChenKaufmann2016, author = {Yan, Wenhao and Chen, Dijun and Kaufmann, Kerstin}, title = {Efficient multiplex mutagenesis by RNA-guided Cas9 and its use in the characterization of regulatory elements in the AGAMOUS gene}, series = {Plant methods}, volume = {12}, journal = {Plant methods}, publisher = {BioMed Central}, address = {London}, issn = {1746-4811}, doi = {10.1186/s13007-016-0125-7}, pages = {1 -- 9}, year = {2016}, abstract = {Background The efficiency of multiplex editing in plants by the RNA-guided Cas9 system is limited by efficient introduction of its components into the genome and by their activity. The possibility of introducing large fragment deletions by RNA-guided Cas9 tool provides the potential to study the function of any DNA region of interest in its 'endogenous' environment. Results Here, an RNA-guided Cas9 system was optimized to enable efficient multiplex editing in Arabidopsis thaliana. We demonstrate the flexibility of our system for knockout of multiple genes, and to generate heritable large-fragment deletions in the genome. As a proof of concept, the function of part of the second intron of the flower development gene AGAMOUS in Arabidopsis was studied by generating a Cas9-free mutant plant line in which part of this intron was removed from the genome. Further analysis revealed that deletion of this intron fragment results 40 \% decrease of AGAMOUS gene expression without changing the splicing of the gene which indicates that this regulatory region functions as an activator of AGAMOUS gene expression. Conclusions Our modified RNA-guided Cas9 system offers a versatile tool for the functional dissection of coding and non-coding DNA sequences in plants.}, language = {en} } @phdthesis{Seibert, author = {Seibert, Tanja Stefanie}, title = {The T6P pathway in Solanum tuberosum}, pages = {212}, language = {en} } @phdthesis{Gramma2023, author = {Gramma, Vladislav}, title = {Potato FLC-like and SVP-like proteins jointly control growth and distinct developmental processes}, school = {Universit{\"a}t Potsdam}, pages = {x, 138}, year = {2023}, abstract = {Based on worldwide consumption, Solanum tuberosum L. (potato) is the most important non-grain food crop. Potato has two ways of stable propagation: sexually via flowering and vegetatively via tuberization. Remarkably, these two developmental processes are controlled by similar molecular regulators and mechanisms. Given that FLC and SVP genes act as key flowering regulators in the model species Arabidopsis and in various other crop species, this study aimed at identifying FLC and SVP homologs in potato and investigating their roles in the regulation of plant development, with a particular focus on flowering and tuberization. Our analysis demonstrated that there are five FLC-like and three SVP like proteins encoded in the potato genome. The expression profiles of StFLCs and StSVPs throughout potato development and the detected interactions between their proteins indicate tissue specificity of the individual genes and distinct roles of a variety of putative protein complexes. In particular, we discovered that StFLC-D, as well as StFLC-B, StSVP-A, and StSVP-B play a complex role in the regulation of flowering time, as not only increased but also decreased levels of their transcripts promote earlier flowering. Most importantly, StFLC-D has a marked impact on tuberization under non-inductive conditions and susceptibility to temperature-induced tuber malformation, also known as second growth. Plants with decreased levels of StFLC-D demonstrated a strong ability to produce tubers under long days and appeared to be insensitive to temperature-induced second growth. Lastly, our data also suggests that StFLCs and StSVPs may be involved in the nitrogen-dependent regulation of potato development. Taken together, this study highlights the functional importance of StFLC and StSVP genes in the regulation of distinct developmental processes in potato.}, language = {en} } @article{BaeurleTrindade2020, author = {B{\"a}urle, Isabel and Trindade, In{\^e}s}, title = {Chromatin regulation of somatic abiotic stress memory}, series = {Journal of experimental botany}, volume = {71}, journal = {Journal of experimental botany}, number = {17}, publisher = {Oxford Univiversity Press}, address = {Oxford}, issn = {0022-0957}, doi = {10.1093/jxb/eraa098}, pages = {5269 -- 5279}, year = {2020}, abstract = {In nature, plants are often subjected to periods of recurrent environmental stress that can strongly affect their development and productivity. To cope with these conditions, plants can remember a previous stress, which allows them to respond more efficiently to a subsequent stress, a phenomenon known as priming. This ability can be maintained at the somatic level for a few days or weeks after the stress is perceived, suggesting that plants can store information of a past stress during this recovery phase. While the immediate responses to a single stress event have been extensively studied, knowledge on priming effects and how stress memory is stored is still scarce. At the molecular level, memory of a past condition often involves changes in chromatin structure and organization, which may be maintained independently from transcription. In this review, we will summarize the most recent developments in the field and discuss how different levels of chromatin regulation contribute to priming and plant abiotic stress memory.}, language = {en} } @article{ZaplataNhabangaStalmansetal.2020, author = {Zaplata, Markus Klemens and Nhabanga, Abel and Stalmans, Marc and Volpers, Thomas and Burkart, Michael and Sperfeld, Erik}, title = {Grasses cope with high-contrast ecosystem conditions in the large outflow of the Banhine wetlands, Mozambique}, series = {African journal of ecology}, volume = {59}, journal = {African journal of ecology}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {0141-6707}, doi = {10.1111/aje.12820}, pages = {190 -- 203}, year = {2020}, abstract = {Ecosystems with highly pulsed water supply must be better understood as climate change may increase frequency and severity of intense storms, droughts and floods. Here we collected data over 3 years (2016-2018) in the episodic wetland outflow channel (Aluize), Banhine National Park, in which the system state changed from dry to wet to dry. Field sampling included vegetation records, small-scale vegetation zoning, the seed bank and water and soil quality. The same main plant species were found in both dry and wet conditions across the riverbed of the outflow channel. We found only very few diaspores of plants in the soil after prolonged drought. In the subsequent flooded state, we examined very dense vegetation on the water surface, which was dominated by the gramineous species Paspalidium obtusifolium. This species formed a compact floating mat that was rooted to the riverbed. The Cyperaceae Bolboschoenus glaucus showed high clonal growth in the form of root tubers, which likely serve as important food reservoir during drought. Soil and water analyses do not indicate a limitation by nutrients. We outline how resident people may change the plant community structure with an increasing practice of setting fire to the meadows in the dried-up riverbed to facilitate plant regrowth as food for their livestock.}, language = {en} } @misc{ĆwiekKupczyńskaAltmannArendetal.2016, author = {Ćwiek-Kupczyńska, Hanna and Altmann, Thomas and Arend, Daniel and Arnaud, Elizabeth and Chen, Dijun and Cornut, Guillaume and Fiorani, Fabio and Frohmberg, Wojciech and Junker, Astrid and Klukas, Christian and Lange, Matthias and Mazurek, Cezary and Nafissi, Anahita and Neveu, Pascal and van Oeveren, Jan and Pommier, Cyril and Poorter, Hendrik and Rocca-Serra, Philippe and Sansone, Susanna-Assunta and Scholz, Uwe and van Schriek, Marco and Seren, {\"U}mit and Usadel, Bj{\"o}rn and Weise, Stephan and Kersey, Paul and Krajewski, Paweł}, title = {Measures for interoperability of phenotypic data}, series = {Plant methods}, journal = {Plant methods}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407299}, pages = {18}, year = {2016}, abstract = {Background: Plant phenotypic data shrouds a wealth of information which, when accurately analysed and linked to other data types, brings to light the knowledge about the mechanisms of life. As phenotyping is a field of research comprising manifold, diverse and time ‑consuming experiments, the findings can be fostered by reusing and combin‑ ing existing datasets. Their correct interpretation, and thus replicability, comparability and interoperability, is possible provided that the collected observations are equipped with an adequate set of metadata. So far there have been no common standards governing phenotypic data description, which hampered data exchange and reuse. Results: In this paper we propose the guidelines for proper handling of the information about plant phenotyping experiments, in terms of both the recommended content of the description and its formatting. We provide a docu‑ ment called "Minimum Information About a Plant Phenotyping Experiment", which specifies what information about each experiment should be given, and a Phenotyping Configuration for the ISA ‑Tab format, which allows to practically organise this information within a dataset. We provide examples of ISA ‑Tab ‑formatted phenotypic data, and a general description of a few systems where the recommendations have been implemented. Conclusions: Acceptance of the rules described in this paper by the plant phenotyping community will help to achieve findable, accessible, interoperable and reusable data.}, language = {en} } @misc{YanChenKaufmann2016, author = {Yan, Wenhao and Chen, Dijun and Kaufmann, Kerstin}, title = {Efficient multiplex mutagenesis by RNA‑guided Cas9 and its use in the characterization of regulatory elements in the AGAMOUS gene}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-90895}, year = {2016}, abstract = {Background: The efficiency of multiplex editing in plants by the RNA-guided Cas9 system is limited by efficient introduction of its components into the genome and by their activity. The possibility of introducing large fragment deletions by RNA-guided Cas9 tool provides the potential to study the function of any DNA region of interest in its 'endogenous' environment. Results: Here, an RNA-guided Cas9 system was optimized to enable efficient multiplex editing in Arabidopsis thaliana. We demonstrate the flexibility of our system for knockout of multiple genes, and to generate heritable largefragment deletions in the genome. As a proof of concept, the function of part of the second intron of the flower development gene AGAMOUS in Arabidopsis was studied by generating a Cas9-free mutant plant line in which part of this intron was removed from the genome. Further analysis revealed that deletion of this intron fragment results 40 \% decrease of AGAMOUS gene expression without changing the splicing of the gene which indicates that this regulatory region functions as an activator of AGAMOUS gene expression. Conclusions: Our modified RNA-guided Cas9 system offers a versatile tool for the functional dissection of coding and non-coding DNA sequences in plants.}, language = {en} } @phdthesis{Li2023, author = {Li, Xiaoping}, title = {Regulation of starch granule number and morphology in arabidopsis thaliana}, school = {Universit{\"a}t Potsdam}, pages = {116}, year = {2023}, language = {en} } @article{MuntahaLiCompartetal.2022, author = {Muntaha, Sidratul Nur and Li, Xiaoping and Compart, Julia and Apriyanto, Ardha and Fettke, J{\"o}rg}, title = {Carbon pathways during transitory starch degradation in Arabidopsis differentially affect the starch granule number and morphology in the dpe2/phs1 mutant background}, series = {Plant physiology and biochemistry : an official journal of the Federation of European Societies of Plant Physiology}, volume = {180}, journal = {Plant physiology and biochemistry : an official journal of the Federation of European Societies of Plant Physiology}, publisher = {Elsevier}, address = {Paris}, issn = {0981-9428}, doi = {10.1016/j.plaphy.2022.03.033}, pages = {35 -- 41}, year = {2022}, abstract = {The Arabidopsis knockout mutant lacking both the cytosolic disproportionating enzyme 2 (DPE2) and the plastidial phosphorylase (PHS1) had a dwarf-growth phenotype, a reduced and uneven distribution of starch within the plant rosettes, and a lower starch granule number per chloroplast under standard growth conditions. In contrast, a triple mutant impaired in starch degradation by its additional lack of the glucan, water dikinase (GWD) showed improved plant growth, a starch-excess phenotype, and a homogeneous starch distribution. Furthermore, the number of starch granules per chloroplast was increased and was similar to the wild type. We concluded that ongoing starch degradation is mainly responsible for the observed phenotype of dpe2/phs1. Next, we generated two further triple mutants lacking either the phosphoglucan, water dikinase (PWD), or the disproportionating enzyme 1 (DPE1) in the background of the double mutant. Analysis of the starch metabolism revealed that even minor ongoing starch degradation observed in dpe2/phs1/pwd maintained the double mutant phenotype. In contrast, an additional blockage in the glucose pathway of starch breakdown, as in dpe2/phs1/ dpe1, resulted in a nearly starch-free phenotype and massive chloroplast degradation. The characterized mutants were discussed in the context of starch granule formation.}, language = {en} } @article{DelkerQuintWigge2022, author = {Delker, Carolin and Quint, Marcel and Wigge, Philip Anthony}, title = {Recent advances in understanding thermomorphogenesis signaling}, series = {Current opinion in plant biology}, volume = {68}, journal = {Current opinion in plant biology}, publisher = {Elsevier}, address = {London}, issn = {1369-5266}, doi = {10.1016/j.pbi.2022.102231}, pages = {10}, year = {2022}, abstract = {Plants show remarkable phenotypic plasticity and are able to adjust their morphology and development to diverse environmental stimuli. Morphological acclimation responses to elevated ambient temperatures are collectively termed thermomorphogenesis. In Arabidopsis thaliana, morphological changes are coordinated to a large extent by the transcription factor PHYTOCHROME-INTERACTING FACTOR 4 (PIF4), which in turn is regulated by several thermosensing mechanisms and modulators. Here, we review recent advances in the identification of factors that regulate thermomorphogenesis of Arabidopsis seedlings by affecting PIF4 expression and PIF4 activity. We summarize newly identified thermosensing mechanisms and highlight work on the emerging topic of organ- and tissue-specificity in the regulation of thermomorphogenesis.}, language = {en} } @misc{ThirumalaikumarDevkarMehterovetal.2017, author = {Thirumalaikumar, Venkatesh P. and Devkar, Vikas and Mehterov, Nikolay and Ali, Shawkat and Ozgur, Rengin and Turkan, Ismail and M{\"u}ller-R{\"o}ber, Bernd and Balazadeh, Salma}, title = {NAC transcription factor JUNGBRUNNEN1 enhances drought tolerance in tomato}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {568}, issn = {1866-8372}, doi = {10.25932/publishup-42390}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-423908}, pages = {13}, year = {2017}, abstract = {Water deficit (drought stress) massively restricts plant growth and the yield of crops; reducing the deleterious effects of drought is therefore of high agricultural relevance. Drought triggers diverse cellular processes including the inhibition of photosynthesis, the accumulation of cell-damaging reactive oxygen species and gene expression reprogramming, besides others. Transcription factors (TF) are central regulators of transcriptional reprogramming and expression of many TF genes is affected by drought, including members of the NAC family. Here, we identify the NAC factor JUNGBRUNNEN1 (JUB1) as a regulator of drought tolerance in tomato (Solanum lycopersicum). Expression of tomato JUB1 (SlJUB1) is enhanced by various abiotic stresses, including drought. Inhibiting SlJUB1 by virus-induced gene silencing drastically lowers drought tolerance concomitant with an increase in ion leakage, an elevation of hydrogen peroxide (H2O2) levels and a decrease in the expression of various drought-responsive genes. In contrast, overexpression of AtJUB1 from Arabidopsis thaliana increases drought tolerance in tomato, alongside with a higher relative leaf water content during drought and reduced H2O2 levels. AtJUB1 was previously shown to stimulate expression of DREB2A, a TF involved in drought responses, and of the DELLA genes GAI and RGL1. We show here that SlJUB1 similarly controls the expression of the tomato orthologs SlDREB1, SlDREB2 and SlDELLA. Furthermore, AtJUB1 directly binds to the promoters of SlDREB1, SlDREB2 and SlDELLA in tomato. Our study highlights JUB1 as a transcriptional regulator of drought tolerance and suggests considerable conservation of the abiotic stress-related gene regulatory networks controlled by this NAC factor between Arabidopsis and tomato.}, language = {en} } @misc{BreuningerLenhard2017, author = {Breuninger, Holger and Lenhard, Michael}, title = {Expression of the central growth regulator BIG BROTHER is regulated by multiple cis-elements}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400971}, pages = {10}, year = {2017}, abstract = {Background Much of the organismal variation we observe in nature is due to differences in organ size. The observation that even closely related species can show large, stably inherited differences in organ size indicates a strong genetic component to the control of organ size. Despite recent progress in identifying factors controlling organ growth in plants, our overall understanding of this process remains limited, partly because the individual factors have not yet been connected into larger regulatory pathways or networks. To begin addressing this aim, we have studied the upstream regulation of expression of BIG BROTHER (BB), a central growth-control gene in Arabidopsis thaliana that prevents overgrowth of organs. Final organ size and BB expression levels are tightly correlated, implying the need for precise control of its expression. BB expression mirrors proliferative activity, yet the gene functions to limit proliferation, suggesting that it acts in an incoherent feedforward loop downstream of growth activators to prevent over-proliferation. Results To investigate the upstream regulation of BB we combined a promoter deletion analysis with a phylogenetic footprinting approach. We were able to narrow down important, highly conserved, cis-regulatory elements within the BB promoter. Promoter sequences of other Brassicaceae species were able to partially complement the A. thaliana bb-1 mutant, suggesting that at least within the Brassicaceae family the regulatory pathways are conserved. Conclusions This work underlines the complexity involved in precise quantitative control of gene expression and lays the foundation for identifying important upstream regulators that determine BB expression levels and thus final organ size.}, language = {en} } @phdthesis{EbrahimianMotlagh2016, author = {Ebrahimian Motlagh, Saghar}, title = {Functional characterization of stress-responsive transcription factors and their gene regulatory networks in Arabidopsis thaliana}, school = {Universit{\"a}t Potsdam}, pages = {155, X}, year = {2016}, language = {en} } @phdthesis{Buelbuel2017, author = {B{\"u}lb{\"u}l, Selin}, title = {Functional characterization of the BBX14 transcription factor from Arabidopsis thaliana}, school = {Universit{\"a}t Potsdam}, pages = {126}, year = {2017}, language = {en} } @article{DevkarThirumalaikumarXueetal.2019, author = {Devkar, Vikas and Thirumalaikumar, Venkatesh P. and Xue, Gang-Ping and Vallarino, Jose G. and Tureckova, Veronika and Strnad, Miroslav and Fernie, Alisdair R. and Hoefgen, Rainer and Mueller-Roeber, Bernd and Balazadeh, Salma}, title = {Multifaceted regulatory function of tomato SlTAF1 in the response to salinity stress}, series = {New phytologist : international journal of plant science}, volume = {225}, journal = {New phytologist : international journal of plant science}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {0028-646X}, doi = {10.1111/nph.16247}, pages = {1681 -- 1698}, year = {2019}, abstract = {Salinity stress limits plant growth and has a major impact on agricultural productivity. Here, we identify NAC transcription factor SlTAF1 as a regulator of salt tolerance in cultivated tomato (Solanum lycopersicum). While overexpression of SlTAF1 improves salinity tolerance compared with wild-type, lowering SlTAF1 expression causes stronger salinity-induced damage. Under salt stress, shoots of SlTAF1 knockdown plants accumulate more toxic Na+ ions, while SlTAF1 overexpressors accumulate less ions, in accordance with an altered expression of the Na+ transporter genes SlHKT1;1 and SlHKT1;2. Furthermore, stomatal conductance and pore area are increased in SlTAF1 knockdown plants during salinity stress, but decreased in SlTAF1 overexpressors. We identified stress-related transcription factor, abscisic acid metabolism and defence-related genes as potential direct targets of SlTAF1, correlating it with reactive oxygen species scavenging capacity and changes in hormonal response. Salinity-induced changes in tricarboxylic acid cycle intermediates and amino acids are more pronounced in SlTAF1 knockdown than wild-type plants, but less so in SlTAF1 overexpressors. The osmoprotectant proline accumulates more in SlTAF1 overexpressors than knockdown plants. In summary, SlTAF1 controls the tomato's response to salinity stress by combating both osmotic stress and ion toxicity, highlighting this gene as a promising candidate for the future breeding of stress-tolerant crops.}, language = {en} } @article{MaBalazadehMuellerRoeber2019, author = {Ma, Xuemin and Balazadeh, Salma and Mueller-Roeber, Bernd}, title = {Tomato fruit ripening factor NOR controls leaf senescence}, series = {Journal of experimental botany}, volume = {70}, journal = {Journal of experimental botany}, number = {10}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0022-0957}, doi = {10.1093/jxb/erz098}, pages = {2727 -- 2740}, year = {2019}, abstract = {NAC transcription factors (TFs) are important regulators of expressional reprogramming during plant development, stress responses, and leaf senescence. NAC TFs also play important roles in fruit ripening. In tomato (Solanum lycopersicum), one of the best characterized NACs involved in fruit ripening is NON-RIPENING (NOR), and the non-ripening (nor) mutation has been widely used to extend fruit shelf life in elite varieties. Here, we show that NOR additionally controls leaf senescence. Expression of NOR increases with leaf age, and developmental as well as dark-induced senescence are delayed in the nor mutant, while overexpression of NOR promotes leaf senescence. Genes associated with chlorophyll degradation as well as senescence-associated genes (SAGs) show reduced and elevated expression, respectively, in nor mutants and NOR overexpressors. Overexpression of NOR also stimulates leaf senescence in Arabidopsis thaliana. In tomato, NOR supports senescence by directly and positively regulating the expression of several senescence-associated genes including, besides others, SlSAG15 and SlSAG113, SlSGR1, and SlYLS4. Finally, we find that another senescence control NAC TF, namely SlNAP2, acts upstream of NOR to regulate its expression. Our data support a model whereby NAC TFs have often been recruited by higher plants for both the control of leaf senescence and fruit ripening.}, language = {en} } @article{GuentherSchmidtQuittetal.2021, author = {G{\"u}nther, Kerstin and Schmidt, Marcus and Quitt, Heinz and Heinken, Thilo}, title = {Ver{\"a}nderungen der Waldvegetation im Elbe-Havelwinkel von 1960 bis 2015}, series = {Tuexenia : Mitteilungen der Floristisch-Soziologischen Arbeitsgemeinschaft}, journal = {Tuexenia : Mitteilungen der Floristisch-Soziologischen Arbeitsgemeinschaft}, number = {41}, publisher = {Floristisch-Soziologische Arbeitsgemeinschaft}, address = {G{\"o}ttingen}, issn = {0722-494X}, doi = {10.14471/2021.41.005}, pages = {53 -- 85}, year = {2021}, abstract = {Forest ecosystems are subject to a variety of influences such as forest management, nitrogen deposition, changes in the groundwater level or the immigration of invasive species. The repetition of historical releves is an important means of documenting the resulting changes in plant communities and determining their main drivers. In 2015, we examined the vegetation change in 140 semi-permanent plots in managed forests in the Elbe valley in the NE German lowlands (Saxony-Anhalt, Brandenburg). The first survey took place from 1956 to 1963. The releves cover an almost uniquely broad spectrum of different site conditions, ranging from wet forests (alluvial, swamp and bog forests of Alnion incanae, Alnion glutinosae and Betulion pubescentis) to acidic mixed oak forests (Quercion roboris) up to acidic, mostly dry pine forests with different nutrient status (Dicrano-Pinion). We analyzed the changes in the vegetation with the help of forest stand data, winner and loser species, alpha- and beta-diversity as well as the Ellenberg indicator values for nitrogen, reaction, moisture and light. In contrast to previous resurvey studies, areas were also taken into account on which a complete change of forest stand had taken place before the second survey. Particularly in the wet forests and acidic forests with a moderately good nutrient supply, changes in the main tree species have been recorded, and many pine stands have been newly established in the meantime. The species richness has decreased overall and in almost all forest types, but the beta-diversity has remained unchanged or has increased. The Ellenberg values indicate a decrease in soil moisture in the wet forests, while the acidic pine forests in particular have become darker, richer in nutrients and more humid. The number of loser species is more than twice as high as that of the winner species, but with different developments in the individual forest types. In particular, the wet forests, the acidic mixed oak forests and the lichen-pine forests have lost most of their characteristic species. The resurvey after more than 50 years shows a different development of the individual forest types. Vegetation changes in the wet forests are mainly due to local groundwater level drawdown and the resulting increased availability of nutrients. The alluvial forests were also strongly influenced by forest interventions. The reasons for the trend towards more humid and more nutrient-rich conditions in formerly dry acidic pine and oak forests are nitrogen depositions and a succession after the abandonment of historical forms of forest use (litter raking, forest pasture). Although the individual forest types have developed differently, eutrophication, falling groundwater levels and silviculture are the most important causes for the changes in vegetation. Silvicultural interventions such as clear cutting and stand conversion with a change of tree species are at the same time the main reason why the vegetation has not been homogenized despite the leveling of the site gradient as measured by the beta-diversity.}, language = {de} } @article{WangWhiteGrimmetal.2018, author = {Wang, Ming and White, Neil and Grimm, Volker and Hofman, Helen and Doley, David and Thorp, Grant and Cribb, Bronwen and Wherritt, Ella and Han, Liqi and Wilkie, John and Hanan, Jim}, title = {Pattern-oriented modelling as a novel way to verify and validate functional-structural plant models}, series = {Annals of botany}, volume = {121}, journal = {Annals of botany}, number = {5}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0305-7364}, doi = {10.1093/aob/mcx187}, pages = {941 -- 959}, year = {2018}, abstract = {Background and Aims Functional-structural plant (FSP) models have been widely used to understand the complex interactions between plant architecture and underlying developmental mechanisms. However, to obtain evidence that a model captures these mechanisms correctly, a clear distinction must be made between model outputs used for calibration and thus verification, and outputs used for validation. In pattern-oriented modelling (POM), multiple verification patterns are used as filters for rejecting unrealistic model structures and parameter combinations, while a second, independent set of patterns is used for validation. Key Results After calibration, our model simultaneously reproduced multiple observed architectural patterns. The model then successfully predicted, without further calibration, the validation patterns. The model supports the hypothesis that carbon allocation can be modelled as being dependent on current organ biomass and sink strength of each organ type, and also predicted the observed developmental timing of the leaf sink-source transition stage.}, language = {en} } @article{BoteroMonkRodriguezCubillosetal.2020, author = {Botero, David and Monk, Jonathan and Rodriguez Cubillos, Maria Juliana and Rodriguez Cubillos, Andres Eduardo and Restrepo, Mariana and Bernal-Galeano, Vivian and Reyes, Alejandro and Gonzalez Barrios, Andres and Palsson, Bernhard O. and Restrepo, Silvia and Bernal, Adriana}, title = {Genome-scale metabolic model of Xanthomonas phaseoli pv. manihotis}, series = {Frontiers in genetics}, volume = {11}, journal = {Frontiers in genetics}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1664-8021}, doi = {10.3389/fgene.2020.00837}, pages = {19}, year = {2020}, abstract = {Xanthomonas phaseoli pv. manihotis (Xpm) is the causal agent of cassava bacterial blight, the most important bacterial disease in this crop. There is a paucity of knowledge about the metabolism of Xanthomonas and its relevance in the pathogenic process, with the exception of the elucidation of the xanthan biosynthesis route. Here we report the reconstruction of the genome-scale model of Xpm metabolism and the insights it provides into plant-pathogen interactions. The model, iXpm1556, displayed 1,556 reactions, 1,527 compounds, and 890 genes. Metabolic maps of central amino acid and carbohydrate metabolism, as well as xanthan biosynthesis of Xpm, were reconstructed using Escher (https://escher.github.io/) to guide the curation process and for further analyses. The model was constrained using the RNA-seq data of a mutant of Xpm for quorum sensing (QS), and these data were used to construct context-specific models (CSMs) of the metabolism of the two strains (wild type and QS mutant). The CSMs and flux balance analysis were used to get insights into pathogenicity, xanthan biosynthesis, and QS mechanisms. Between the CSMs, 653 reactions were shared; unique reactions belong to purine, pyrimidine, and amino acid metabolism. Alternative objective functions were used to demonstrate a trade-off between xanthan biosynthesis and growth and the re-allocation of resources in the process of biosynthesis. Important features altered by QS included carbohydrate metabolism, NAD(P)(+) balance, and fatty acid elongation. In this work, we modeled the xanthan biosynthesis and the QS process and their impact on the metabolism of the bacterium. This model will be useful for researchers studying host-pathogen interactions and will provide insights into the mechanisms of infection used by this and other Xanthomonas species.}, language = {en} } @masterthesis{Richter2021, type = {Bachelor Thesis}, author = {Richter, Wibke}, title = {Einzelbaumbasierte Quantifizierung der oberirdischen Biomasse in zwei Obstkulturen (Prunus avium L. und Malus domestica Borkh.) am Standort Marquart}, doi = {10.25932/publishup-50636}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-506369}, school = {Universit{\"a}t Potsdam}, pages = {vi, 33}, year = {2021}, abstract = {The quantification of plant biomass using efficient methods is a crucial point in different fields of science. This paper aims to facilitate the determination of hydrogen content of cherry and apple trees at a research site in the north east of Germany using the estimation of their biomass based on the sampling of singletrees. Therefore the volume of 13 cherry and 11 apple trees was determined bydividing them into segments and measuring the specific length and diameter. All segments were grouped by diameter classes. Furthermore the wood density of the branches and the mean leaf biomass was determined. For the calculation of woody biomass a value for wood dry density derived from the literature for each species was used. The biomass allocation across the diameter classes was investigated and a regression analyses implemented using easily measurable tree parameters as well as data derived by a terrestrial laser scanner. The experimental density values increased with increasing branch diameter. The deviation to the literature value was small for the cherry wood but large for the apple wood. The investigation of leaf biomass was carried out independently from measured trees, so no relation could be established between woody and leaf biomass and only mean values were calculated. The proportion of different diameter classes at the whole tree biomass was highly variable and thus an estimation using only the substantial tree compartments does not show appropriate results. The most reliable and efficient way to estimate the aboveground biomass is by utilizing the developed models. A linear regression turned out to provide the best results for the present tree populations of same age and similar size. While the laser scan data did not correlate with the dry wood biomass, the linear models utilizing the stem diameter d or d² as predictor indicated high significance (p - value < 0.001) and a very good model fit (R² > 0.8) for both species.}, language = {de} } @article{BaralRoenschRichteretal.2022, author = {Baral, Hans Otto and R{\"o}nsch, Peter and Richter, Udo and Urban, Alexander and Kruse, Julia and Bemmann, Martin and Kummer, Volker and Javier Valencia, Francisco and Huth, Wolfgang}, title = {Schroeteria decaisneana, S. poeltii, and Ciboria ploettneriana (Sclerotiniaceae, Helotiales, Ascomycota), three parasites on Veronica seeds}, series = {Mycological progress : international journal of the German Mycological Society}, volume = {21}, journal = {Mycological progress : international journal of the German Mycological Society}, number = {1}, publisher = {Springer}, address = {Berlin ; Heidelberg}, issn = {1617-416X}, doi = {10.1007/s11557-021-01742-4}, pages = {359 -- 407}, year = {2022}, abstract = {Ciboria ploettneriana, Schroeteria decaisneana, and S. poeltii produce morphologically very similar apothecia emerging from fallen stromatized seeds of Veronica spp., the former two on V. hederifolia agg. in temperate central Europe and S. poeltii on V. cymbalaria in mediterranean southern Europe. They are described and illustrated in detail based on fresh collections or moist chamber cultures of infected seeds. A key is provided to differentiate the three species from their teleomorphs. For the first time, connections between two teleomorphs and two Schroeteria anamorphs are reported. Members of the anamorph-typified genus Schroeteria are known as host-specific plant parasites that infect seeds of different Veronica spp. In earlier times, they were classified in the Ustilaginales (Basidiomycota), but since more than 30 years, they are referred to as false smut fungi producing smut-like chlamydospores, based on light microscopic and ultrastructural studies which referred them to the Sclerotiniaceae (Helotiales). During the present study, rDNA sequences were obtained for the first time from chlamydospores of Schroeteria bornmuelleri (on V. rubrifolia), S. decaisneana (on V. hederifolia), S. delastrina (generic type, on V. arvensis), and S. poeltii (on V. cymbalaria) and from apothecia of C. ploettneriana, S. decaisneana, and S. poeltii. As a result, the anamorph-teleomorph connection could be established for S. decaisneana and S. poeltii by a 100\% ITS similarity, whereas C. ploettneriana could not be connected to a smut-like anamorph. Ciboria ploettneriana in the here-redefined sense clustered in our combined phylogenetic analyses of ITS and LSU in relationship of Sclerotinia s.l., Botrytis, and Myriosclerotinia rather than Ciboria, but its placement was not supported. Its affiliation in Ciboria was retained until a better solution is found. Also Schroeteria poeltii clustered unresolved in this relationship but with a much higher molecular distance. The remaining three Schroeteria spp. formed a strongly supported monophyletic group, here referred to as "Schroeteria core clade", which clustered with medium to high support as a sister clade of Monilinia jezoensis, a member of the Monilinia alpina group of section Disjunctoriae. We observed ITS distances of 5-6.3\% among members of the Schroeteria core clade, but 13.8-14.7\% between this clade and S. poeltii, which appears to be correlated with the deviating chlamydospore morphology of S. poeltii. Despite its apparent paraphyly, Schroeteria is accepted here in a wide sense as a genus distinct from Monilinia, particularly because of its very special anamorphs. A comparable heterogeneity in rDNA analyses was observed in Monilinia and other genera of Sclerotiniaceae. Such apparent heterogeneity should be met with skepticism, however, because the inclusion of protein-coding genes in phylogenetic analyses resulted in a monophyletic genus Monilinia. More sclerotiniaceous taxa should be analysed for protein-coding genes in the future, including Schroeteria. Four syntype specimens of Ciboria ploettneriana in B were reexamined in the present study, revealing a mixture of the two species growing on V. hederifolia agg. Based on its larger ascospores in comparison with S. decaisneana, a lectotype is proposed for C. ploettneriana.}, language = {en} } @article{KappelIllingHuuetal.2020, author = {Kappel, Christian and Illing, Nicola and Huu, Cuong Nguyen and Barger, Nichole N. and Cramer, Michael D. and Lenhard, Michael and Midgley, Jeremy J.}, title = {Fairy circles in Namibia are assembled from genetically distinct grasses}, series = {Communications biology}, volume = {3}, journal = {Communications biology}, number = {1}, publisher = {Springer Nature}, address = {London}, issn = {2399-3642}, doi = {10.1038/s42003-020-01431-0}, pages = {8}, year = {2020}, abstract = {Fairy circles are striking regularly sized and spaced, bare circles surrounded by Stipagrostis grasses that occur over thousands of square kilometres in Namibia. The mechanisms explaining their origin, shape, persistence and regularity remain controversial. One hypothesis for the formation of vegetation rings is based on the centrifugal expansion of a single individual grass plant, via clonal growth and die-back in the centre. Clonality could explain FC origin, shape and long-term persistence as well as their regularity, if one clone competes with adjacent clones. Here, we show that for virtually all tested fairy circles the periphery is not exclusively made up of genetically identical grasses, but these peripheral grasses belong to more than one unrelated genet. These results do not support a clonal explanation for fairy circles. Lack of clonality implies that a biological reason for their origin, shape and regularity must emerge from competition between near neighbor individuals within each fairy circle. Such lack of clonality also suggests a mismatch between longevity of fairy circles versus their constituent plants. Furthermore, our findings of lack of clonality have implications for some models of spatial patterning of fairy circles that are based on self-organization. Christian Kappel et al. examine the genetic composition of fairy circles, regular circular patterns of grasses in the Namib Desert, using ddRAD-seq. They find that these grasses are made up of multiple unrelated genets rather than genetically identical grasses, suggesting non-clonality.}, language = {en} } @misc{DurgudGuptaIvanovetal.2018, author = {Durgud, Meriem and Gupta, Saurabh and Ivanov, Ivan and Omidbakhshfard, Mohammad Amin and Benina, Maria and Alseekh, Saleh and Staykov, Nikola and Hauenstein, Mareike and Dijkwel, Paul P. and Hortensteiner, Stefan and Toneva, Valentina and Brotman, Yariv and Fernie, Alisdair R. and M{\"u}ller-R{\"o}ber, Bernd and Gechev, Tsanko S.}, title = {Molecular mechanisms preventing senescence in response to prolonged darkness in a desiccation-tolerant plant}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {778}, doi = {10.25932/publishup-43758}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-437588}, pages = {1319 -- 1338}, year = {2018}, abstract = {The desiccation-tolerant plant Haberlea rhodopensis can withstand months of darkness without any visible senescence. Here, we investigated the molecular mechanisms of this adaptation to prolonged (30 d) darkness and subsequent return to light. H. rhodopensis plants remained green and viable throughout the dark treatment. Transcriptomic analysis revealed that darkness regulated several transcription factor (TF) genes. Stress-and autophagy-related TFs such as ERF8, HSFA2b, RD26, TGA1, and WRKY33 were up-regulated, while chloroplast-and flowering-related TFs such as ATH1, COL2, COL4, RL1, and PTAC7 were repressed. PHYTOCHROME INTERACTING FACTOR4, a negative regulator of photomorphogenesis and promoter of senescence, also was down-regulated. In response to darkness, most of the photosynthesis-and photorespiratory-related genes were strongly down-regulated, while genes related to autophagy were up-regulated. This occurred concomitant with the induction of SUCROSE NON-FERMENTING1-RELATED PROTEIN KINASES (SnRK1) signaling pathway genes, which regulate responses to stress-induced starvation and autophagy. Most of the genes associated with chlorophyll catabolism, which are induced by darkness in dark-senescing species, were either unregulated (PHEOPHORBIDE A OXYGENASE, PAO; RED CHLOROPHYLL CATABOLITE REDUCTASE, RCCR) or repressed (STAY GREEN-LIKE, PHEOPHYTINASE, and NON-YELLOW COLORING1). Metabolite profiling revealed increases in the levels of many amino acids in darkness, suggesting increased protein degradation. In darkness, levels of the chloroplastic lipids digalactosyldiacylglycerol, monogalactosyldiacylglycerol, phosphatidylglycerol, and sulfoquinovosyldiacylglycerol decreased, while those of storage triacylglycerols increased, suggesting degradation of chloroplast membrane lipids and their conversion to triacylglycerols for use as energy and carbon sources. Collectively, these data show a coordinated response to darkness, including repression of photosynthetic, photorespiratory, flowering, and chlorophyll catabolic genes, induction of autophagy and SnRK1 pathways, and metabolic reconfigurations that enable survival under prolonged darkness.}, language = {en} } @misc{MaZhangTurečkovaetal.2018, author = {Ma, Xuemin and Zhang, Youjun and Turečkov{\´a}, Veronika and Xue, Gang-Ping and Fernie, Alisdair R. and M{\"u}ller-R{\"o}ber, Bernd and Balazadeh, Salma}, title = {The NAC transcription factor SlNAP2 regulates leaf senescence and fruit yield in tomato}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {787}, issn = {1866-8372}, doi = {10.25932/publishup-43764}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-437643}, pages = {17}, year = {2018}, abstract = {Leaf senescence is an essential physiological process in plants that supports the recycling of nitrogen and other nutrients to support the growth of developing organs, including young leaves, seeds, and fruits. Thus, the regulation of senescence is crucial for evolutionary success in wild populations and for increasing yield in crops. Here, we describe the influence of a NAC transcription factor, SlNAP2 (Solanum lycopersicum NAC-like, activated by Apetala3/Pistillata), that controls both leaf senescence and fruit yield in tomato (S. lycopersicum). SlNAP2 expression increases during age-dependent and dark-induced leaf senescence. We demonstrate that SlNAP2 activates SlSAG113 (S. lycopersicum SENESCENCE-ASSOCIATED GENE113), a homolog of Arabidopsis (Arabidopsis thaliana) SAG113, chlorophyll degradation genes such as SlSGR1 (S. lycopersicum senescence-inducible chloroplast stay-green protein 1) and SlPAO (S. lycopersicum pheide a oxygenase), and other downstream targets by directly binding to their promoters, thereby promoting leaf senescence. Furthermore, SlNAP2 directly controls the expression of genes important for abscisic acid (ABA) biosynthesis, S. lycopersicum 9-cis-epoxycarotenoid dioxygenase 1 (SlNCED1); transport, S. lycopersicum ABC transporter G family member 40 (SlABCG40); and degradation, S. lycopersicum ABA 8'-hydroxylase (SlCYP707A2), indicating that SlNAP2 has a complex role in establishing ABA homeostasis during leaf senescence. Inhibiting SlNAP2 expression in transgenic tomato plants impedes leaf senescence but enhances fruit yield and sugar content likely due to prolonged leaf photosynthesis in aging tomato plants. Our data indicate that SlNAP2 has a central role in controlling leaf senescence and fruit yield in tomato.}, language = {en} } @misc{JantzenWozniakKappeletal.2019, author = {Jantzen, Friederike and Wozniak, Natalia Joanna and Kappel, Christian and Sicard, Adrien and Lenhard, Michael}, title = {A high‑throughput amplicon‑based method for estimating outcrossing rates}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {745}, issn = {1866-8372}, doi = {10.25932/publishup-43565}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-435657}, pages = {14}, year = {2019}, abstract = {Background: The outcrossing rate is a key determinant of the population-genetic structure of species and their long-term evolutionary trajectories. However, determining the outcrossing rate using current methods based on PCRgenotyping individual offspring of focal plants for multiple polymorphic markers is laborious and time-consuming. Results: We have developed an amplicon-based, high-throughput enabled method for estimating the outcrossing rate and have applied this to an example of scented versus non-scented Capsella (Shepherd's Purse) genotypes. Our results show that the method is able to robustly capture differences in outcrossing rates. They also highlight potential biases in the estimates resulting from differential haplotype sharing of the focal plants with the pollen-donor population at individual amplicons. Conclusions: This novel method for estimating outcrossing rates will allow determining this key population-genetic parameter with high-throughput across many genotypes in a population, enabling studies into the genetic determinants of successful pollinator attraction and outcrossing.}, language = {en} } @misc{JantzenLynchKappeletal.2019, author = {Jantzen, Friederike and Lynch, Joseph H. and Kappel, Christian and H{\"o}fflin, Jona and Skaliter, Oded and Wozniak, Natalia Joanna and Sicard, Adrien and Sas, Claudia and Adebesin, Funmilayo and Ravid, Jasmin and Vainstein, Alexander and Hilker, Monika and Dudareva, Natalia and Lenhard, Michael}, title = {Retracing the molecular basis and evolutionary history of the loss of benzaldehyde emission in the genus Capsella}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {775}, issn = {1866-8372}, doi = {10.25932/publishup-43754}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-437542}, pages = {1349 -- 1360}, year = {2019}, abstract = {The transition from pollinator-mediated outbreeding to selfing has occurred many times in angiosperms. This is generally accompanied by a reduction in traits attracting pollinators, including reduced emission of floral scent. In Capsella, emission of benzaldehyde as a main component of floral scent has been lost in selfing C. rubella by mutation of cinnamate-CoA ligase CNL1. However, the biochemical basis and evolutionary history of this loss remain unknown, as does the reason for the absence of benzaldehyde emission in the independently derived selfer Capsella orientalis. We used plant transformation, in vitro enzyme assays, population genetics and quantitative genetics to address these questions. CNL1 has been inactivated twice independently by point mutations in C. rubella, causing a loss of enzymatic activity. Both inactive haplotypes are found within and outside of Greece, the centre of origin of C. rubella, indicating that they arose before its geographical spread. By contrast, the loss of benzaldehyde emission in C. orientalis is not due to an inactivating mutation in CNL1. CNL1 represents a hotspot for mutations that eliminate benzaldehyde emission, potentially reflecting the limited pleiotropy and large effect of its inactivation. Nevertheless, even closely related species have followed different evolutionary routes in reducing floral scent.}, language = {en} } @article{JantzenWozniakKappeletal.2019, author = {Jantzen, Friederike and Wozniak, Natalia Joanna and Kappel, Christian and Sicard, Adrien and Lenhard, Michael}, title = {A high‑throughput amplicon‑based method for estimating outcrossing rates}, series = {Plant Methods}, volume = {15}, journal = {Plant Methods}, number = {47}, publisher = {BioMed Central}, address = {London}, issn = {1746-4811}, doi = {10.1186/s13007-019-0433-9}, pages = {14}, year = {2019}, abstract = {Background: The outcrossing rate is a key determinant of the population-genetic structure of species and their long-term evolutionary trajectories. However, determining the outcrossing rate using current methods based on PCRgenotyping individual offspring of focal plants for multiple polymorphic markers is laborious and time-consuming. Results: We have developed an amplicon-based, high-throughput enabled method for estimating the outcrossing rate and have applied this to an example of scented versus non-scented Capsella (Shepherd's Purse) genotypes. Our results show that the method is able to robustly capture differences in outcrossing rates. They also highlight potential biases in the estimates resulting from differential haplotype sharing of the focal plants with the pollen-donor population at individual amplicons. Conclusions: This novel method for estimating outcrossing rates will allow determining this key population-genetic parameter with high-throughput across many genotypes in a population, enabling studies into the genetic determinants of successful pollinator attraction and outcrossing.}, language = {en} } @article{DurgudGuptaIvanovetal.2018, author = {Durgud, Meriem and Gupta, Saurabh and Ivanov, Ivan and Omidbakhshfard, Mohammad Amin and Benina, Maria and Alseekh, Saleh and Staykov, Nikola and Hauenstein, Mareike and Dijkwel, Paul P. and Hortensteiner, Stefan and Toneva, Valentina and Brotman, Yariv and Fernie, Alisdair R. and M{\"u}ller-R{\"o}ber, Bernd and Gechev, Tsanko S.}, title = {Molecular Mechanisms Preventing Senescence in Response to Prolonged Darkness in a Desiccation-Tolerant Plant}, series = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, volume = {177}, journal = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, number = {3}, publisher = {American Society of Plant Physiologists}, address = {Rockville}, issn = {0032-0889}, doi = {10.1104/pp.18.00055}, pages = {1319 -- 1338}, year = {2018}, abstract = {The desiccation-tolerant plant Haberlea rhodopensis can withstand months of darkness without any visible senescence. Here, we investigated the molecular mechanisms of this adaptation to prolonged (30 d) darkness and subsequent return to light. H. rhodopensis plants remained green and viable throughout the dark treatment. Transcriptomic analysis revealed that darkness regulated several transcription factor (TF) genes. Stress-and autophagy-related TFs such as ERF8, HSFA2b, RD26, TGA1, and WRKY33 were up-regulated, while chloroplast-and flowering-related TFs such as ATH1, COL2, COL4, RL1, and PTAC7 were repressed. PHYTOCHROME INTERACTING FACTOR4, a negative regulator of photomorphogenesis and promoter of senescence, also was down-regulated. In response to darkness, most of the photosynthesis-and photorespiratory-related genes were strongly down-regulated, while genes related to autophagy were up-regulated. This occurred concomitant with the induction of SUCROSE NON-FERMENTING1-RELATED PROTEIN KINASES (SnRK1) signaling pathway genes, which regulate responses to stress-induced starvation and autophagy. Most of the genes associated with chlorophyll catabolism, which are induced by darkness in dark-senescing species, were either unregulated (PHEOPHORBIDE A OXYGENASE, PAO; RED CHLOROPHYLL CATABOLITE REDUCTASE, RCCR) or repressed (STAY GREEN-LIKE, PHEOPHYTINASE, and NON-YELLOW COLORING1). Metabolite profiling revealed increases in the levels of many amino acids in darkness, suggesting increased protein degradation. In darkness, levels of the chloroplastic lipids digalactosyldiacylglycerol, monogalactosyldiacylglycerol, phosphatidylglycerol, and sulfoquinovosyldiacylglycerol decreased, while those of storage triacylglycerols increased, suggesting degradation of chloroplast membrane lipids and their conversion to triacylglycerols for use as energy and carbon sources. Collectively, these data show a coordinated response to darkness, including repression of photosynthetic, photorespiratory, flowering, and chlorophyll catabolic genes, induction of autophagy and SnRK1 pathways, and metabolic reconfigurations that enable survival under prolonged darkness.}, language = {en} } @article{MaZhangTureckovaetal.2018, author = {Ma, Xuemin and Zhang, Youjun and Tureckova, Veronika and Xue, Gang-Ping and Fernie, Alisdair R. and Mueller-R{\"o}ber, Bernd and Balazadeh, Salma}, title = {The NAC Transcription Factor SlNAP2 Regulates Leaf Senescence and Fruit Yield in Tomato}, series = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, volume = {177}, journal = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, number = {3}, publisher = {American Society of Plant Physiologists}, address = {Rockville}, issn = {0032-0889}, doi = {10.1104/pp.18.00292}, pages = {1286 -- 1302}, year = {2018}, abstract = {Leaf senescence is an essential physiological process in plants that supports the recycling of nitrogen and other nutrients to support the growth of developing organs, including young leaves, seeds, and fruits. Thus, the regulation of senescence is crucial for evolutionary success in wild populations and for increasing yield in crops. Here, we describe the influence of a NAC transcription factor, SlNAP2 (Solanum lycopersicum NAC-like, activated by Apetala3/Pistillata), that controls both leaf senescence and fruit yield in tomato (S. lycopersicum). SlNAP2 expression increases during age-dependent and dark-induced leaf senescence. We demonstrate that SlNAP2 activates SlSAG113 (S. lycopersicum SENESCENCE-ASSOCIATED GENE113), a homolog of Arabidopsis (Arabidopsis thaliana) SAG113, chlorophyll degradation genes such as SlSGR1 (S. lycopersicum senescence-inducible chloroplast stay-green protein 1) and SlPAO (S. lycopersicum pheide a oxygenase), and other downstream targets by directly binding to their promoters, thereby promoting leaf senescence. Furthermore, SlNAP2 directly controls the expression of genes important for abscisic acid (ABA) biosynthesis, S. lycopersicum 9-cis-epoxycarotenoid dioxygenase 1 (SlNCED1); transport, S. lycopersicum ABC transporter G family member 40 (SlABCG40); and degradation, S. lycopersicum ABA 8′-hydroxylase (SlCYP707A2), indicating that SlNAP2 has a complex role in establishing ABA homeostasis during leaf senescence. Inhibiting SlNAP2 expression in transgenic tomato plants impedes leaf senescence but enhances fruit yield and sugar content likely due to prolonged leaf photosynthesis in aging tomato plants. Our data indicate that SlNAP2 has a central role in controlling leaf senescence and fruit yield in tomato.}, language = {en} } @misc{SicardLenhard2018, author = {Sicard, Adrien and Lenhard, Michael}, title = {Capsella}, series = {Current biology}, volume = {28}, journal = {Current biology}, number = {17}, publisher = {Cell Press}, address = {Cambridge}, issn = {0960-9822}, doi = {10.1016/j.cub.2018.06.033}, pages = {R920 -- R921}, year = {2018}, language = {en} } @article{LozadaGobilard2019, author = {Lozada Gobilard, Sissi Donna}, title = {K{\"o}nnen auch Pflanzen zwischen den S{\"o}llen "wandern"}, series = {Vielfalt in der Uckermark : Forschungsprojekte 2015 - 2018}, journal = {Vielfalt in der Uckermark : Forschungsprojekte 2015 - 2018}, publisher = {oerding print GmbH}, address = {Braunschweig}, pages = {30 -- 31}, year = {2019}, language = {de} } @article{LozadaGobilardStangPirhoferWalzletal.2019, author = {Lozada Gobilard, Sissi Donna and Stang, Susanne and Pirhofer-Walzl, Karin and Kalettka, Thomas and Heinken, Thilo and Schr{\"o}der, Boris and Eccard, Jana and Joshi, Jasmin Radha}, title = {Environmental filtering predicts plant-community trait distribution and diversity}, series = {Ecology and evolution}, volume = {9}, journal = {Ecology and evolution}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {2045-7758}, doi = {10.1002/ece3.4883}, pages = {1898 -- 1910}, year = {2019}, abstract = {Meta-communities of habitat islands may be essential to maintain biodiversity in anthropogenic landscapes allowing rescue effects in local habitat patches. To understand the species-assembly mechanisms and dynamics of such ecosystems, it is important to test how local plant-community diversity and composition is affected by spatial isolation and hence by dispersal limitation and local environmental conditions acting as filters for local species sorting.We used a system of 46 small wetlands (kettle holes)natural small-scale freshwater habitats rarely considered in nature conservation policiesembedded in an intensively managed agricultural matrix in northern Germany. We compared two types of kettle holes with distinct topographies (flat-sloped, ephemeral, frequently plowed kettle holes vs. steep-sloped, more permanent ones) and determined 254 vascular plant species within these ecosystems, as well as plant functional traits and nearest neighbor distances to other kettle holes.Differences in alpha and beta diversity between steep permanent compared with ephemeral flat kettle holes were mainly explained by species sorting and niche processes and mass effect processes in ephemeral flat kettle holes. The plant-community composition as well as the community trait distribution in terms of life span, breeding system, dispersal ability, and longevity of seed banks significantly differed between the two habitat types. Flat ephemeral kettle holes held a higher percentage of non-perennial plants with a more persistent seed bank, less obligate outbreeders and more species with seed dispersal abilities via animal vectors compared with steep-sloped, more permanent kettle holes that had a higher percentage of wind-dispersed species. In the flat kettle holes, plant-species richness was negatively correlated with the degree of isolation, whereas no such pattern was found for the permanent kettle holes.Synthesis: Environment acts as filter shaping plant diversity (alpha and beta) and plant-community trait distribution between steep permanent compared with ephemeral flat kettle holes supporting species sorting and niche mechanisms as expected, but we identified a mass effect in ephemeral kettle holes only. Flat ephemeral kettle holes can be regarded as meta-ecosystems that strongly depend on seed dispersal and recruitment from a seed bank, whereas neighboring permanent kettle holes have a more stable local species diversity.}, language = {en} } @article{Teckentrup2019, author = {Teckentrup, Lisa}, title = {Gefahr an jeder Ecke}, series = {Vielfalt in der Uckermark : Forschungsprojekte 2015 - 2018}, journal = {Vielfalt in der Uckermark : Forschungsprojekte 2015 - 2018}, publisher = {oerding print GmbH}, address = {Braunschweig}, pages = {54 -- 55}, year = {2019}, language = {de} } @article{MorenoRomeroProbstTrindadeetal.2020, author = {Moreno-Romero, Jordi and Probst, Aline V. and Trindade, In{\^e}s and Kalyanikrishna, and Engelhorn, Julia and Farrona, Sara}, title = {Looking At the Past and Heading to the Future}, series = {Frontiers in Plant Science}, volume = {10}, journal = {Frontiers in Plant Science}, number = {1795}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2019.01795}, pages = {1 -- 12}, year = {2020}, abstract = {In June 2019, more than a hundred plant researchers met in Cologne, Germany, for the 6th European Workshop on Plant Chromatin (EWPC). This conference brought together a highly dynamic community of researchers with the common aim to understand how chromatin organization controls gene expression, development, and plant responses to the environment. New evidence showing how epigenetic states are set, perpetuated, and inherited were presented, and novel data related to the three-dimensional organization of chromatin within the nucleus were discussed. At the level of the nucleosome, its composition by different histone variants and their specialized histone deposition complexes were addressed as well as the mechanisms involved in histone post-translational modifications and their role in gene expression. The keynote lecture on plant DNA methylation by Julie Law (SALK Institute) and the tribute session to Lars Hennig, honoring the memory of one of the founders of the EWPC who contributed to promote the plant chromatin and epigenetic field in Europe, added a very special note to this gathering. In this perspective article we summarize some of the most outstanding data and advances on plant chromatin research presented at this workshop.}, language = {en} } @misc{ZaplataNhabangaStalmansetal.2020, author = {Zaplata, Markus Klemens and Nhabanga, Abel and Stalmans, Marc and Volpers, Thomas and Burkart, Michael and Sperfeld, Erik}, title = {Grasses cope with high-contrast ecosystem conditions in the large outflow of the Banhine wetlands, Mozambique}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-57351}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-573515}, pages = {16}, year = {2020}, abstract = {Ecosystems with highly pulsed water supply must be better understood as climate change may increase frequency and severity of intense storms, droughts and floods. Here we collected data over 3 years (2016-2018) in the episodic wetland outflow channel (Aluize), Banhine National Park, in which the system state changed from dry to wet to dry. Field sampling included vegetation records, small-scale vegetation zoning, the seed bank and water and soil quality. The same main plant species were found in both dry and wet conditions across the riverbed of the outflow channel. We found only very few diaspores of plants in the soil after prolonged drought. In the subsequent flooded state, we examined very dense vegetation on the water surface, which was dominated by the gramineous species Paspalidium obtusifolium. This species formed a compact floating mat that was rooted to the riverbed. The Cyperaceae Bolboschoenus glaucus showed high clonal growth in the form of root tubers, which likely serve as important food reservoir during drought. Soil and water analyses do not indicate a limitation by nutrients. We outline how resident people may change the plant community structure with an increasing practice of setting fire to the meadows in the dried-up riverbed to facilitate plant regrowth as food for their livestock.}, language = {en} } @misc{DittmannHeinkenSchmidt2018, author = {Dittmann, Thea and Heinken, Thilo and Schmidt, Marcus}, title = {Die W{\"a}lder von Magdeburgerforth (Fl{\"a}ming, Sachsen-Anhalt)}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1053}, issn = {1866-8372}, doi = {10.25932/publishup-46005}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-460058}, pages = {11 -- 42}, year = {2018}, abstract = {In einem rund 2.200 ha großen Waldgebiet bei Magdeburgerforth (Fl{\"a}ming, Sachsen-Anhalt) wur-den 1948 bis 1950 von Harro Passarge 120 Vegetationsaufnahmen sowie eine Vegetationskartierung erstellt. Das Gebiet zeichnet sich durch eine große Vielfalt an Waldtypen aus den Verb{\"a}nden Agrostio-Quercion petraeae, Alnion glutinosae, Alnion incanae, Carpinion betuli, Dicrano-Pinion und Quercion roboris aus. Daher und weil viele der heute in W{\"a}ldern wirksamen Prozesse (z. B. Stickstoffeintrag, Klimawandel) vor 60 Jahren noch nicht sp{\"u}rbar waren, bietet sich das Gebiet f{\"u}r eine Wiederholungs-untersuchung besonders an. Da die Aufnahmefl{\"a}chen von Passarge nicht punktgenau verortet waren, wurden im Jahr 2014 in einem {\"u}ber die Forstabteilungen und die Vegetationskarte definierten Such-raum immer die der Erstaufnahme {\"a}hnlichsten Waldbest{\"a}nde erfasst. Insgesamt konnten 97 (81 \%) der Aufnahmen wiederholt werden. Vegetationsver{\"a}nderungen werden mithilfe einer NMDS-Ordination, der Gegen{\"u}berstellung von α-Diversit{\"a}t, Zeigerwerten und Waldbindungskategorien f{\"u}r die beiden Aufnahmezeitpunkte sowie {\"u}ber die Identifikation von Gewinner- und Verlierer-Arten analysiert.Auch wenn methodenbedingt bei der Wiederholungsuntersuchung nur die jeweils geringstm{\"o}gliche Vegetationsver{\"a}nderung abgebildet wird, konnten Ergebnisse erzielt werden, die mit denen quasi-permanenter Plots {\"u}bereinstimmen. Die beobachteten allgemeinen Trends (Eutrophierung, Sukzession nach Nutzungswandel, Verlust lichtliebender und magerkeitszeigender Arten, Ausbreitung von stick-stoffliebenden Arten und mesophilen Waldarten, Einwanderung von Neophyten, keine generelle Ab-nahme der Artenzahl) stimmen gut mit den in zahlreichen Studien aus mitteleurop{\"a}ischen W{\"a}ldern festgestellten {\"u}berein. Durch das von nassen bis trockenen sowie von bodensauer-n{\"a}hrstoffarmen bis zu relativ basenreichen B{\"o}den reichende Standortsspektrum innerhalb des Untersuchungsgebietes konnte aber - deutlicher als in den meisten bisherigen Fallstudien - gezeigt werden, dass sich die Resilienz der W{\"a}lder gegen{\"u}ber Vegetationsver{\"a}nderung je nach Ausgangsgesellschaft stark unterscheidet und jeweils unterschiedliche Treiber wirksam sind. Stellario-Carpinetum und Luzulo-Quercetum erwiesen sich als relativ stabil, und auch in den Feuchtw{\"a}ldern des Circaeo-Alnetum gab es trotz eines Arten-wechsels wenig Hinweise auf Umweltver{\"a}nderungen. Dagegen wiesen die W{\"a}lder n{\"a}hrstoffarmer Standorte (Sphagno-Alnetum, Betulo-Quercetum, Dicrano-Pinion) viele Verliererarten und eine starke Eutrophierungstendenz auf. Die in besonderem Maße von historischen Waldnutzungsformen abh{\"a}ngi-gen thermophilen W{\"a}lder und die Flechten-Kiefernw{\"a}lder gingen weitgehend verloren.}, language = {de} } @misc{BochMuellerPratietal.2018, author = {Boch, Steffen and M{\"u}ller, J{\"o}rg and Prati, Daniel and Fischer, Markus}, title = {Low-intensity management promotes bryophyte diversity in grasslands}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1049}, issn = {1866-8372}, doi = {10.25932/publishup-46008}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-460086}, pages = {311 -- 328}, year = {2018}, abstract = {Bryophytes constitute an important and permanent component of the grassland flora and diversity in Europe. As most bryophyte species are sensitive to habitat change, their diversity is likely to decline following land-use intensification. Most previous studies on bryophyte diversity focused on specific habitats of high bryophyte diversity, such as bogs, montane grasslands, or calcareous dry grasslands. In contrast, mesic grasslands are rarely studied, although they are the most common grassland habitat in Europe. They are secondary vegetation, maintained by agricultural use and thus, are influenced by different forms of land use. We studied bryophyte species richness in three regions in Germany, in 707 plots of 16 m2 representing different land-use types and environmental conditions. Our study is one of the few to inspect the relationships between bryophyte richness and land use across contrasting regions and using a high number of replicates.Among the managed grasslands, pastures harboured 2.5 times more bryophyte species than mead-ows and mown pastures. Similarly, bryophyte cover was about twice as high in fallows and pastures than in meadows and mown pastures. Among the pastures, bryophyte species richness was about three times higher in sheep grazed plots than in the ones grazed by cattle or horses. In general, bryophyte species richness and cover was more than 50\% lower in fertilized than in unfertilized plots. Moreover, the amount of suitable substrates was linked to bryophyte diversity. Species richness of bryophytes growing on stones increased with stone cover, and the one of bryophytes growing on bark and deadwood increased with larger values of woody plant species and deadwood cover. Our findings highlight the importance of low-intensity land use and high structural heterogeneity for bryophyte conservation. They also caution against an intensification of traditionally managed pastures. In the light of our results, we recommend to maintain low-intensity sheep grazing on sites with low productivity, such as slopes on shallow soils.}, language = {en} } @misc{MorenoRomeroProbstTrindadeetal.2020, author = {Moreno-Romero, Jordi and Probst, Aline V. and Trindade, In{\^e}s and Kalyanikrishna, and Engelhorn, Julia and Farrona, Sara}, title = {Looking At the Past and Heading to the Future}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, issn = {1866-8372}, doi = {10.25932/publishup-51194}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-511942}, pages = {14}, year = {2020}, abstract = {In June 2019, more than a hundred plant researchers met in Cologne, Germany, for the 6th European Workshop on Plant Chromatin (EWPC). This conference brought together a highly dynamic community of researchers with the common aim to understand how chromatin organization controls gene expression, development, and plant responses to the environment. New evidence showing how epigenetic states are set, perpetuated, and inherited were presented, and novel data related to the three-dimensional organization of chromatin within the nucleus were discussed. At the level of the nucleosome, its composition by different histone variants and their specialized histone deposition complexes were addressed as well as the mechanisms involved in histone post-translational modifications and their role in gene expression. The keynote lecture on plant DNA methylation by Julie Law (SALK Institute) and the tribute session to Lars Hennig, honoring the memory of one of the founders of the EWPC who contributed to promote the plant chromatin and epigenetic field in Europe, added a very special note to this gathering. In this perspective article we summarize some of the most outstanding data and advances on plant chromatin research presented at this workshop.}, language = {en} } @article{CordeiroAndradeMonteiroetal.2022, author = {Cordeiro, Andre M. and Andrade, Luis and Monteiro, Catarina C. and Leitao, Guilherme and Wigge, Philip Anthony and Saibo, Nelson J. M.}, title = {Phytochrome-interacting factors}, series = {Journal of experimental botany}, volume = {73}, journal = {Journal of experimental botany}, number = {12}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0022-0957}, doi = {10.1093/jxb/erac142}, pages = {3881 -- 3897}, year = {2022}, abstract = {Review exploring the regulation of PHYTOCHROME-INTERACTING FACTORS by light, their role in abiotic stress tolerance and plant architecture, and their influence on crop productivity. Light is a key determinant for plant growth, development, and ultimately yield. Phytochromes, red/far-red photoreceptors, play an important role in plant architecture, stress tolerance, and productivity. In the model plant Arabidopsis, it has been shown that PHYTOCHROME-INTERACTING FACTORS (PIFs; bHLH transcription factors) act as central hubs in the integration of external stimuli to regulate plant development. Recent studies have unveiled the importance of PIFs in crops. They are involved in the modulation of plant architecture and productivity through the regulation of cell division and elongation in response to different environmental cues. These studies show that different PIFs have overlapping but also distinct functions in the regulation of plant growth. Therefore, understanding the molecular mechanisms by which PIFs regulate plant development is crucial to improve crop productivity under both optimal and adverse environmental conditions. In this review, we discuss current knowledge of PIFs acting as integrators of light and other signals in different crops, with particular focus on the role of PIFs in responding to different environmental conditions and how this can be used to improve crop productivity.}, language = {en} } @article{SchallerPuppeKaczoreketal.2021, author = {Schaller, J{\"o}rg and Puppe, Daniel and Kaczorek, Danuta and Ellerbrock, Ruth and Sommer, Michael}, title = {Silicon cycling in soils revisited}, series = {Plants : open access journal}, volume = {10}, journal = {Plants : open access journal}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2223-7747}, doi = {10.3390/plants10020295}, pages = {33}, year = {2021}, abstract = {Silicon (Si) speciation and availability in soils is highly important for ecosystem functioning, because Si is a beneficial element for plant growth. Si chemistry is highly complex compared to other elements in soils, because Si reaction rates are relatively slow and dependent on Si species. Consequently, we review the occurrence of different Si species in soil solution and their changes by polymerization, depolymerization, and condensation in relation to important soil processes. We show that an argumentation based on thermodynamic endmembers of Si dependent processes, as currently done, is often difficult, because some reactions such as mineral crystallization require months to years (sometimes even centuries or millennia). Furthermore, we give an overview of Si reactions in soil solution and the predominance of certain solid compounds, which is a neglected but important parameter controlling the availability, reactivity, and function of Si in soils. We further discuss the drivers of soil Si cycling and how humans interfere with these processes. The soil Si cycle is of major importance for ecosystem functioning; therefore, a deeper understanding of drivers of Si cycling (e.g., predominant speciation), human disturbances and the implication for important soil properties (water storage, nutrient availability, and micro aggregate stability) is of fundamental relevance.}, language = {en} } @article{FichtnerOlasFeiletal.2020, author = {Fichtner, Franziska and Olas, Justyna Jadwiga and Feil, Regina and Watanabe, Mutsumi and Krause, Ursula and Hoefgen, Rainer and Stitt, Mark and Lunn, John Edward}, title = {Functional features of Trehalose-6-Phosphate Synthase 1}, series = {The Plant Cell}, volume = {32}, journal = {The Plant Cell}, number = {6}, publisher = {Oxford University Press}, address = {Oxford}, issn = {0032-0781}, doi = {10.1105/tpc.19.00837}, pages = {1949 -- 1972}, year = {2020}, abstract = {Tre6P synthesis by TPS1 is essential for embryogenesis and postembryonic growth in Arabidopsis, and appropriate Suc signaling by Tre6P is dependent on the noncatalytic domains of TPS1. In Arabidopsis (Arabidopsis thaliana), TREHALOSE-6-PHOSPHATE SYNTHASE1 (TPS1) catalyzes the synthesis of the sucrose-signaling metabolite trehalose 6-phosphate (Tre6P) and is essential for embryogenesis and normal postembryonic growth and development. To understand its molecular functions, we transformed the embryo-lethal tps1-1 null mutant with various forms of TPS1 and with a heterologous TPS (OtsA) from Escherichia coli, under the control of the TPS1 promoter, and tested for complementation. TPS1 protein localized predominantly in the phloem-loading zone and guard cells in leaves, root vasculature, and shoot apical meristem, implicating it in both local and systemic signaling of Suc status. The protein is targeted mainly to the nucleus. Restoring Tre6P synthesis was both necessary and sufficient to rescue the tps1-1 mutant through embryogenesis. However, postembryonic growth and the sucrose-Tre6P relationship were disrupted in some complementation lines. A point mutation (A119W) in the catalytic domain or truncating the C-terminal domain of TPS1 severely compromised growth. Despite having high Tre6P levels, these plants never flowered, possibly because Tre6P signaling was disrupted by two unidentified disaccharide-monophosphates that appeared in these plants. The noncatalytic domains of TPS1 ensure its targeting to the correct subcellular compartment and its catalytic fidelity and are required for appropriate signaling of Suc status by Tre6P.}, language = {en} } @misc{BaeurleTrindade2020, author = {B{\"a}urle, Isabel and Trindade, In{\^e}s}, title = {Chromatin regulation of somatic abiotic stress memory}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {17}, issn = {1866-8372}, doi = {10.25932/publishup-51666}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-516668}, pages = {13}, year = {2020}, abstract = {In nature, plants are often subjected to periods of recurrent environmental stress that can strongly affect their development and productivity. To cope with these conditions, plants can remember a previous stress, which allows them to respond more efficiently to a subsequent stress, a phenomenon known as priming. This ability can be maintained at the somatic level for a few days or weeks after the stress is perceived, suggesting that plants can store information of a past stress during this recovery phase. While the immediate responses to a single stress event have been extensively studied, knowledge on priming effects and how stress memory is stored is still scarce. At the molecular level, memory of a past condition often involves changes in chromatin structure and organization, which may be maintained independently from transcription. In this review, we will summarize the most recent developments in the field and discuss how different levels of chromatin regulation contribute to priming and plant abiotic stress memory.}, language = {en} } @misc{FichtnerOlasFeiletal.2020, author = {Fichtner, Franziska and Olas, Justyna Jadwiga and Feil, Regina and Watanabe, Mutsumi and Krause, Ursula and Hoefgen, Rainer and Stitt, Mark and Lunn, John Edward}, title = {Functional features of Trehalose-6-Phosphate Synthase 1}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {6}, issn = {1866-8372}, doi = {10.25932/publishup-51653}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-516532}, pages = {26}, year = {2020}, abstract = {Tre6P synthesis by TPS1 is essential for embryogenesis and postembryonic growth in Arabidopsis, and appropriate Suc signaling by Tre6P is dependent on the noncatalytic domains of TPS1. In Arabidopsis (Arabidopsis thaliana), TREHALOSE-6-PHOSPHATE SYNTHASE1 (TPS1) catalyzes the synthesis of the sucrose-signaling metabolite trehalose 6-phosphate (Tre6P) and is essential for embryogenesis and normal postembryonic growth and development. To understand its molecular functions, we transformed the embryo-lethal tps1-1 null mutant with various forms of TPS1 and with a heterologous TPS (OtsA) from Escherichia coli, under the control of the TPS1 promoter, and tested for complementation. TPS1 protein localized predominantly in the phloem-loading zone and guard cells in leaves, root vasculature, and shoot apical meristem, implicating it in both local and systemic signaling of Suc status. The protein is targeted mainly to the nucleus. Restoring Tre6P synthesis was both necessary and sufficient to rescue the tps1-1 mutant through embryogenesis. However, postembryonic growth and the sucrose-Tre6P relationship were disrupted in some complementation lines. A point mutation (A119W) in the catalytic domain or truncating the C-terminal domain of TPS1 severely compromised growth. Despite having high Tre6P levels, these plants never flowered, possibly because Tre6P signaling was disrupted by two unidentified disaccharide-monophosphates that appeared in these plants. The noncatalytic domains of TPS1 ensure its targeting to the correct subcellular compartment and its catalytic fidelity and are required for appropriate signaling of Suc status by Tre6P.}, language = {en} } @article{OlasApeltWatanabeetal.2021, author = {Olas, Justyna Jadwiga and Apelt, Federico and Watanabe, Mutsumi and H{\"o}fgen, Rainer and Wahl, Vanessa}, title = {Developmental stage-specific metabolite signatures in Arabidopsis thaliana under optimal and mild nitrogen limitation}, series = {Plant science : an international journal of experimental plant biology}, volume = {303}, journal = {Plant science : an international journal of experimental plant biology}, publisher = {Elsevier Science}, address = {Amsterdam [u.a.]}, issn = {0168-9452}, doi = {10.1016/j.plantsci.2020.110746}, pages = {14}, year = {2021}, abstract = {Metabolites influence flowering time, and thus are among the major determinants of yield. Despite the reported role of trehalose 6-phosphate and nitrate signaling on the transition from the vegetative to the reproductive phase, little is known about other metabolites contributing and responding to developmental phase changes. To increase our understanding which metabolic traits change throughout development in Arabidopsis thaliana and to identify metabolic markers for the vegetative and reproductive phases, especially among individual amino acids (AA), we profiled metabolites of plants grown in optimal (ON) and limited nitrogen (N) (LN) conditions, the latter providing a mild but consistent limitation of N. We found that although LN plants adapt their growth to a decreased level of N, their metabolite profiles are strongly distinct from ON plant profiles, with N as the driving factor for the observed differences. We demonstrate that the vegetative and the reproductive phase are not only marked by growth parameters such as biomass and rosette area, but also by specific metabolite signatures including specific single AA. In summary, we identified N-dependent and -independent indicators manifesting developmental stages, indicating that the plant's metabolic status also reports on the developmental phases.}, language = {en} }