@misc{DunsingMagnusLiebschetal.2018, author = {Dunsing, Valentin and Magnus, Mayer and Liebsch, Filip and Multhaup, Gerhard and Chiantia, Salvatore}, title = {Direct Evidence of APLP1 Trans Interactions in Cell-Cell Adhesion Platforms Investigated via Fluorescence Fluctuation Spectroscopy}, series = {Biophysical journal}, volume = {114}, journal = {Biophysical journal}, number = {3}, publisher = {Cell Press}, address = {Cambridge}, issn = {0006-3495}, doi = {10.1016/j.bpj.2017.11.2067}, pages = {373A -- 373A}, year = {2018}, abstract = {The Amyloid-precursor-like protein 1 (APLP1) is a neuronal type I transmembrane protein which plays a role in synaptic adhesion and synaptogenesis. Past investigations indicated that APLP1 is involved in the formation of protein-protein complexes that bridge the junctions between neighboring cells. Nevertheless, APLP1-APLP1 trans interactions have never been directly observed in higher eukaryotic cells. Here, we investigate APLP1 interactions and dynamics directly in living human embryonic kidney (HEK) cells, using fluorescence fluctuation spectroscopy techniques, namely cross-correlation scanning fluorescence correlation spectroscopy (sFCS) and Number\&Brightness (N\&B). Our results show that APLP1 forms homotypic trans complexes at cell-cell contacts. In the presence of zinc ions, the protein forms macroscopic clusters, exhibiting an even higher degree of trans binding and strongly reduced dynamics. Further evidence from Giant Plasma Membrane Vesicles and live cell actin staining suggests that the presence of an intact cortical cytoskeleton is required for zinc-induced cis multimerization. Subsequently, large adhesion platforms bridging interacting cells are formed through APLP1-APLP1 direct trans interactions. Taken together, our results provide direct evidence that APLP1 functions as a neuronal zinc-dependent adhesion protein and provide a more detailed understanding of the molecular mechanisms driving the formation of APLP1 adhesion platforms. Further, they show that fluorescence fluctuation spectroscopy techniques are useful tools for the investigation of protein-protein interactions at cell-cell adhesion sites.}, language = {en} } @article{LiuLaemkeLinetal.2018, author = {Liu, Hsiang-chin and L{\"a}mke, J{\"o}rn and Lin, Siou-ying and Hung, Meng-Ju and Liu, Kuan-Ming and Charng, Yee-yung and B{\"a}urle, Isabel}, title = {Distinct heat shock factors and chromatin modifications mediate the organ-autonomous transcriptional memory of heat stress}, series = {The plant journal}, volume = {95}, journal = {The plant journal}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {0960-7412}, doi = {10.1111/tpj.13958}, pages = {401 -- 413}, year = {2018}, abstract = {Plants can be primed by a stress cue to mount a faster or stronger activation of defense mechanisms upon subsequent stress. A crucial component of such stress priming is the modified reactivation of genes upon recurring stress; however, the underlying mechanisms of this are poorly understood. Here, we report that dozens of Arabidopsis thaliana genes display transcriptional memory, i.e. stronger upregulation after a recurring heat stress, that lasts for at least 3 days. We define a set of transcription factors involved in this memory response and show that the transcriptional memory results in enhanced transcriptional activation within minutes of the onset of a heat stress cue. Further, we show that the transcriptional memory is active in all tissues. It may last for up to a week, and is associated during this time with histone H3 lysine 4 hypermethylation. This transcriptional memory is cis-encoded, as we identify a promoter fragment that confers memory onto a heterologous gene. In summary, heat-induced transcriptional memory is a widespread and sustained response, and our study provides a framework for future mechanistic studies of somatic stress memory in higher plants.}, language = {en} } @article{KoloraWeigertSaffarietal.2018, author = {Kolora, Sree Rohit Raj and Weigert, Anne and Saffari, Amin and Kehr, Stephanie and Walter Costa, Maria Beatriz and Spr{\"o}er, Cathrin and Indrischek, Henrike and Chintalapati, Manjusha and Lohse, Konrad and Doose, Gero and Overmann, J{\"o}rg and Bunk, Boyke and Bleidorn, Christoph and Grimm-Seyfarth, Annegret and Henle, Klaus and Nowick, Katja and Faria, Rui and Stadler, Peter F. and Schlegel, Martin}, title = {Divergent evolution in the genomes of closely related lacertids, Lacerta viridis and L. bilineata, and implications for speciation}, series = {GigaScience}, volume = {8}, journal = {GigaScience}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {2047-217X}, doi = {10.1093/gigascience/giy160}, pages = {15}, year = {2018}, abstract = {Background Lacerta viridis and Lacerta bilineata are sister species of European green lizards (eastern and western clades, respectively) that, until recently, were grouped together as the L. viridis complex. Genetic incompatibilities were observed between lacertid populations through crossing experiments, which led to the delineation of two separate species within the L. viridis complex. The population history of these sister species and processes driving divergence are unknown. We constructed the first high-quality de novo genome assemblies for both L. viridis and L. bilineata through Illumina and PacBio sequencing, with annotation support provided from transcriptome sequencing of several tissues. To estimate gene flow between the two species and identify factors involved in reproductive isolation, we studied their evolutionary history, identified genomic rearrangements, detected signatures of selection on non-coding RNA, and on protein-coding genes. Findings Here we show that gene flow was primarily unidirectional from L. bilineata to L. viridis after their split at least 1.15 million years ago. We detected positive selection of the non-coding repertoire; mutations in transcription factors; accumulation of divergence through inversions; selection on genes involved in neural development, reproduction, and behavior, as well as in ultraviolet-response, possibly driven by sexual selection, whose contribution to reproductive isolation between these lacertid species needs to be further evaluated. Conclusion The combination of short and long sequence reads resulted in one of the most complete lizard genome assemblies. The characterization of a diverse array of genomic features provided valuable insights into the demographic history of divergence among European green lizards, as well as key species differences, some of which are candidates that could have played a role in speciation. In addition, our study generated valuable genomic resources that can be used to address conservation-related issues in lacertids.}, language = {en} } @article{VandenWyngaertRojasJimenezSetoetal.2018, author = {Van den Wyngaert, Silke and Rojas-Jimenez, Keilor and Seto, Kensuke and Kagami, Maiko and Grossart, Hans-Peter}, title = {Diversity and Hidden Host Specificity of Chytrids Infecting Colonial Volvocacean Algae}, series = {Journal of Eukaryotic Microbiology}, volume = {65}, journal = {Journal of Eukaryotic Microbiology}, number = {6}, publisher = {Wiley}, address = {Hoboken}, issn = {1066-5234}, doi = {10.1111/jeu.12632}, pages = {870 -- 881}, year = {2018}, abstract = {Chytrids are zoosporic fungi that play an important, but yet understudied, ecological role in aquatic ecosystems. Many chytrid species have been morphologically described as parasites on phytoplankton. However, the majority of them have rarely been isolated and lack DNA sequence data. In this study we isolated and cultivated three parasitic chytrids, infecting a common volvocacean host species, Yamagishiella unicocca. To identify the chytrids, we characterized morphology and life cycle, and analyzed phylogenetic relationships based on 18S and 28S rDNA genes. Host range and specificity of the chytrids was determined by cross-infection assays with host strains, characterized by rbcL and ITS markers. We were able to confirm the identity of two chytrid strains as Endocoenobium eudorinae Ingold and Dangeardia mamillata Schroder and described the third chytrid strain as Algomyces stechlinensis gen. et sp. nov. The three chytrids were assigned to novel and phylogenetically distant clades within the phylum Chytridiomycota, each exhibiting different host specificities. By integrating morphological and molecular data of both the parasitic chytrids and their respective host species, we unveiled cryptic host-parasite associations. This study highlights that a high prevalence of (pseudo)cryptic diversity requires molecular characterization of both phytoplankton host and parasitic chytrid to accurately identify and compare host range and specificity, and to study phytoplankton-chytrid interactions in general.}, language = {en} } @article{PereusOtienoGhorbanietal.2018, author = {Pereus, D. and Otieno, J. N. and Ghorbani, Abdolbaset and Kocyan, Alexander and Hilonga, S. and de Boer, H. J.}, title = {Diversity of Hypoxis species used in ethnomedicine in Tanzania}, series = {South African journal of botany : an international interdisciplinary journal for botanical sciences}, volume = {122}, journal = {South African journal of botany : an international interdisciplinary journal for botanical sciences}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0254-6299}, doi = {10.1016/j.sajb.2018.03.004}, pages = {336 -- 341}, year = {2018}, abstract = {The corms of different Hypoxis species (Hypoxidaceae) are used for the treatment and management of a variety of human ailments and disorders in African traditional medicine. However, the used corms are morphologically similar and it is not known whether this has resulted in different species being harvested, prescribed and sold as the same species. Ethnomedicinal information regarding its use in Tanzania is scanty and the available ethnobotanical information about the plants is mostly from various studies done outside Tanzania. The objective of the study was to document the diverse uses of Hypoxis in Tanzania and study what species are used and whether preferences exist for specific species. Focus group discussions and in depth interviews with informants were done in 15 regions of Tanzania to document local uses of Hypoxis species and collect vouchers for identification. Traditional practitioners use Hypoxis to manage a variety of human illness in Tanzania, and appear to use different species indiscriminately for medicine, socio-cultural applications and for food. Medicinal uses include treatment of benign prostate hypertrophy, cancer, diabetes, gout, headache, HIV/AIDS, infertility, ringworms, stomachache, and urinary tract infections. In Tanzania, different Hypoxis species are used indiscriminately for a range of sociocultural and medicinal purposes. The reported medicinal uses could aid testing and evaluation of traditional herbal medicine and more research is needed to test their pharmacological effects. (C) 2018 SAAB. Published by Elsevier B.V. All rights reserved.}, language = {en} } @article{RevereyGanzertLischeidetal.2018, author = {Reverey, Florian and Ganzert, Lars and Lischeid, Gunnar and Ulrich, Andreas and Premke, Katrin and Grossart, Hans-Peter}, title = {Dry-wet cycles of kettle hole sediments leave a microbial and biogeochemical legacy}, series = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, volume = {627}, journal = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0048-9697}, doi = {10.1016/j.scitotenv.2018.01.220}, pages = {985 -- 996}, year = {2018}, abstract = {Understanding interrelations between an environment's hydrological past and its current biogeochemistry is necessary for the assessment of biogeochemical and microbial responses to changing hydrological conditions. The question how previous dry-wet events determine the contemporary microbial and biogeochemical state is addressed in this study. Therefore, sediments exposed to the atmosphere of areas with a different hydrological past within one kettle hole, i.e. (1) the predominantly inundated pond center, (2) the pond margin frequently desiccated for longer periods and (3) an intermediate zone, were incubated with the same rewetting treatment. Physicochemical and textural characteristics were related to structural microbial parameters regarding carbon and nitrogen turnover, i.e. abundance of bacteria and fungi, denitrifiers (targeted by the nirK und nirS functional genes) and nitrate ammonifiers (targeted by the nrfA functional gene). Our study reveals that, in combination with varying sediment texture, the hydrological history creates distinct microbial habitats with defined boundary conditions within the kettle hole, mainly driven by redox conditions, pH and organic matter (OM) composition. OM mineralization, as indicated by CO2-outgassing, was most efficient in exposed sediments with a less stable hydrological past. The potential for nitrogen retention via nitrate ammonification was highest in the hydrologically rather stable pond center, counteracting nitrogen loss due to denitrification. Therefore, the degree of hydrological stability is an important factor leaving a microbial and biogeochemical legacy, which determines carbon and nitrogen losses from small lentic freshwater systems in the long term run.}, language = {en} } @article{MalinovaMahtoBrandtetal.2018, author = {Malinova, Irina and Mahto, Harendra and Brandt, Felix and AL-Rawi, Shadha and Qasim, Hadeel and Brust, Henrike and Hejazi, Mahdi and Fettke, J{\"o}rg}, title = {EARLY STARVATION1 specifically affects the phosphorylation action of starch-related dikinases}, series = {The plant journal}, volume = {95}, journal = {The plant journal}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {0960-7412}, doi = {10.1111/tpj.13937}, pages = {126 -- 137}, year = {2018}, abstract = {Starch phosphorylation by starch-related dikinases glucan, water dikinase (GWD) and phosphoglucan, water dikinase (PWD) is a key step in starch degradation. Little information is known about the precise structure of the glucan substrate utilized by the dikinases and about the mechanisms by which these structures may be influenced. A 50-kDa starch-binding protein named EARLY STARVATION1 (ESV1) was analyzed regarding its impact on starch phosphorylation. In various invitro assays, the influences of the recombinant protein ESV1 on the actions of GWD and PWD on the surfaces of native starch granules were analyzed. In addition, we included starches from various sources as well as truncated forms of GWD. ESV1 preferentially binds to highly ordered, -glucans, such as starch and crystalline maltodextrins. Furthermore, ESV1 specifically influences the action of GWD and PWD at the starch granule surface. Starch phosphorylation by GWD is decreased in the presence of ESV1, whereas the action of PWD increases in the presence of ESV1. The unique alterations observed in starch phosphorylation by the two dikinases are discussed in regard to altered glucan structures at the starch granule surface.}, language = {en} } @article{OdongoSchlotzBaldermannetal.2018, author = {Odongo, Grace Akinyi and Schlotz, Nina and Baldermann, Susanne and Neugart, Susanne and Ngwene, Benard and Schreiner, Monika and Lamy, Evelyn}, title = {Effects of Amaranthus cruentus L. on aflatoxin B1- and oxidative stress-induced DNA damage in human liver (HepG2) cells}, series = {Food bioscience}, volume = {26}, journal = {Food bioscience}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2212-4292}, doi = {10.1016/j.fbio.2018.09.006}, pages = {42 -- 48}, year = {2018}, abstract = {Amaranth is presently an underutilized crop despite its high content of micronutrients/bioactive phytochemicals and its capacity to thrive in harsh environmental condition. The present study aimed at determining the health benefits of Amaranthus cruentus L. in terms of protection against DNA damage induced by the mycotoxin aflatoxin B1 (AFB1) and oxidative stress using comet assay. The antioxidant potential was further investigated using electron paramagnetic resonance spectroscopy (EPR) and an ARE/Nrf2 reporter gene assay in vitro in a human liver model using the HepG2 cell line. Ethanolic extracts from fresh leaves grown under controlled conditions were used and additionally analyzed for their phytochemical content using liquid chromatography-mass spectrometry (LC-MS). The extracts inhibited both AFB1- and oxidative stress-induced DNA damage in a concentration dependent way with a maximum effect of 57\% and 81\%, respectively. Oxidative stress triggered using ferrous sulfate was blocked by up to 38\% (EPR); the potential to induce antioxidant enzymes using ARE/Nrf2-mediated gene expression was also confirmed. Based on these in vitro findings, further studies on the health-protecting effects of A. cruentus are encouraged to fully explore its health promoting potential and provide the scientific basis for encouraging its cultivation and consumption.}, language = {en} } @article{MuellerEbertRaberetal.2018, author = {M{\"u}ller, Sandra Marie and Ebert, Franziska and Raber, Georg and Meyer, S{\"o}ren and Bornhorst, Julia and H{\"u}wel, Stephan and Galla, Hans-Joachim and Francesconi, Kevin A. and Schwerdtle, Tanja}, title = {Effects of arsenolipids on in vitro blood-brain barrier model}, series = {Archives of toxicology : official journal of EUROTOX}, volume = {92}, journal = {Archives of toxicology : official journal of EUROTOX}, number = {2}, publisher = {Springer}, address = {Heidelberg}, issn = {0340-5761}, pages = {823 -- 832}, year = {2018}, abstract = {Arsenic-containing hydrocarbons (AsHCs), a subgroup of arsenolipids (AsLs) occurring in fish and edible algae, possess a substantial neurotoxic potential in fully differentiated human brain cells. Previous in vivo studies indicating that AsHCs cross the blood-brain barrier of the fruit fly Drosophila melanogaster raised the question whether AsLs could also cross the vertebrate blood-brain barrier (BBB). In the present study, we investigated the impact of several representatives of AsLs (AsHC 332, AsHC 360, AsHC 444, and two arsenic-containing fatty acids, AsFA 362 and AsFA 388) as well as of their metabolites (thio/oxo-dimethylpropionic acid, dimethylarsinic acid) on porcine brain capillary endothelial cells (PBCECs, in vitro model for the blood-brain barrier). AsHCs exerted the strongest cytotoxic effects of all investigated arsenicals as they were up to fivefold more potent than the toxic reference species arsenite (iAsIII). In our in vitro BBB-model, we observed a slight transfer of AsHC 332 across the BBB after 6 h at concentrations that do not affect the barrier integrity. Furthermore, incubation with AsHCs for 72 h led to a disruption of the barrier at sub-cytotoxic concentrations. The subsequent immunocytochemical staining of three tight junction proteins revealed a significant impact on the cell membrane. Because AsHCs enhance the permeability of the in vitro blood-brain barrier, a similar behavior in an in vivo system cannot be excluded. Consequently, AsHCs might facilitate the transfer of accompanying foodborne toxicants into the brain.}, language = {en} } @misc{LauxBierHoelzel2018, author = {Laux, Eva-Maria and Bier, Frank Fabian and H{\"o}lzel, Ralph}, title = {Electrode-based AC electrokinetics of proteins}, series = {Bioelectrochemistry : official journal of the Bioelectrochemical Society ; an international journal devoted to electrochemical aspects of biology and biological aspects of electrochemistry}, volume = {120}, journal = {Bioelectrochemistry : official journal of the Bioelectrochemical Society ; an international journal devoted to electrochemical aspects of biology and biological aspects of electrochemistry}, publisher = {Elsevier B.V.}, address = {Amsterdam}, issn = {1567-5394}, doi = {10.1016/j.bioelechem.2017.11.010}, pages = {76 -- 82}, year = {2018}, abstract = {Employing electric phenomena for the spatial manipulation of bioparticles from whole cells down to dissolved molecules has become a useful tool in biotechnology and analytics. AC electrokinetic effects like dielectrophoresis and AC electroosmosis are increasingly used to concentrate, separate and immobilize DNA and proteins. With the advance of photolithographical micro- and nanofabrication methods, novel or improved bioanalytical applications benefit from concentrating analytes, signal enhancement and locally controlled immobilization by AC electrokinetic effects. In this review of AC electrokinetics of proteins, the respective studies are classified according to their different electrode geometries: individual electrode pairs, interdigitated electrodes, quadrupole electrodes, and 3D configurations of electrode arrays. Known advantages and disadvantages of each layout are discussed.}, language = {en} } @article{ZhangYarmanErdossyetal.2018, author = {Zhang, Xiaorong and Yarman, Aysu and Erdossy, Julia and Katz, Sagie and Zebger, Ingo and Jetzschmann, Katharina J. and Altintas, Zeynep and Wollenberger, Ulla and Gyurcsanyi, Robert E. and Scheller, Frieder W.}, title = {Electrosynthesized MIPs for transferrin}, series = {Biosensors and bioelectronics : the principal international journal devoted to research, design development and application of biosensors and bioelectronics}, volume = {105}, journal = {Biosensors and bioelectronics : the principal international journal devoted to research, design development and application of biosensors and bioelectronics}, publisher = {Elsevier}, address = {Oxford}, issn = {0956-5663}, doi = {10.1016/j.bios.2018.01.011}, pages = {29 -- 35}, year = {2018}, abstract = {Molecularly imprinted polymer (MP) nanofilrns for transferrin (Trf) have been synthesized on gold surfaces by electro-polymerizing the functional monomer scopoletin in the presence of the protein target or around pre-adsorbed Trf. As determined by atomic force microscopy (AFM) the film thickness was comparable with the molecular dimension of the target. The target (re)binding properties of the electro-synthesized MIP films was evaluated by cyclic voltammetry (CV) and square wave voltammetry (SWV) through the target-binding induced permeability changes of the MIP nanofilms to the ferricyanide redox marker, as well as by surface plasmon resonance (SPR) and surface enhanced infrared absorption spectroscopy (SEIRAS) of the immobilized protein molecules. For Trf a linear concentration dependence in the lower micromolar range and an imprinting factor of similar to 5 was obtained by SWV and SPR. Furthermore, non-target proteins including the iron-free apo-Trf were discriminated by pronounced size and shape specificity. Whilst it is generally assumed that the rebinding of the target or of cross-reacting proteins exclusively takes place at the polymer here we considered also the interaction of the protein molecules with the underlying gold transducers. We demonstrate by SWV that adsorption of proteins suppresses the signal of the redox marker even at the bare gold surface and by SEIRAS that the treatment of the MIP with proteinase K or NaOH only partially removes the target protein. Therefore, we conclude that when interpreting binding of proteins to directly MIP-covered gold electrodes the interactions between the protein and the gold surface should also be considered.}, language = {en} } @article{Yarman2018, author = {Yarman, Aysu}, title = {Electrosynthesized Molecularly Imprinted Polymer for Laccase Using the Inactivated Enzyme as the Target}, series = {Bulletin of the Korean chemical society}, volume = {39}, journal = {Bulletin of the Korean chemical society}, number = {4}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1229-5949}, doi = {10.1002/bkcs.11413}, pages = {483 -- 488}, year = {2018}, abstract = {The first molecularly imprinted polymer (MIP) for the recognition of the copper-enzyme laccase was successfully prepared by electropolymerizing scopoletin in the presence of alkaline-inactivated enzyme. Laccase-MIP and the control polymer without laccase (nonimprinted polymer, NIP) were characterized by voltammetry using the redox marker ferricyanide. After electropolymerization, the signals for ferricyanide for both the MIP and the NIP were almost completely suppressed and increased after removal of the target from the polymer layer. Rebinding of both inactivated and active laccase decreased the ferricyanide peak currents to almost equal extent. The relative decrease of signal suppression approached saturation above 10 nM. Furthermore, the surface activity of rebound laccase toward the oxidation of catechol was investigated. The surface activity approached saturation above 10 nM, a value close to the value of the measurements with ferricyanide. Interaction of NIP with laccase brought about a six times smaller signal of catechol oxidation.}, language = {en} } @article{KruegerGengeDietzeYanetal.2018, author = {Kr{\"u}ger-Genge, Anne and Dietze, Stefanie and Yan, Wan and Liu, Yue and Fang, Liang and Kratz, Karl and Lendlein, Andreas and Jung, Friedrich}, title = {Endothelial cell migration, adhesion and proliferation on different polymeric substrates}, series = {Clinical hemorheology and microcirculation : blood flow and vessels}, volume = {70}, journal = {Clinical hemorheology and microcirculation : blood flow and vessels}, number = {4}, publisher = {IOS Press}, address = {Amsterdam}, issn = {1386-0291}, doi = {10.3233/CH-189317}, pages = {511 -- 529}, year = {2018}, abstract = {BACKGROUND: The formation of a functionally-confluent endothelial cell (EC) monolayer affords proliferation of EC, which only happens in case of appropriate migratory activity. AIM OF THE STUDY: The migratory pathway of human umbilical endothelial cells (HUVEC) was investigated on different polymeric substrates. MATERIAL AND METHODS: Surface characterization of the polymers was performed by contact angle measurements and atomic force microscopy under wet conditions. 30,000 HUVEC per well were seeded on polytetrafluoroethylene (PTFE) (theta(adv) = 119 degrees +/- 2 degrees), on low-attachment plate LAP (theta(adv) = 28 degrees +/- 2 degrees) and on polystyrene based tissue culture plates (TCP, theta(adv) = 22 degrees +/- 1 degrees). HUVEC tracks (trajectories) were recorded by time lapse microscopy and the euclidean distance (straight line between starting and end point), the total distance and the velocities of HUVEC not leaving the vision field were determined. RESULTS: On PTFE, 42 HUVEC were in the vision field directly after seeding. The mean length of single migration steps (SML) was 6.1 +/- 5.2 mu m, the mean velocity (MV) 0.40 +/- 0.3 mu m.min(-1) and the complete length of the trajectory (LT) was 710 +/- 440 mu m. On TCP 82 HUVEC were in the vision field subsequent to seeding. The LT was 840 +/- 550 mu m, the SML 6.1 +/- 5.2 mu m and the MV 0.44 +/- 0.3 mu m.min(-1). The trajectories on LAP differed significantly in respect to SML (2.4 +/- 3.9 mu m, p <0.05), the MV (0.16 +/- 0.3 mu m.min(-1), p <0.05) and the LT (410 +/- 300 mu m, p <0.05), compared to PTFE and TCP. Solely on TCP a nearly confluent EC monolayer developed after three days. While on TCP diffuse signals of vinculin were found over the whole basal cell surface organizing the binding of the cells by focal adhesions, on PTFE vinculin was merely arranged at the cell rims, and on the hydrophilic material (LAP) no focal adhesions were found. CONCLUSION: The study revealed that the wettability of polymers affected not only the initial adherence but also the migration of EC, which is of importance for the proliferation and ultimately the endothelialization of polymer-based biomaterials.}, language = {en} } @phdthesis{Agrawal2018, author = {Agrawal, Shreya}, title = {Engineering the isoprenoid pathway for molecular farming and effect of tRNA(Glu) manipulation on tetrapyrrole biosynthesis}, school = {Universit{\"a}t Potsdam}, pages = {viii, 131}, year = {2018}, language = {en} } @article{NeumannGoetzWrzoleketal.2018, author = {Neumann, Bettina and G{\"o}tz, Robert and Wrzolek, Pierre and Scheller, Frieder W. and Weidinger, Inez M. and Schwalbe, Matthias and Wollenberger, Ulla}, title = {Enhancement of the Electrocatalytic Activity of Thienyl-Substituted Iron Porphyrin Electropolymers by a Hangman Effect}, series = {ChemCatChem : heterogeneous \& homogeneous \& bio- \& nano-catalysis ; a journal of ChemPubSoc Europe}, volume = {10}, journal = {ChemCatChem : heterogeneous \& homogeneous \& bio- \& nano-catalysis ; a journal of ChemPubSoc Europe}, number = {19}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1867-3880}, doi = {10.1002/cctc.201800934}, pages = {4353 -- 4361}, year = {2018}, abstract = {The thiophene-modified iron porphyrin FeT3ThP and the respective iron Hangman porphyrin FeH3ThP, incorporating a carboxylic acid hanging group in the second coordination sphere of the iron center, were electropolymerized on glassy carbon electrodes using 3,4-ethylenedioxythiophene (EDOT) as co-monomer. Scanning electron microscopy images and Resonance Raman spectra demonstrated incorporation of the porphyrin monomers into a fibrous polymer network. Porphyrin/polyEDOT films catalyzed the reduction of molecular oxygen in a four-electron reaction to water with onset potentials as high as +0.14V vs. Ag/AgCl in an aqueous solution of pH7. Further, FeT3ThP/polyEDOT films showed electrocatalytic activity towards reduction of hydrogen peroxide at highly positive potentials, which was significantly enhanced by introduction of the carboxylic acid hanging group in FeH3ThP. The second coordination sphere residue promotes formation of a highly oxidizing reaction intermediate, presumably via advantageous proton supply, as observed for peroxidases and catalases making FeH3ThP/polyEDOT films efficient mimics of heme enzymes.}, language = {en} } @article{WeyrichLenzFickel2018, author = {Weyrich, Alexandra and Lenz, Dorina and Fickel, J{\"o}rns}, title = {Environmental Change-Dependent Inherited Epigenetic Response}, series = {GENES}, volume = {10}, journal = {GENES}, number = {1}, publisher = {MDPI}, address = {Basel}, issn = {2073-4425}, doi = {10.3390/genes10010004}, pages = {15}, year = {2018}, abstract = {Epigenetic modifications are a mechanism conveying environmental information to subsequent generations via parental germ lines. Research on epigenetic responses to environmental changes in wild mammals has been widely neglected, as well as studies that compare responses to changes in different environmental factors. Here, we focused on the transmission of DNA methylation changes to naive male offspring after paternal exposure to either diet (~40\% less protein) or temperature increase (10 °C increased temperature). Because both experiments focused on the liver as the main metabolic and thermoregulation organ, we were able to decipher if epigenetic changes differed in response to different environmental changes. Reduced representation bisulfite sequencing (RRBS) revealed differentially methylated regions (DMRs) in annotated genomic regions in sons sired before (control) and after the fathers' treatments. We detected both a highly specific epigenetic response dependent on the environmental factor that had changed that was reflected in genes involved in specific metabolic pathways, and a more general response to changes in outer stimuli reflected by epigenetic modifications in a small subset of genes shared between both responses. Our results indicated that fathers prepared their offspring for specific environmental changes by paternally inherited epigenetic modifications, suggesting a strong paternal contribution to adaptive processes.}, language = {en} } @article{GrzesiukSpijkermanLachmannetal.2018, author = {Grzesiuk, Malgorzata and Spijkerman, Elly and Lachmann, Sabrina C. and Wacker, Alexander}, title = {Environmental concentrations of pharmaceuticals directly affect phytoplankton and effects propagate through trophic interactions}, series = {Ecotoxicology and Environmental Safety}, volume = {156}, journal = {Ecotoxicology and Environmental Safety}, publisher = {Elsevier}, address = {San Diego}, issn = {0147-6513}, doi = {10.1016/j.ecoenv.2018.03.019}, pages = {271 -- 278}, year = {2018}, abstract = {Pharmaceuticals are found in freshwater ecosystems where even low concentrations in the range of ng L-1 may affect aquatic organisms. In the current study, we investigated the effects of chronic exposure to three pharmaceuticals on two microalgae, a potential modulation of the effects by additional inorganic phosphorus (Pi) limitation, and a potential propagation of the pharmaceuticals' effect across a trophic interaction. The latter considers that pharmaceuticals are bioaccumulated by algae, potentially metabolized into more (or less) toxic derivates and consequently consumed by zooplankton. We cultured Acutodesmus obliquus and Nannochloropsis limnetica in Pi-replete and Pi-limited medium contaminated with one of three commonly human used pharmaceuticals: fluoxetine, ibuprofen, and propranolol. Secondly, we tested to what extent first level consumers (Daphnia magna) were affected when fed with pharmaceutical-grown algae. Chronic exposure, covering 30 generations, led to (i) decreased cell numbers of A. obliquus in the presence of fluoxetine (under Pi-replete conditions) (ii) increased carotenoid to chlorophyll ratios in N. limnetica (under Pi-limited conditions), and (iii) increased photosynthetic yields in A. obliquus (in both Pi-conditions). In addition, ibuprofen affected both algae and their consumer: Feeding ibuprofen-contaminated algae to Pi-stressed D. magna improved their survival. We demonstrate, that even very low concentrations of pharmaceuticals present in freshwater ecosystems can significantly affect aquatic organisms when chronically exposed. Our study indicates that pharmaceutical effects can cross trophic levels and travel up the food chain.}, language = {en} } @article{FabianZlatanovicMutzetal.2018, author = {Fabian, Jenny and Zlatanovic, Sanja and Mutz, Michael and Grossart, Hans-Peter and van Geldern, Robert and Ulrich, Andreas and Gleixner, Gerd and Premke, Katrin}, title = {Environmental control on microbial turnover of leaf carbon in streams}, series = {Frontiers in microbiology}, volume = {9}, journal = {Frontiers in microbiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-302X}, doi = {10.3389/fmicb.2018.01044}, pages = {16}, year = {2018}, abstract = {In aquatic ecosystems, light availability can significantly influence microbial turnover of terrestrial organic matter through associated metabolic interactions between phototrophic and heterotrophic communities. However, particularly in streams, microbial functions vary significantly with the structure of the streambed, that is the distribution and spatial arrangement of sediment grains in the streambed. It is therefore essential to elucidate how environmental factors synergistically define the microbial turnover of terrestrial organic matter in order to better understand the ecological role of photoheterotrophic interactions in stream ecosystem processes. In outdoor experimental streams, we examined how the structure of streambeds modifies the influence of light availability on microbial turnover of leaf carbon (C). Furthermore, we investigated whether the studied relationships of microbial leaf C turnover to environmental conditions are affected by flow intermittency commonly occurring in streams. We applied leaves enriched with a C-13-stable isotope tracer and combined quantitative and isotope analyses. We thereby elucidated whether treatment induced changes in C turnover were associated with altered use of leaf C within the microbial food web. Moreover, isotope analyses were combined with measurements of microbial community composition to determine whether changes in community function were associated with a change in community composition. In this study, we present evidence, that environmental factors interactively determine how phototrophs and heterotrophs contribute to leaf C turnover. Light availability promoted the utilization of leaf C within the microbial food web, which was likely associated with a promoted availability of highly bioavailable metabolites of phototrophic origin. However, our results additionally confirm that the structure of the streambed modifies light-related changes in microbial C turnover. From our observations, we conclude that the streambed structure influences the strength of photo-heterotrophic interactions by defining the spatial availability of algal metabolites in the streambed and the composition of microbial communities. Collectively, our multifactorial approach provides valuable insights into environmental controls on the functioning of stream ecosystems.}, language = {en} } @misc{BalintPfenningerGrossartetal.2018, author = {B{\´a}lint, Mikl{\´o}s and Pfenninger, Markus and Grossart, Hans-Peter and Taberlet, Pierre and Vellend, Mark and Leibold, Mathew A. and Englund, Goran and Bowler, Diana}, title = {Environmental DNA time series in ecology}, series = {Trends in ecology \& evolution}, volume = {33}, journal = {Trends in ecology \& evolution}, number = {12}, publisher = {Elsevier}, address = {London}, issn = {0169-5347}, doi = {10.1016/j.tree.2018.09.003}, pages = {945 -- 957}, year = {2018}, abstract = {Ecological communities change in time and space, but long-term dynamics at the century-to-millennia scale are poorly documented due to lack of relevant data sets. Nevertheless, understanding long-term dynamics is important for explaining present-day biodiversity patterns and placing conservation goals in a historical context. Here, we use recent examples and new perspectives to highlight how environmental DNA (eDNA) is starting to provide a powerful new source of temporal data for research questions that have so far been overlooked, by helping to resolve the ecological dynamics of populations, communities, and ecosystems over hundreds to thousands of years. We give examples of hypotheses that may be addressed by temporal eDNA biodiversity data, discuss possible research directions, and outline related challenges.}, language = {en} } @article{BachmannHeimbachHassenruecketal.2018, author = {Bachmann, Jennifer and Heimbach, Tabea and Hassenr{\"u}ck, Christiane and Kopprio, German A. and Iversen, Morten Hvitfeldt and Grossart, Hans-Peter and G{\"a}rdes, Astrid}, title = {Environmental Drivers of Free-Living vs. Particle-Attached Bacterial Community Composition in the Mauritania Upwelling System}, series = {Frontiers in microbiology}, volume = {9}, journal = {Frontiers in microbiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-302X}, doi = {10.3389/fmicb.2018.02836}, pages = {13}, year = {2018}, abstract = {Saharan dust input and seasonal upwelling along North-West Africa provide a model system for studying microbial processes related to the export and recycling of nutrients. This study offers the first molecular characterization of prokaryotic particle-attached (PA; > 3.0 mu m) and free-living (FL; 0.2-3.0 mu m) players in this important ecosystem during August 2016. Environmental drivers for alpha-diversity, bacterial community composition, and differences between FL and PA fractions were identified. The ultra-oligotrophic waters off Senegal were dominated by Cyanobacteria while higher relative abundances of Alphaproteobacteria, Bacteroidetes, Verrucomicrobia, and Planctomycetes (known particle-degraders) occurred in the upwelling area. Temperature, proxy for different water masses, was the best predictor for changes in FL communities. PA community variation was best explained by temperature and ammonium. Bray Curtis dissimilarities between FL and PA were generally very high and correlated with temperature and salinity in surface waters. Greatest similarities between FL and PA occurred at the deep chlorophyll maximum, where bacterial substrate availability was likely highest. This indicates that environmental drivers do not only influence changes among FL and PA communities but also differences between them. This could provide an explanation for contradicting results obtained by different studies regarding the dissimilarity/similarity between FL and PA communities and their biogeochemical functions.}, language = {en} } @misc{GalbeteSchwingshacklSchwedhelmetal.2018, author = {Galbete, Cecilia and Schwingshackl, Lukas and Schwedhelm, Carolina and Boeing, Heiner and Schulze, Matthias Bernd}, title = {Evaluating Mediterranean diet and risk of chronic disease in cohort studies}, series = {European journal of epidemiology}, volume = {33}, journal = {European journal of epidemiology}, number = {10}, publisher = {Springer}, address = {Dordrecht}, issn = {0393-2990}, doi = {10.1007/s10654-018-0427-3}, pages = {909 -- 931}, year = {2018}, abstract = {Several meta-analyses have been published summarizing the associations of the Mediterranean diet (MedDiet) with chronic diseases. We evaluated the quality and credibility of evidence from these meta-analyses as well as characterized the different indices used to define MedDiet and re-calculated the associations with the different indices identified. We conducted an umbrella review of meta-analyses on cohort studies evaluating the association of the MedDiet with type 2 diabetes, cardiovascular disease, cancer and cognitive-related diseases. We used the AMSTAR (A MeaSurement Tool to Assess systematic Reviews) checklist to evaluate the methodological quality of the meta-analyses, and the NutriGrade scoring system to evaluate the credibility of evidence. We also identified different indices used to define MedDiet; tests for subgroup differences were performed to compare the associations with the different indices when at least 2 studies were available for different definitions. Fourteen publications were identified and within them 27 meta-analyses which were based on 70 primary studies. Almost all meta-analyses reported inverse associations between MedDiet and risk of chronic disease, but the credibility of evidence was rated low to moderate. Moreover, substantial heterogeneity was observed on the use of the indices assessing adherence to the MedDiet, but two indices were the most used ones [Trichopoulou MedDiet (tMedDiet) and alternative MedDiet (aMedDiet)]. Overall, we observed little difference in risk associations comparing different MedDiet indices in the subgroup meta-analyses. Future prospective cohort studies are advised to use more homogenous definitions of the MedDiet to improve the comparability across meta-analyses.}, language = {en} } @misc{WozniakSicard2018, author = {Wozniak, Natalia Joanna and Sicard, Adrien}, title = {Evolvability of flower geometry}, series = {Seminars in cell \& developmental biology}, volume = {79}, journal = {Seminars in cell \& developmental biology}, publisher = {Elsevier}, address = {London}, issn = {1084-9521}, doi = {10.1016/j.semcdb.2017.09.028}, pages = {3 -- 15}, year = {2018}, abstract = {Flowers represent a key innovation during plant evolution. Driven by reproductive optimization, evolution of flower morphology has been central in boosting species diversification. In most cases, this has happened through specialized interactions with animal pollinators and subsequent reduction of gene flow between specialized morphs. While radiation has led to an enormous variability in flower forms and sizes, recurrent evolutionary patterns can be observed. Here, we discuss the targets of selection involved in major trends of pollinator-driven flower evolution. We review recent findings on their adaptive values, developmental grounds and genetic bases, in an attempt to better understand the repeated nature of pollinator-driven flower evolution. This analysis highlights how structural innovation can provide flexibility in phenotypic evolution, adaptation and speciation. (C) 2017 Elsevier Ltd. All rights reserved.}, language = {en} } @article{WestburyHartmannBarlowetal.2018, author = {Westbury, Michael V. and Hartmann, Stefanie and Barlow, Axel and Wiesel, Ingrid and Leo, Viyanna and Welch, Rebecca and Parker, Daniel M. and Sicks, Florian and Ludwig, Arne and Dalen, Love and Hofreiter, Michael}, title = {Extended and continuous decline in effective population size results in low genomic diversity in the world's rarest hyena species, the brown hyena}, series = {Molecular biology and evolution}, volume = {35}, journal = {Molecular biology and evolution}, number = {5}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0737-4038}, doi = {10.1093/molbev/msy037}, pages = {1225 -- 1237}, year = {2018}, abstract = {Hyenas (family Hyaenidae), as the sister group to cats (family Felidae), represent a deeply diverging branch within the cat-like carnivores (Feliformia). With an estimated population size of <10,000 individuals worldwide, the brown hyena (Parahyaena brunnea) represents the rarest of the four extant hyena species and has been listed as Near Threatened by the IUCN. Here, we report a high-coverage genome from a captive bred brown hyena and both mitochondrial and low-coverage nuclear genomes of 14 wild-caught brown hyena individuals from across southern Africa. We find that brown hyena harbor extremely low genetic diversity on both the mitochondrial and nuclear level, most likely resulting from a continuous and ongoing decline in effective population size that started similar to 1 Ma and dramatically accelerated towards the end of the Pleistocene. Despite the strikingly low genetic diversity, we find no evidence of inbreeding within the captive bred individual and reveal phylogeographic structure, suggesting the existence of several potential subpopulations within the species.}, language = {en} } @article{MummGodinaKozieletal.2018, author = {Mumm, Rebekka and Godina, Elena and Koziel, Slawomir and Musalek, Martin and Sedlak, Petr and Wittwer-Backofen, Ursula and Hess, Volker and Dasgupta, Parasmani and Henneberg, Maciej and Scheffler, Christiane}, title = {External skeletal robusticity of children and adolescents}, series = {Journal of biological and clinical anthropology}, volume = {74}, journal = {Journal of biological and clinical anthropology}, number = {5}, publisher = {Schweizerbart}, address = {Stuttgart}, issn = {0003-5548}, doi = {10.1127/anthranz/2018/0826}, pages = {383 -- 391}, year = {2018}, abstract = {Background: In our modern world, the way of life in nutritional and activity behaviour has changed. As a consequence, parallel trends of an epidemic of overweight and a decline in external skeletal robusticity are observed in children and adolescents. Aim: We aim to develop reference centiles for external skeletal robusticity of European girls and boys aged 0 to 18 years using the Frame Index as an indicator and identify population specific age-related patterns. Methods: We analysed cross-sectional \& longitudinal data on body height and elbow breadth of boys and girls from Europe (0-18 years, n = 41.679), India (7-18 years, n = 3.297) and South Africa (3-18 years, n = 4.346). As an indicator of external skeletal robusticity Frame Index after Frisancho (1990) was used. We developed centiles for boys and girls using the LMS-method and its extension. Results: Boys have greater external skeletal robusticity than girls. Whereas in girls Frame Index decreases continuously during growth, an increase of Frame Index from 12 to 16 years in European boys can be observed. Indian and South African boys are almost similar in Frame Index to European boys. In girls, the pattern is slightly different. Whereas South African girls are similar to European girls, Indian girls show a lesser external skeletal robusticity. Conclusion: Accurate references for external skeletal robusticity are needed to evaluate if skeletal development is adequate per age. They should be used to monitor effects of changes in way of life and physical activity levels in children and adolescents to avoid negative health outcomes like osteoporosis and arthrosis.}, language = {en} } @article{BayerlKrausNowaketal.2018, author = {Bayerl, Helmut and Kraus, Robert H. S. and Nowak, Carsten and Foerster, Daniel W. and Fickel, J{\"o}rns and K{\"u}hn, Ralph}, title = {Fast and cost-effective single nucleotide polymorphism (SNP) detection in the absence of a reference genome using semideep next-generation Random Amplicon Sequencing (RAMseq)}, series = {Molecular ecology resources}, volume = {18}, journal = {Molecular ecology resources}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {1755-098X}, doi = {10.1111/1755-0998.12717}, pages = {107 -- 117}, year = {2018}, abstract = {Biodiversity has suffered a dramatic global decline during the past decades, and monitoring tools are urgently needed providing data for the development and evaluation of conservation efforts both on a species and on a genetic level. However, in wild species, the assessment of genetic diversity is often hampered by the lack of suitable genetic markers. In this article, we present Random Amplicon Sequencing (RAMseq), a novel approach for fast and cost-effective detection of single nucleotide polymorphisms (SNPs) in nonmodel species by semideep sequencing of random amplicons. By applying RAMseq to the Eurasian otter (Lutra lutra), we identified 238 putative SNPs after quality filtering of all candidate loci and were able to validate 32 of 77 loci tested. In a second step, we evaluated the genotyping performance of these SNP loci in noninvasive samples, one of the most challenging genotyping applications, by comparing it with genotyping results of the same faecal samples at microsatellite markers. We compared (i) polymerase chain reaction (PCR) success rate, (ii) genotyping errors and (iii) Mendelian inheritance (population parameters). SNPs produced a significantly higher PCR success rate (75.5\% vs. 65.1\%) and lower mean allelic error rate (8.8\% vs. 13.3\%) than microsatellites, but showed a higher allelic dropout rate (29.7\% vs. 19.8\%). Genotyping results showed no deviations from Mendelian inheritance in any of the SNP loci. Hence, RAMseq appears to be a valuable tool for the detection of genetic markers in nonmodel species, which is a common challenge in conservation genetic studies.}, language = {en} } @article{LuReichetzederPrehnetal.2018, author = {Lu, Yong-Ping and Reichetzeder, Christoph and Prehn, Cornelia and von Websky, Karoline and Slowinski, Torsten and Chen, You-Peng and Yin, Liang-Hong and Kleuser, Burkhard and Yang, Xue-Song and Adamski, Jerzy and Hocher, Berthold}, title = {Fetal serum metabolites are independently associated with Gestational diabetes mellitus}, series = {Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology}, volume = {45}, journal = {Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology}, number = {2}, publisher = {Karger}, address = {Basel}, issn = {1015-8987}, doi = {10.1159/000487119}, pages = {625 -- 638}, year = {2018}, abstract = {Background/Aims: Gestational diabetes (GDM) might be associated with alterations in the metabolomic profile of affected mothers and their offspring. Until now, there is a paucity of studies that investigated both, the maternal and the fetal serum metabolome in the setting of GDM. Mounting evidence suggests that the fetus is not just passively affected by gestational disease but might play an active role in it. Metabolomic studies performed in maternal blood and fetal cord blood could help to better discern distinct fetal from maternal disease interactions. Methods: At the time of birth, serum samples from mothers and newborns (cord blood samples) were collected and screened for 163 metabolites utilizing tandem mass spectrometry. The cohort consisted of 412 mother/child pairs, including 31 cases of maternal GDM. Results: An initial non-adjusted analysis showed that eight metabolites in the maternal blood and 54 metabolites in the cord blood were associated with GDM. After Benjamini-Hochberg (BH) procedure and adjustment for confounding factors for GDM, fetal phosphatidylcholine acyl-alkyl C 32:1 and proline still showed an independent association with GDM. Conclusions: This study found metabolites in cord blood which were associated with GDM, even after adjustment for established risk factors of GDM. To the best of our knowledge, this is the first study demonstrating an independent association between fetal serum metabolites and maternal GDM. Our findings might suggest a potential effect of the fetal metabolome on maternal GDM. (c) 2018 The Author(s) Published by S. Karger AG, Basel}, language = {en} } @article{ReckendorfLudesWehrmeisterWohlseinetal.2018, author = {Reckendorf, Anja and Ludes-Wehrmeister, Eva and Wohlsein, Peter and Tiedemann, Ralph and Siebert, U. and Lehnert, Kristina}, title = {First record of Halocercus sp (Pseudaliidae) lungworm infections in two stranded neonatal orcas (Orcinus orca)}, series = {Parasitology}, volume = {145}, journal = {Parasitology}, number = {12}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {0031-1820}, doi = {10.1017/S0031182018000586}, pages = {1553 -- 1557}, year = {2018}, abstract = {Orca (Orcinus orca) strandings are rare and post-mortem examinations on fresh individuals are scarce. Thus, little is known about their parasitological fauna, prevalence of infections, associated pathology and the impact on their health. During post-mortem examinations of two male neonatal orcas stranded in Germany and Norway, lungworm infections were found within the bronchi of both individuals. The nematodes were identified as Halocercus sp. (Pseudaliidae), which have been described in the respiratory tract of multiple odontocete species, but not yet in orcas. The life cycle and transmission pathways of some pseudaliid nematodes are incompletely understood. Lungworm infections in neonatal cetaceans are an unusual finding and thus seem to be an indicator for direct mother-to-calf transmission (transplacental or transmammary) of Halocercus sp. nematodes in orcas.}, language = {en} } @article{NavarroRetamalBremerIngolfssonetal.2018, author = {Navarro-Retamal, Carlos and Bremer, Anne and Ingolfsson, Helgi I. and Alzate-Morales, Jans and Caballero, Julio and Thalhammer, Anja and Gonzalez, Wendy and Hincha, Dirk K.}, title = {Folding and Lipid Composition Determine Membrane Interaction of the Disordered Protein COR15A}, series = {Biophysical journal}, volume = {115}, journal = {Biophysical journal}, number = {6}, publisher = {Cell Press}, address = {Cambridge}, issn = {0006-3495}, doi = {10.1016/j.bpj.2018.08.014}, pages = {968 -- 980}, year = {2018}, abstract = {Plants from temperate climates, such as the model plant Arabidopsis thaliana, are challenged with seasonal low temperatures that lead to increased freezing tolerance in fall in a process termed cold acclimation. Among other adaptations, this involves the accumulation of cold-regulated (COR) proteins, such as the intrinsically disordered chloroplast-localized protein COR15A. Together with its close homolog COR15B, it stabilizes chloroplast membranes during freezing. COR15A folds into amphipathic alpha-helices in the presence of high concentrations of low-molecular-mass crowders or upon dehydration. Under these conditions, the (partially) folded protein binds peripherally to membranes. In our study, we have used coarse-grained molecular dynamics simulations to elucidate the details of COR15A-membrane binding and its effects on membrane structure and dynamics. Simulation results indicate that at least partial folding of COR15A and the presence of highly unsaturated galactolipids in the membranes are necessary for efficient membrane binding. The bound protein is stabilized on the membrane by interactions of charged and polar amino acids with galactolipid headgroups and by interactions of hydrophobic amino acids with the upper part of the fatty acyl chains. Experimentally, the presence of liposomes made from a mixture of lipids mimicking chloroplast membranes induces additional folding in COR15A under conditions of partial dehydration, in agreement with the simulation results.}, language = {en} } @article{NitschKaupenjohannWulf2018, author = {Nitsch, Paula and Kaupenjohann, Martin and Wulf, Monika}, title = {Forest continuity, soil depth and tree species are important parameters for SOC stocks in an old forest (Templiner Buchheide, northeast Germany)}, series = {Geoderma : an international journal of soil science}, volume = {310}, journal = {Geoderma : an international journal of soil science}, publisher = {Elsevier Science}, address = {Amsterdam}, issn = {0016-7061}, doi = {10.1016/j.geoderma.2017.08.041}, pages = {65 -- 76}, year = {2018}, abstract = {Forest mineral soils have the potential to accumulate large amounts of carbon (C). Numerous factors, which have often been insufficiently studied, affect soil organic C (SOC) stocks. Detailed knowledge of variation in SOC storage is important to assess the C accumulation potential of forest soils. To examine the impacts of forest continuity, soil depth and tree species on SOC stocks, 15 ancient ( > 230 years of forest continuity) and 15 old ( > 100 but < 200 years of forest continuity) forest soils, topsoil and subsoil in the Templiner Buchheide (Brandenburg, NE Germany) were compared. The old forest sites were afforested on former grassland or wasteland. On all sites grew one of three dominant tree species: European beech (Fagus sylvatica), Scots pine (Pinus sylvestris) or oak (Quercus spec.). Pine forest sites had been underplanted with beech and were mixed-species stands. Soil samples were taken down to a mean depth of 55 cm. Total contents of SOC, nitrogen (N), phosphorus (P), sulphur (S), calcium (Ca), potassium (K) and magnesium (Mg); soil pH; and bulk densities were determined. The soils of ancient forest sites stored significantly more total SOC, N, P, S, K and Mg than did the old ones. Mean total SOC stocks in ancient forests of all three tree species were 12-17\% larger compared with those in old forests. Significant differences in SOC stocks between the two forest continuity groups appeared only in subsoil and not in topsoil. Pine forest stored larger SOC stocks than did beech and oak forests. Significant differences were found between ancient pine and oak forests and between ancient beech and oak forests. Soils in ancient beech and pine forests at depths of between 29 and 55 cm contained, on average, even 50\% larger SOC stocks than did soils at the same depths in ancient oak forests and in all old forests. Forest continuity significantly affected SOC stocks. These results support previous studies that old forests are still able to enrich SOC. Although soil samples were carried out to a mean depth of only 55 cm, the results indicate that differences in SOC stocks between ancient and old forest could also be found in deeper soil layers. It was suggested that beech and mixed-species stands of beech and pine and total soil P stocks had a positive effect on SOC stocks in subsoil. To understand SOC accumulation in forests, especially in subsoil, with a forest continuity of > 100 years, the role of different tree species and of total P cycling in forests, deeper sampling depths and repeated sampling would be required.}, language = {en} } @phdthesis{Hilgers2018, author = {Hilgers, Leon}, title = {From innovation to diversification}, school = {Universit{\"a}t Potsdam}, pages = {130}, year = {2018}, language = {en} } @article{KaufmannDuffusTeutloffetal.2018, author = {Kaufmann, Paul and Duffus, Benjamin R. and Teutloff, Christian and Leimk{\"u}hler, Silke}, title = {Functional Studies on Oligotropha carboxidovorans Molybdenum-Copper CO Dehydrogenase Produced in Escherichia coli}, series = {Biochemistry}, volume = {57}, journal = {Biochemistry}, number = {19}, publisher = {American Chemical Society}, address = {Washington}, issn = {0006-2960}, doi = {10.1021/acs.biochem.8b00128}, pages = {2889 -- 2901}, year = {2018}, abstract = {The Mo/Cu-dependent CO dehydrogenase (CODH) from Oligotropha carboxidovorans is an enzyme that is able to catalyze both the oxidation of CO to CO2 and the oxidation of H-2 to protons and electrons. Despite the close to atomic resolution structure (1.1 angstrom), significant uncertainties have remained with regard to the reaction mechanism of substrate oxidation at the unique Mo/Cu center, as well as the nature of intermediates formed during the catalytic cycle. So far, the investigation of the role of amino acids at the active site was hampered by the lack of a suitable expression system that allowed for detailed site-directed mutagenesis studies at the active site. Here, we report on the establishment of a functional heterologous expression system of O. carboxidovorans CODH in Escherichia coli. We characterize the purified enzyme in detail by a combination of kinetic and spectroscopic studies and show that it was purified in a form with characteristics comparable to those of the native enzyme purified from O. carboxidovorans. With this expression system in hand, we were for the first time able to generate active-site variants of this enzyme. Our work presents the basis for more detailed studies of the reaction mechanism for CO and H-2 oxidation of Mo/Cu-dependent CODHs in the future.}, language = {en} } @article{VannesteValdesVerheyenetal.2018, author = {Vanneste, Thomas and Valdes, Alicia and Verheyen, Kris and Perring, Michael P. and Bernhardt-Roemermann, Markus and Andrieu, Emilie and Brunet, Jorg and Cousins, Sara A. O. and Deconchat, Marc and De Smedt, Pallieter and Diekmann, Martin and Ehrmann, Steffen and Heinken, Thilo and Hermy, Martin and Kolb, Annette and Lenoir, Jonathan and Liira, Jaan and Naaf, Tobias and Paal, Taavi and Wulf, Monika and Decocq, Guillaume and De Frenne, Pieter}, title = {Functional trait variation of forest understorey plant communities across Europe}, series = {Basic and applied ecology : Journal of the Gesellschaft f{\"u}r {\"O}kologie}, volume = {34}, journal = {Basic and applied ecology : Journal of the Gesellschaft f{\"u}r {\"O}kologie}, publisher = {Elsevier GmbH}, address = {M{\"u}nchen}, issn = {1439-1791}, doi = {10.1016/j.baae.2018.09.004}, pages = {1 -- 14}, year = {2018}, abstract = {Global environmental changes are expected to alter the functional characteristics of understorey herb-layer communities, potentially affecting forest ecosystem functioning. However, little is known about what drives the variability of functional traits in forest understories. Here, we assessed the role of different environmental drivers in shaping the functional trait distribution of understorey herbs in fragmented forests across three spatial scales. We focused on 708 small, deciduous forest patches located in 16 agricultural landscape windows, spanning a 2500-km macroclimatic gradient across the temperate forest biome in Europe. We estimated the relative effect of patch-scale, landscape-scale and macroclimatic variables on the community mean and variation of plant height, specific leaf area and seed mass. Macroclimatic variables (monthly temperature and precipitation extremes) explained the largest proportion of variation in community trait means (on average 77\% of the explained variation). In contrast, patch-scale factors dominated in explaining community trait variation (on average 68\% of the explained variation). Notably, patch age, size and internal heterogeneity had a positive effect on the community-level variability. Landscape-scale variables explained only a minor part of the variation in both trait distribution properties. The variation explained by shared combinations of the variable groups was generally negligible. These findings highlight the importance of considering multiple spatial scales in predictions of environmental-change effects on the functionality of forest understories. We propose that forest management sustainability could benefit from conserving larger, historically continuous and internally heterogeneous forest patches to maximise ecosystem service diversity in rural landscapes. (C) 2018 Gesellschaft fur Okologie. Published by Elsevier GmbH. All rights reserved.}, language = {en} } @phdthesis{Albers2018, author = {Albers, Philip}, title = {Funktionelle Charakterisierung des bakteriellen Typ-III Effektorproteins HopZ1a in Nicotiana benthamiana}, school = {Universit{\"a}t Potsdam}, pages = {viii, 134}, year = {2018}, abstract = {Um das Immunsystem der Pflanze zu manipulieren translozieren gram-negative pathogene Bakterien Typ-III Effektorproteine (T3E) {\"u}ber ein Typ-III Sekretionssystem (T3SS) in die pflanzliche Wirtszelle. Dort lokalisieren T3Es in verschiedenen subzellul{\"a}ren Kompartimenten, wo sie Zielproteine modifizieren und so die Infektion beg{\"u}nstigen. HopZ1a, ein T3E des Pflanzenpathogens Pseudomonas syringae pv. syringae, ist eine Acetyltransferase und lokalisiert {\"u}ber ein Myristolierungsmotiv an der Plasmamembran der Wirtszelle. Obwohl gezeigt wurde, dass HopZ1a die fr{\"u}he Signalweiterleitung an der Plasmamembran st{\"o}rt, wurde bisher kein mit der Plasmamembran assoziiertes Zielprotein f{\"u}r diesen T3E identifiziert. Um bisher unbekannte HopZ1a-Zieleproteine zu identifizieren wurde im Vorfeld dieser Arbeit eine Hefe-Zwei-Hybrid-Durchmusterung mit einer cDNA-Bibliothek aus Tabak durchgef{\"u}hrt, wobei ein nicht n{\"a}her charakterisiertes Remorin als Interaktor gefunden wurde. Bei dem Remorin handelt es sich um einen Vertreter der Gruppe 4 der Remorin-Familie, weshalb es in NbREM4 umbenannt wurde. Durch den Einsatz verschiedener Interaktionsstudien konnte demonstriert werden, dass HopZ1a mit NbREM4 in Hefe, in vitro und in planta wechselwirkt. Es wurde ferner deutlich, dass HopZ1a auf spezifische Weise mit dem konservierten C-Terminus von NbREM4 interagiert, das Remorin jedoch in vitro nicht acetyliert. Analysen mittels BiFC haben zudem ergeben, dass NbREM4 in Homodimeren an der Plasmamembran lokalisiert, wo auch die Interaktion mit HopZ1a stattfindet. Eine funktionelle Charakterisierung von NbREM4 ergab, dass das Remorin eine spezifische Rolle im Immunsystem der Pflanze einnimmt. Die transiente Expression in N. benthamiana induziert die Expression von Abwehrgenen sowie einen ver{\"a}nderten Blattph{\"a}notyp. In A. thaliana wird HopZ1a {\"u}ber das Decoy ZED1 und das R-Protein ZAR1 erkannt, was zur Ausl{\"o}sung einer starken Hypersensitiven Antwort (HR von hypersensitive response) f{\"u}hrt. Es konnte im Rahmen dieser Arbeit gezeigt werden, dass ZAR1 in N. benthamiana konserviert ist, NbREM4 jedoch nicht in der ETI als Decoy fungiert. Mit Hilfe einer Hefe-Zwei-Hybrid-Durchmusterung mit NbZAR1 als K{\"o}der konnten zwei Proteine, die Catalase CAT1 und der Protonenpumpeninteraktor PPI1, als Interaktoren von NbZAR1 identifiziert werden, welche m{\"o}glicherweise in der Regulation der HR eine Rolle spielen. Aus Voruntersuchungen war bekannt, dass NbREM4 mit weiteren, nicht n{\"a}her charakterisierten Proteinen aus Tabak interagieren k{\"o}nnte. Eine phylogenetische Einordnung hat gezeigt, dass es sich um die bekannte Immun-Kinase PBS1 sowie zwei E3-Ubiquitin-Ligasen, NbSINA1 und NbSINAL3, handelt. PBS1 interagiert mit NbREM4 an der Plasmamembran und phosphoryliert das Remorin innerhalb des intrinsisch ungeordneten N-Terminus. Mittels Massenspektrometrie konnten die Serine an Position 64 und 65 innerhalb der Aminos{\"a}uresequenz von NbREM4 als PBS1-abh{\"a}ngige Phosphorylierungsstellen identifiziert wurden. NbSINA1 und NbSINAL3 besitzen in vitro Ubiquitinierungsaktivit{\"a}t, bilden Homo- und Heterodimere und interagieren ebenfalls mit dem N-terminalen Teil von NbREM4, wobei sie das Remorin in vitro nicht ubiquitinieren. Aus den in dieser Arbeit gewonnenen Ergebnissen l{\"a}sst sich ableiten, dass der bakterielle T3E HopZ1a gezielt mit dem Tabak-Remorin NbREM4 an der Plasmamembran interagiert und {\"u}ber einen noch unbekannten Mechanismus mit dem Immunsystem der Pflanze interferiert, wobei NbREM4 m{\"o}glicherweise eine Rolle als Adapter- oder Ankerprotein zukommt, {\"u}ber welches HopZ1a mit weiteren Immunkomponenten interagiert. NbREM4 ist Teil eines gr{\"o}ßeren Immunnetzwerkes, zu welchem die bekannte Immun-Kinase PBS1 und zwei E3-Ubiquitin-Ligasen geh{\"o}ren. Mit NbREM4 konnte damit erstmalig ein membranst{\"a}ndiges Protein mit einer Funktion im Immunsystem der Pflanze als Zielprotein von HopZ1a identifiziert werden.}, language = {de} } @article{SchloerHolzloehnerListeketal.2018, author = {Schl{\"o}r, Anja and Holzl{\"o}hner, Pamela and Listek, Martin and Grieß, Cindy and Butze, Monique and Micheel, Burkhard and Hentschel, Christian and Sowa, Mandy and Roggenbuck, Dirk and Schierack, Peter and F{\"u}ner, Jonas and Schliebs, Erik and Goihl, Alexander and Reinhold, Dirk and Hanack, Katja}, title = {Generation and validation of murine monoclonal and camelid recombinant single domain antibodies specific for human pancreatic glycoprotein 2}, series = {New biotechnology}, volume = {45}, journal = {New biotechnology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1871-6784}, doi = {10.1016/j.nbt.2018.03.006}, pages = {60 -- 68}, year = {2018}, abstract = {Pancreatic secretory zymogen-granule membrane glycoprotein 2 (GP2) has been identified as a major autoantigenic target in Crohn's disease patients. It was reported recently that a long (GP2a) and a short (GP2b) isoform of GP2 exist and that in the outcome of inflammatory bowel diseases (IBD) GP2-specific autoantibodies probably appear as new serological markers for diagnosis and therapeutic monitoring. To investigate this further and in order to establish diagnostic tools for the discrimination of both GP2 isoforms, a set of different murine monoclonal and camelid recombinant single domain antibodies (camelid VHH) was generated and validated in various enzyme-linked immunosorbent assay (ELISA) formats, immunofluorescence on transgenic cell lines and immunohistochemistry on monkey pancreas tissue sections. Out of six binders identified, one was validated as highly specific for GP2a. This murine monoclonal antibody (mAb) was used as capture antibody in construction of a sandwich ELISA for the detection of GP2a. Camelid VHHs or a second murine mAb served as detection antibodies in this system. All antibodies were also able to stain GP2a or GP2b on transgenic cell lines as well as on pancreatic tissue in immunohistochemistry. The KD values measured for the camelid VHHs were between 7 nM and 23pM. This set of specific binders will enable the development of suitable diagnostic tools for GP2-related studies in IBD.}, language = {en} } @article{HolzloehnerButzeMaieretal.2018, author = {Holzl{\"o}hner, Pamela and Butze, Monique and Maier, Natalia and Hebel, Nicole and Schliebs, Erik and Micheel, Burkhard and Fuener, Jonas and Heidicke, Gabriele and Hanack, Katja}, title = {Generation of murine monoclonal antibodies with specificity against conventional camelid IgG1 and heavy-chain only IgG2/3}, series = {Veterinary Immunology and Immunopathology}, volume = {197}, journal = {Veterinary Immunology and Immunopathology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0165-2427}, doi = {10.1016/j.vetimm.2018.01.006}, pages = {1 -- 6}, year = {2018}, abstract = {Camelids possess antibodies with a conventional four-chain structure consisting of two heavy and two light chains (of subclass IgG1) but further they also generate heavy-chain only antibodies (of subclass IgG2 and 3) which are fully functional in antigen binding. In this study subclass-specific murine monoclonal antibodies specific to conventional camelid IgG1 and heavy-chain only IgG2/3 were generated and validated for the use as potent secondary detection reagents. The monoclonal antibodies are able to differentiate between all camelid IgGs, conventional four-chain camelid antibodies (of subclass IgG1) and exclusively heavy chain-only antibodies (of subclasses IgG2 and IgG3). Further these antibodies were used to detect specific immune responses after vaccination of Camelids against bovine corona- and rotavirus strains and different E.coli. and Clostridia - antigens and to identify Erysipelothrix rhusiopathiae infected animals within a herd. The described antibodies are suitable as new secondary agents for the detection of different camelid subclasses and the validation of camelid immune reactions.}, language = {en} } @misc{LaitinenNikoloski2018, author = {Laitinen, Roosa A. E. and Nikoloski, Zoran}, title = {Genetic basis of plasticity in plants}, series = {Journal of experimental botany}, volume = {70}, journal = {Journal of experimental botany}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0022-0957}, doi = {10.1093/jxb/ery404}, pages = {739 -- 745}, year = {2018}, abstract = {The ability of an organism to change its phenotype in response to different environments, termed plasticity, is a particularly important characteristic to enable sessile plants to adapt to rapid changes in their surroundings. Plasticity is a quantitative trait that can provide a fitness advantage and mitigate negative effects due to environmental perturbations. Yet, its genetic basis is not fully understood. Alongside technological limitations, the main challenge in studying plasticity has been the selection of suitable approaches for quantification of phenotypic plasticity. Here, we propose a categorization of the existing quantitative measures of phenotypic plasticity into nominal and relative approaches. Moreover, we highlight the recent advances in the understanding of the genetic architecture underlying phenotypic plasticity in plants. We identify four pillars for future research to uncover the genetic basis of phenotypic plasticity, with emphasis on development of computational approaches and theories. These developments will allow us to perform specific experiments to validate the causal genes for plasticity and to discover their role in plant fitness and evolution.}, language = {en} } @article{BeaumontWarringtonCavadinoetal.2018, author = {Beaumont, Robin N. and Warrington, Nicole M. and Cavadino, Alana and Tyrrell, Jessica and Nodzenski, Michael and Horikoshi, Momoko and Geller, Frank and Myhre, Ronny and Richmond, Rebecca C. and Paternoster, Lavinia and Bradfield, Jonathan P. and Kreiner-Moller, Eskil and Huikari, Ville and Metrustry, Sarah and Lunetta, Kathryn L. and Painter, Jodie N. and Hottenga, Jouke-Jan and Allard, Catherine and Barton, Sheila J. and Espinosa, Ana and Marsh, Julie A. and Potter, Catherine and Zhang, Ge and Ang, Wei and Berry, Diane J. and Bouchard, Luigi and Das, Shikta and Hakonarson, Hakon and Heikkinen, Jani and Helgeland, Oyvind and Hocher, Berthold and Hofman, Albert and Inskip, Hazel M. and Jones, Samuel E. and Kogevinas, Manolis and Lind, Penelope A. and Marullo, Letizia and Medland, Sarah E. and Murray, Anna and Murray, Jeffrey C. and Njolstad, Pal R. and Nohr, Ellen A. and Reichetzeder, Christoph and Ring, Susan M. and Ruth, Katherine S. and Santa-Marina, Loreto and Scholtens, Denise M. and Sebert, Sylvain and Sengpiel, Verena and Tuke, Marcus A. and Vaudel, Marc and Weedon, Michael N. and Willemsen, Gonneke and Wood, Andrew R. and Yaghootkar, Hanieh and Muglia, Louis J. and Bartels, Meike and Relton, Caroline L. and Pennell, Craig E. and Chatzi, Leda and Estivill, Xavier and Holloway, John W. and Boomsma, Dorret I. and Montgomery, Grant W. and Murabito, Joanne M. and Spector, Tim D. and Power, Christine and Jarvelin, Marjo-Ritta and Bisgaard, Hans and Grant, Struan F. A. and Sorensen, Thorkild I. A. and Jaddoe, Vincent W. and Jacobsson, Bo and Melbye, Mads and McCarthy, Mark I. and Hattersley, Andrew T. and Hayes, M. Geoffrey and Frayling, Timothy M. and Hivert, Marie-France and Felix, Janine F. and Hypponen, Elina and Lowe, William L. and Evans, David M. and Lawlor, Debbie A. and Feenstra, Bjarke and Freathy, Rachel M.}, title = {Genome-wide association study of offspring birth weight in 86 577 women identifies five novel loci and highlights maternal genetic effects that are independent of fetal genetics}, series = {Human molecular genetics}, volume = {27}, journal = {Human molecular genetics}, number = {4}, publisher = {Oxford Univ. Press}, address = {Oxford}, organization = {Early Growth Genetics EGG}, issn = {0964-6906}, doi = {10.1093/hmg/ddx429}, pages = {742 -- 756}, year = {2018}, abstract = {Genome-wide association studies of birth weight have focused on fetal genetics, whereas relatively little is known about the role of maternal genetic variation. We aimed to identify maternal genetic variants associated with birth weight that could highlight potentially relevant maternal determinants of fetal growth. We meta-analysed data on up to 8.7 million SNPs in up to 86 577 women of European descent from the Early Growth Genetics (EGG) Consortium and the UK Biobank. We used structural equation modelling (SEM) and analyses of mother-child pairs to quantify the separate maternal and fetal genetic effects. Maternal SNPs at 10 loci (MTNR1B, HMGA2, SH2B3, KCNAB1, L3MBTL3, GCK, EBF1, TCF7L2, ACTL9, CYP3A7) were associated with offspring birth weight at P< 5 x 10(-8). In SEM analyses, at least 7 of the 10 associations were consistent with effects of the maternal genotype acting via the intrauterine environment, rather than via effects of shared alleles with the fetus. Variants, or correlated proxies, at many of the loci had been previously associated with adult traits, including fasting glucose (MTNR1B, GCK and TCF7L2) and sex hormone levels (CYP3A7), and one (EBF1) with gestational duration. The identified associations indicate that genetic effects on maternal glucose, cytochrome P450 activity and gestational duration, and potentially on maternal blood pressure and immune function, are relevant for fetal growth. Further characterization of these associations in mechanistic and causal analyses will enhance understanding of the potentially modifiable maternal determinants of fetal growth, with the goal of reducing the morbidity and mortality associated with low and high birth weights.}, language = {en} } @article{PerringBernhardtRoemermannBaetenetal.2018, author = {Perring, Michael P. and Bernhardt-Roemermann, Markus and Baeten, Lander and Midolo, Gabriele and Blondeel, Haben and Depauw, Leen and Landuyt, Dries and Maes, Sybryn L. and De Lombaerde, Emiel and Caron, Maria Mercedes and Vellend, Mark and Brunet, Joerg and Chudomelova, Marketa and Decocq, Guillaume and Diekmann, Martin and Dirnboeck, Thomas and Doerfler, Inken and Durak, Tomasz and De Frenne, Pieter and Gilliam, Frank S. and Hedl, Radim and Heinken, Thilo and Hommel, Patrick and Jaroszewicz, Bogdan and Kirby, Keith J. and Kopecky, Martin and Lenoir, Jonathan and Li, Daijiang and Malis, Frantisek and Mitchell, Fraser J. G. and Naaf, Tobias and Newman, Miles and Petrik, Petr and Reczynska, Kamila and Schmidt, Wolfgang and Standovar, Tibor and Swierkosz, Krzysztof and Van Calster, Hans and Vild, Ondrej and Wagner, Eva Rosa and Wulf, Monika and Verheyen, Kris}, title = {Global environmental change effects on plant community composition trajectories depend upon management legacies}, series = {Global change biology}, volume = {24}, journal = {Global change biology}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {1354-1013}, doi = {10.1111/gcb.14030}, pages = {1722 -- 1740}, year = {2018}, abstract = {The contemporary state of functional traits and species richness in plant communities depends on legacy effects of past disturbances. Whether temporal responses of community properties to current environmental changes are altered by such legacies is, however, unknown. We expect global environmental changes to interact with land-use legacies given different community trajectories initiated by prior management, and subsequent responses to altered resources and conditions. We tested this expectation for species richness and functional traits using 1814 survey-resurvey plot pairs of understorey communities from 40 European temperate forest datasets, syntheses of management transitions since the year 1800, and a trait database. We also examined how plant community indicators of resources and conditions changed in response to management legacies and environmental change. Community trajectories were clearly influenced by interactions between management legacies from over 200 years ago and environmental change. Importantly, higher rates of nitrogen deposition led to increased species richness and plant height in forests managed less intensively in 1800 (i.e., high forests), and to decreases in forests with a more intensive historical management in 1800 (i.e., coppiced forests). There was evidence that these declines in community variables in formerly coppiced forests were ameliorated by increased rates of temperature change between surveys. Responses were generally apparent regardless of sites' contemporary management classifications, although sometimes the management transition itself, rather than historic or contemporary management types, better explained understorey responses. Main effects of environmental change were rare, although higher rates of precipitation change increased plant height, accompanied by increases in fertility indicator values. Analysis of indicator values suggested the importance of directly characterising resources and conditions to better understand legacy and environmental change effects. Accounting for legacies of past disturbance can reconcile contradictory literature results and appears crucial to anticipating future responses to global environmental change.}, language = {en} } @article{OmidbakhshfardFujikuraOlasetal.2018, author = {Omidbakhshfard, Mohammad Amin and Fujikura, Ushio and Olas, Justyna Jadwiga and Xue, Gang-Ping and Balazadeh, Salma and Mueller-Roeber, Bernd}, title = {GROWTH-REGULATING FACTOR 9 negatively regulates arabidopsis leaf growth by controlling ORG3 and restricting cell proliferation in leaf primordia}, series = {PLoS Genetics : a peer-reviewed, open-access journal}, volume = {14}, journal = {PLoS Genetics : a peer-reviewed, open-access journal}, number = {7}, publisher = {PLoS}, address = {San Fransisco}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1007484}, pages = {31}, year = {2018}, abstract = {Leaf growth is a complex process that involves the action of diverse transcription factors (TFs) and their downstream gene regulatory networks. In this study, we focus on the functional characterization of the Arabidopsis thaliana TF GROWTH-REGULATING FACTOR9 (GRF9) and demonstrate that it exerts its negative effect on leaf growth by activating expression of the bZIP TF OBP3-RESPONSIVE GENE 3 (ORG3). While grf9 knockout mutants produce bigger incipient leaf primordia at the shoot apex, rosette leaves and petals than the wild type, the sizes of those organs are reduced in plants overexpressing GRF9 (GRF9ox). Cell measurements demonstrate that changes in leaf size result from alterations in cell numbers rather than cell sizes. Kinematic analysis and 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay revealed that GRF9 restricts cell proliferation in the early developing leaf. Performing in vitro binding site selection, we identified the 6-base motif 5'-CTGACA-3' as the core binding site of GRF9. By global transcriptome profiling, electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) we identified ORG3 as a direct downstream, and positively regulated target of GRF9. Genetic analysis of grf9 org3 and GRF9ox org3 double mutants reveals that both transcription factors act in a regulatory cascade to control the final leaf dimensions by restricting cell number in the developing leaf.}, language = {en} } @article{MayerUllmannSundeetal.2018, author = {Mayer, Martin and Ullmann, Wiebke and Sunde, Peter and Fischer, Christina and Blaum, Niels}, title = {Habitat selection by the European hare in arable landscapes}, series = {Ecology and Evolution}, volume = {8}, journal = {Ecology and Evolution}, number = {23}, publisher = {Wiley}, address = {Hoboken}, issn = {2045-7758}, doi = {10.1002/ece3.4613}, pages = {11619 -- 11633}, year = {2018}, abstract = {Agricultural land-use practices have intensified over the last decades, leading to population declines of various farmland species, including the European hare (Lepus europaeus). In many European countries, arable fields dominate agricultural landscapes. Compared to pastures, arable land is highly variable, resulting in a large spatial variation of food and cover for wildlife over the course of the year, which potentially affects habitat selection by hares. Here, we investigated within-home-range habitat selection by hares in arable areas in Denmark and Germany to identify habitat requirements for their conservation. We hypothesized that hare habitat selection would depend on local habitat structure, that is, vegetation height, but also on agricultural field size, vegetation type, and proximity to field edges. Active hares generally selected for short vegetation (1-25 cm) and avoided higher vegetation and bare ground, especially when fields were comparatively larger. Vegetation >50 cm potentially restricts hares from entering parts of their home range and does not provide good forage, the latter also being the case on bare ground. The vegetation type was important for habitat selection by inactive hares, with fabaceae, fallow, and maize being selected for, potentially providing both cover and forage. Our results indicate that patches of shorter vegetation could improve the forage quality and habitat accessibility for hares, especially in areas with large monocultures. Thus, policymakers should aim to increase areas with short vegetation throughout the year. Further, permanent set-asides, like fallow and wildflower areas, would provide year-round cover for inactive hares. Finally, the reduction in field sizes would increase the density of field margins, and farming different crop types within small areas could improve the habitat for hares and other farmland species.}, language = {en} } @article{ReilBinderFreiseetal.2018, author = {Reil, Daniela and Binder, Florian and Freise, Jona and Imholt, Christian and Beyrers, Konrad and Jacob, Jens and Kr{\"u}ger, Detlev H. and Hofmann, J{\"o}rg and Dreesman, Johannes and Ulrich, Rainer G{\"u}nter}, title = {Hantaviren in Deutschland}, series = {Berliner und M{\"u}nchener tier{\"a}rztliche Wochenschrift}, volume = {131}, journal = {Berliner und M{\"u}nchener tier{\"a}rztliche Wochenschrift}, number = {11-12}, publisher = {Schl{\"u}tersche Verlagsgesellschaft mbH \& Co. KG.}, address = {Hannover}, issn = {0005-9366}, doi = {10.2376/0005-9366-18003}, pages = {453 -- 464}, year = {2018}, abstract = {Hantaviruses are small mammal-associated pathogens that are found in rodents but also in shrews, moles and bats. Aim of this manuscript is to give a current overview of the epidemiology and ecology of hantaviruses in Germany and to discuss respective models for the prediction of virus outbreaks. In Germany the majority of human disease cases are caused by the Puumala virus (PUUV), transmitted by the bank vole (Myodes glareolus). PUUV is associated with the Western evolutionary lineage of the bank vole and is not present in the eastern and northern parts of Germany. A second human pathogenic hantavirus is the Dobrava-Belgrade virus (DOBV), genotype Kurkino; its reservoir host, the striped field mouse (Apodemus agrarius), is mostly occurring in the eastern part of Germany. A PUUV-related hantavirus is the rarely pathogenic Tula virus (TULV), that is associated with the common vole (Microtus arvalis). In addition, Seewis virus, Asikkala virus, and Bruges virus are shrew- and mole-associated hantaviruses with still unknown pathogenicity in humans. Human disease cases are associated with the different hantaviruses according to their regional distribution. The viruses can cause mild to severe but also subclinical courses of the respective disease. The number of human PUUV disease cases in 2007, 2010, 2012, 2015 and 2017 correlates with the occurrence of high levels of seed production of beech trees ("beech mast") in the preceding year. Models based on weather parameters for the prediction of PUUV disease clusters as developed in recent years need further validation and optimisation. in addition to the abundance of infected reservoir rodents, the exposure behaviour of humans affects the risk of human infection. The application of robust forecast models can assist the public health service to develop and communicate spatially and temporally targeted information. Thus, further recommendations to mitigate infection risk for the public may be provided.}, language = {de} } @article{DonatLourencoPaolinietal.2018, author = {Donat, Stefan and Lourenco, Marta Sofia Rocha and Paolini, Alessio and Otten, Cecile and Renz, Marc and Abdelilah-Seyfried, Salim}, title = {Heg1 and Ccm1/2 proteins control endocardial mechanosensitivity during zebrafish valvulogenesis}, series = {eLife}, volume = {7}, journal = {eLife}, publisher = {eLife Sciences Publications}, address = {Cambridge}, issn = {2050-084X}, doi = {10.7554/eLife.28939}, pages = {22}, year = {2018}, abstract = {Endothelial cells respond to different levels of fluid shear stress through adaptations of their mechanosensitivity. Currently, we lack a good understanding of how this contributes to sculpting of the cardiovascular system. Cerebral cavernous malformation (CCM) is an inherited vascular disease that occurs when a second somatic mutation causes a loss of CCM1/KRIT1, CCM2, or CCM3 proteins. Here, we demonstrate that zebrafish Krit1 regulates the formation of cardiac valves. Expression of heg1, which encodes a binding partner of Krit1, is positively regulated by blood-flow. In turn, Heg1 stabilizes levels of Krit1 protein, and both Heg1 and Krit1 dampen expression levels of klf2a, a major mechanosensitive gene. Conversely, loss of Krit1 results in increased expression of klf2a and notch1b throughout the endocardium and prevents cardiac valve leaflet formation. Hence, the correct balance of blood-flow-dependent induction and Krit1 protein mediated repression of klf2a and notch1b ultimately shapes cardiac valve leaflet morphology.}, language = {en} } @article{RyllEidenHeuseretal.2018, author = {Ryll, Rene and Eiden, Martin and Heuser, Elisa and Weinhardt, Markus and Ziege, Madlen and Hoeper, Dirk and Groschup, Martin H. and Heckel, Gerald and Johne, Reimar and Ulrich, Rainer G.}, title = {Hepatitis E virus in feral rabbits along a rural-urban transect in Central Germany}, series = {Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics and infectious diseases (MEEGID)}, volume = {61}, journal = {Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics and infectious diseases (MEEGID)}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1567-1348}, doi = {10.1016/j.meegid.2018.03.019}, pages = {155 -- 159}, year = {2018}, abstract = {Rabbit associated genotype 3 hepatitis E virus (HEV) strains were detected in feral, pet and farm rabbits in different parts of the world since 2009 and recently also in human patients. Here, we report a serological and molecular survey on 72 feral rabbits, collected along a rural-urban transect in and next to Frankfurt am Main, Central Germany. ELISA investigations revealed in 25 of 72 (34.7\%) animals HEV-specific antibodies. HEV derived RNA was detected in 18 of 72 (25\%) animals by reverse transcription-polymerase chain reaction assay. The complete genomes from two rabbitHEV-strains, one from a rural site and the other from an inner-city area, were generated by a combination of high-throughput sequencing, a primer walking approach and 5′- and 3′- rapid amplification of cDNA ends. Phylogenetic analysis of open reading frame (ORF)1-derived partial and complete ORF1/ORF2 concatenated coding sequences indicated their similarity to rabbit-associated HEV strains. The partial sequences revealed one cluster of closely-related rabbitHEV sequences from the urban trapping sites that is well separated from several clusters representing rabbitHEV sequences from rural trapping sites. The complete genome sequences of the two novel strains indicated similarities of 75.6-86.4\% to the other 17 rabbitHEV sequences; the amino acid sequence identity of the concatenated ORF1/ORF2-encoded proteins reached 89.0-93.1\%. The detection of rabbitHEV in an inner-city area with a high human population density suggests a high risk of potential human infection with the zoonotic rabbitHEV, either by direct or indirect contact with infected animals. Therefore, future investigations on the occurrence and frequency of human infections with rabbitHEV are warranted in populations with different contact to rabbits.}, language = {en} } @article{KruseEppWieczoreketal.2018, author = {Kruse, Stefan and Epp, Laura Saskia and Wieczorek, Mareike and Pestryakova, Luidmila Agafyevna and Stoof-Leichsenring, Kathleen Rosemarie and Herzschuh, Ulrike}, title = {High gene flow and complex treeline dynamics of Larix Mill. stands on the Taymyr Peninsula (north-central Siberia) revealed by nuclear microsatellites}, series = {Tree Genetics \& Genomes}, volume = {14}, journal = {Tree Genetics \& Genomes}, number = {2}, publisher = {Springer}, address = {Heidelberg}, issn = {1614-2942}, doi = {10.1007/s11295-018-1235-3}, pages = {14}, year = {2018}, abstract = {Arctic treelines are facing a strong temperature increase as a result of recent global warming, causing possible changes in forest extent, which will alter vegetation-climate feedbacks. However, the mode and strength of the response is rather unclear, as potential changes are happening in areas that are very remote and difficult to access, and empirical data are still largely lacking. Here, we assessed the current population structure and genetic differentiation of Larix Mill. tree stands within the northernmost latitudinal treeline reaching ~ 72° N in the southern lowlands of the Taymyr Peninsula (~ 100° E). We sampled 743 individuals belonging to different height classes (seedlings, saplings, trees) at 11 locations along a gradient from 'single tree' tundra over 'forest line' to 'dense forest' stands and conducted investigations applying eight highly polymorphic nuclear microsatellites. Results suggest a high diversity within sub-populations (HE = 0.826-0.893), coupled, however, with heterozygote deficits in all sub-populations, but pronounced in 'forest line' stands. Overall, genetic differentiation of sub-populations is low (FST = 0.005), indicating a region-wide high gene flow, although 'forest line' stands harbour few rare and private alleles, likely indicating greater local reproduction. 'Single tree' stands, located beyond the northern forest line, are currently not involved in treeline expansion, but show signs of a long-term refuge, namely asexual reproduction and change of growth-form from erect to creeping growth, possibly having persisted for thousands of years. The lack of differentiation between the sub-populations points to a sufficiently high dispersal potential, and thus a rapid northward migration of the Siberian arctic treeline under recent global warming seems potentially unconstrained, but observations show it to be unexpectedly slow.}, language = {en} } @article{FischerSpierlingHeuseretal.2018, author = {Fischer, Stefan and Spierling, Nastasja G. and Heuser, Elisa and Kling, Christopher and Schmidt, Sabrina and Rosenfeld, Ulrike and Reil, Daniela and Imholt, Christian and Jacob, Jens and Ulrich, Rainer G. and Essbauer, Sandra}, title = {High prevalence of Rickettsia helvetica in wild small mammal populations in Germany}, series = {Ticks and Tick-borne Diseases}, volume = {9}, journal = {Ticks and Tick-borne Diseases}, number = {3}, publisher = {Elsevier GMBH}, address = {M{\"u}nchen}, issn = {1877-959X}, doi = {10.1016/j.ttbdis.2018.01.009}, pages = {500 -- 505}, year = {2018}, abstract = {Since the beginning of the 21st century, spotted fever rickettsioses are known as emerging diseases worldwide. Rickettsiae are obligately intracellular bacteria transmitted by arthropod vectors. The ecology of Rickettsia species has not been investigated in detail, but small mammals are considered to play a role as reservoirs. Aim of this study was to monitor rickettsiae in wild small mammals over a period of five years in four federal states of Germany. Initial screening of ear pinna tissues of 3939 animals by Pan-Rick real-time PCR targeting the citrate synthase (gltA) gene revealed 296 rodents of seven species and 19 shrews of two species positive for rickettsial DNA. Outer membrane protein gene (ompB, ompAIV) PCRs based typing resulted in the identification of three species: Rickettsia helvetica (90.9\%) was found as the dominantly occurring species in the four investigated federal states, but Rickettsia felis (7.8\%) and Rickettsia raoultii (1.3\%) were also detected. The prevalence of Rickettsia spp. in rodents of the genus Apodemus was found to be higher (approximately 14\%) than in all other rodent and shrew species at all investigated sites. General linear mixed model analyses indicated that heavier (older) individuals of yellow-necked mice and male common voles seem to contain more often rickettsial DNA than younger ones. Furthermore, rodents generally collected in forests in summer and autumn more often carried rickettsial DNA. In conclusion, this study indicated a high prevalence of R. helvetica in small mammal populations and suggests an age-dependent increase of the DNA prevalence in some of the species and in animals originating from forest habitats. The finding of R. helvetica and R. felis DNA in multiple small mammal species may indicate frequent trans-species transmission by feeding of vectors on different species. Further investigations should target the reason for the discrepancy between the high rickettsial DNA prevalence in rodents and the so far almost absence of clinical apparent human infections.}, language = {en} } @article{AutenriethHartmannLahetal.2018, author = {Autenrieth, Marijke and Hartmann, Stefanie and Lah, Ljerka and Roos, Anna and Dennis, Alice B. and Tiedemann, Ralph}, title = {High-quality whole-genome sequence of an abundant Holarctic odontocete, the harbour porpoise (Phocoena phocoena)}, series = {Molecular ecology resources}, volume = {18}, journal = {Molecular ecology resources}, number = {6}, publisher = {Wiley}, address = {Hoboken}, issn = {1755-098X}, doi = {10.1111/1755-0998.12932}, pages = {1469 -- 1481}, year = {2018}, abstract = {The harbour porpoise (Phocoena phocoena) is a highly mobile cetacean found across the Northern hemisphere. It occurs in coastal waters and inhabits basins that vary broadly in salinity, temperature and food availability. These diverse habitats could drive subtle differentiation among populations, but examination of this would be best conducted with a robust reference genome. Here, we report the first harbour porpoise genome, assembled de novo from an individual originating in the Kattegat Sea (Sweden). The genome is one of the most complete cetacean genomes currently available, with a total size of 2.39 Gb and 50\% of the total length found in just 34 scaffolds. Using 122 of the longest scaffolds, we were able to show high levels of synteny with the genome of the domestic cattle (Bos taurus). Our draft annotation comprises 22,154 predicted genes, which we further annotated through matches to the NCBI nucleotide database, GO categorization and motif prediction. Within the predicted genes, we have confirmed the presence of >20 genes or gene families that have been associated with adaptive evolution in other cetaceans. Overall, this genome assembly and draft annotation represent a crucial addition to the genomic resources currently available for the study of porpoises and Phocoenidae evolution, phylogeny and conservation.}, language = {en} } @article{MartinsSchmidtLenzetal.2018, author = {Martins, Renata F. and Schmidt, Anke and Lenz, Dorina and Wilting, Andreas and Fickel, J{\"o}rns}, title = {Historical biogeography of Rusa unicolor and R-timorensis}, series = {Ecology and evolution}, volume = {8}, journal = {Ecology and evolution}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {2045-7758}, doi = {10.1002/ece3.3754}, pages = {1465 -- 1479}, year = {2018}, abstract = {In this study we compared the phylogeographic patterns of two Rusa species, Rusa unicolor and Rusa timorensis, in order to understand what drove and maintained differentiation between these two geographically and genetically close species and investigated the route of introduction of individuals to the islands outside of the Sunda Shelf. We analyzed full mitogenomes from 56 archival samples from the distribution areas of the two species and 18 microsatellite loci in a subset of 16 individuals to generate the phylogeographic patterns of both species. Bayesian inference with fossil calibration was used to estimate the age of each species and major divergence events. Our results indicated that the split between the two species took place during the Pleistocene, similar to 1.8Mya, possibly driven by adaptations of R. timorensis to the drier climate found on Java compared to the other islands of Sundaland. Although both markers identified two well-differentiated clades, there was a largely discrepant pattern between mitochondrial and nuclear markers. While nDNA separated the individuals into the two species, largely in agreement with their museum label, mtDNA revealed that all R. timorensis sampled to the east of the Sunda shelf carried haplotypes from R. unicolor and one Rusa unicolor from South Sumatra carried a R. timorensis haplotype. Our results show that hybridization occurred between these two sister species in Sundaland during the Late Pleistocene and resulted in human-mediated introduction of hybrid descendants in all islands outside Sundaland.}, language = {en} } @article{PaijmansBarlowFoersteretal.2018, author = {Paijmans, Johanna L. A. and Barlow, Axel and F{\"o}rster, Daniel W. and Henneberger, Kirstin and Meyer, Matthias and Nickel, Birgit and Nagel, Doris and Wors{\o}e Havm{\o}ller, Rasmus and Baryshnikov, Gennady F. and Joger, Ulrich and Rosendahl, Wilfried and Hofreiter, Michael}, title = {Historical biogeography of the leopard (Panthera pardus) and its extinct Eurasian populations}, series = {BMC Evolutionary Biology}, volume = {18}, journal = {BMC Evolutionary Biology}, number = {156}, publisher = {BioMed Central und Springer}, address = {London, Berlin und Heidelberg}, issn = {1471-2148}, doi = {10.1186/s12862-018-1268-0}, pages = {12}, year = {2018}, abstract = {Background Resolving the historical biogeography of the leopard (Panthera pardus) is a complex issue, because patterns inferred from fossils and from molecular data lack congruence. Fossil evidence supports an African origin, and suggests that leopards were already present in Eurasia during the Early Pleistocene. Analysis of DNA sequences however, suggests a more recent, Middle Pleistocene shared ancestry of Asian and African leopards. These contrasting patterns led researchers to propose a two-stage hypothesis of leopard dispersal out of Africa: an initial Early Pleistocene colonisation of Asia and a subsequent replacement by a second colonisation wave during the Middle Pleistocene. The status of Late Pleistocene European leopards within this scenario is unclear: were these populations remnants of the first dispersal, or do the last surviving European leopards share more recent ancestry with their African counterparts? Results In this study, we generate and analyse mitogenome sequences from historical samples that span the entire modern leopard distribution, as well as from Late Pleistocene remains. We find a deep bifurcation between African and Eurasian mitochondrial lineages (~ 710 Ka), with the European ancient samples as sister to all Asian lineages (~ 483 Ka). The modern and historical mainland Asian lineages share a relatively recent common ancestor (~ 122 Ka), and we find one Javan sample nested within these. Conclusions The phylogenetic placement of the ancient European leopard as sister group to Asian leopards suggests that these populations originate from the same out-of-Africa dispersal which founded the Asian lineages. The coalescence time found for the mitochondrial lineages aligns well with the earliest undisputed fossils in Eurasia, and thus encourages a re-evaluation of the identification of the much older putative leopard fossils from the region. The relatively recent ancestry of all mainland Asian leopard lineages suggests that these populations underwent a severe population bottleneck during the Pleistocene. Finally, although only based on a single sample, the unexpected phylogenetic placement of the Javan leopard could be interpreted as evidence for exchange of mitochondrial lineages between Java and mainland Asia, calling for further investigation into the evolutionary history of this subspecies.}, language = {en} } @article{AmbarliMenguellueoğluFickeletal.2018, author = {Ambarli, H{\"u}seyin and Meng{\"u}ll{\"u}oğlu, Deniz and Fickel, J{\"o}rns and F{\"o}rster, Daniel W.}, title = {Hotel AMANO Grand Central of brown bears in southwest Asia}, series = {PeerJ}, volume = {6}, journal = {PeerJ}, publisher = {PeerJ Inc.}, address = {London}, issn = {2167-8359}, doi = {10.7717/peerj.5660}, pages = {18}, year = {2018}, abstract = {Genetic studies of the Eurasian brown bear (Ursus arctos) have so far focused on populations from Europe and North America, although the largest distribution area of brown bears is in Asia. In this study, we reveal population genetic parameters for the brown bear population inhabiting the Grand Kackar Mountains (GKM) in the north east of Turkey, western Lesser Caucasus. Using both hair (N = 147) and tissue samples (N = 7) collected between 2008 and 2014, we found substantial levels of genetic variation (10 microsatellite loci). Bear samples (hair) taken from rubbing trees worked better for genotyping than those from power poles, regardless of the year collected. Genotyping also revealed that bears moved between habitat patches, despite ongoing massive habitat alterations and the creation of large water reservoirs. This population has the potential to serve as a genetic reserve for future reintroduction in the Middle East. Due to the importance of the GKM population for on-going and future conservation actions, the impacts of habitat alterations in the region ought to be minimized; e.g., by establishing green bridges or corridors over reservoirs and major roads to maintain habitat connectivity and gene flow among populations in the Lesser Caucasus.}, language = {en} } @article{BoginVareaHermanussenetal.2018, author = {Bogin, Barry and Varea, Carlos and Hermanussen, Michael and Scheffler, Christiane}, title = {Human life course biology}, series = {American journal of physical anthropology}, volume = {165}, journal = {American journal of physical anthropology}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {0002-9483}, doi = {10.1002/ajpa.23357}, pages = {834 -- 854}, year = {2018}, language = {en} } @article{BrueggerGobetSigletal.2018, author = {Br{\"u}gger, Sandra Olivia and Gobet, Erika and Sigl, Michael and Osmont, Dimitri and Papina, Tatyana and Rudaya, Natalia and Schwikowski-Gigar, Margit and Tinner, Willy}, title = {Ice records provide new insights into climatic vulnerability of Central Asian forest and steppe communities}, series = {Global and planetary change}, volume = {169}, journal = {Global and planetary change}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0921-8181}, doi = {10.1016/j.gloplacha.2018.07.010}, pages = {188 -- 201}, year = {2018}, abstract = {Forest and steppe communities in the Altai region of Central Asia are threatened by changing climate and anthropogenic pressure. Specifically, increasing drought and grazing pressure may cause collapses of moisture-demanding plant communities, particularly forests. Knowledge about past vegetation and fire responses to climate and land use changes may help anticipating future ecosystem risks, given that it has the potential to disclose mechanisms and processes that govern ecosystem vulnerability. We present a unique paleoecological record from the high-alpine Tsambagarav glacier in the Mongolian Altai that provides novel large-scale information on vegetation, fire and pollution with an exceptional temporal resolution and precision. Our palynological record identifies several late-Holocene boreal forest expansions, contractions and subsequent recoveries. Maximum forest expansions occurred at 3000-2800 BC, 2400-2100 BC, and 1900-1800 BC. After 1800 BC mixed boreal forest communities irrecoverably declined. Fires reached a maximum at 1600 BC, 200 years after the final forest collapse. Our multiproxy data suggest that burning peaked in response to dead biomass accumulation resulting from forest diebacks. Vegetation and fire regimes partly decoupled from climate after 1700 AD, when atmospheric industrial pollution began, and land use intensified. We conclude that moisture availability was more important than temperature for past vegetation dynamics, in particular for forest loss and steppe expansion. The past Mongolian Altai evidence implies that in the future forests of the Russian Altai may collapse in response to reduced moisture availability.}, language = {en} } @misc{AlbersUestuenWitzeletal.2018, author = {Albers, Philip and Uestuen, Suayib and Witzel, Katja and Bornke, Frederik}, title = {Identification of a novel target of the bacterial effector HopZ1a}, series = {Phytopathology}, volume = {108}, journal = {Phytopathology}, number = {10}, publisher = {American Phytopathological Society}, address = {Saint Paul}, issn = {0031-949X}, pages = {1}, year = {2018}, abstract = {The plant pathogen Pseudomonas syringae is a gram-negative bacterium which infects a wide range of plant species including important crops plants. To suppress plant immunity and cause disease P.syringae injects type-III effector proteins (T3Es) into the plant cell cytosol. In this study, we identified a novel target of the well characterized bacterial T3E HopZ1a. HopZ1a is an acetyltransferase that was shown to disrupt vesicle transport during innate immunity by acetylating tubulin. Using a yeast-two-hybrid screen approach, we identified a REMORIN (REM) protein from tobacco as a novel HopZ1a target. HopZ1a interacts with REM at the plasma membrane (PM) as shown by split-YFP experiments. Interestingly, we found that PBS1, a well-known kinase involved in plant immunity also interacts with REM in pull-down assays, and at the PM as shown by BiFC. Furthermore, we confirmed that REM is phosphorylated by PBS1 in vitro. Overexpression of REM provokes the upregulation of defense genes and leads to disease-like phenotypes pointing to a role of REM in plant immune signaling. Further protein-protein interaction studies reveal novel REM binding partners with a possible role in plant immune signaling. Thus, REM might act as an assembly hub for an immune signaling complex targeted by HopZ1a. Taken together, this is the first report describing that a REM protein is targeted by a bacterial effector. How HopZ1a might mechanistically manipulate the plant immune system through interfering with REM function will be discussed.}, language = {en} } @phdthesis{Kammel2018, author = {Kammel, Anne}, title = {Identifizierung fr{\"u}her epigenetischer Ver{\"a}nderungen, die zur Ausbildung einer Fettleber beitragen}, school = {Universit{\"a}t Potsdam}, pages = {130}, year = {2018}, language = {de} } @article{GrauHacklKoepflietal.2018, author = {Grau, Jos{\´e} Horacio and Hackl, Thomas and Koepfli, Klaus-Peter and Hofreiter, Michael}, title = {Improving draft genome contiguity with reference-derived in silico mate-pair libraries}, series = {GigaScience}, volume = {7}, journal = {GigaScience}, number = {5}, publisher = {Oxford University Press}, address = {Oxford}, issn = {2047-217X}, doi = {10.1093/gigascience/giy029}, pages = {1 -- 6}, year = {2018}, abstract = {Background Contiguous genome assemblies are a highly valued biological resource because of the higher number of completely annotated genes and genomic elements that are usable compared to fragmented draft genomes. Nonetheless, contiguity is difficult to obtain if only low coverage data and/or only distantly related reference genome assemblies are available. Findings In order to improve genome contiguity, we have developed Cross-Species Scaffolding—a new pipeline that imports long-range distance information directly into the de novo assembly process by constructing mate-pair libraries in silico. Conclusions We show how genome assembly metrics and gene prediction dramatically improve with our pipeline by assembling two primate genomes solely based on ∼30x coverage of shotgun sequencing data.}, language = {en} } @article{MaaresKeilKozaetal.2018, author = {Maares, Maria and Keil, Claudia and Koza, Jenny and Straubing, Sophia and Schwerdtle, Tanja and Haase, Hajo}, title = {In Vitro Studies on Zinc Binding and Buffering by Intestinal Mucins}, series = {International Journal of Molecular Sciences}, volume = {19}, journal = {International Journal of Molecular Sciences}, number = {9}, issn = {1422-0067}, doi = {10.3390/ijms19092662}, pages = {20}, year = {2018}, abstract = {The investigation of luminal factors influencing zinc availability and accessibility in the intestine is of great interest when analyzing parameters regulating intestinal zinc resorption. Of note, intestinal mucins were suggested to play a beneficial role in the luminal availability of zinc. Their exact zinc binding properties, however, remain unknown and the impact of these glycoproteins on human intestinal zinc resorption has not been investigated in detail. Thus, the aim of this study is to elucidate the impact of intestinal mucins on luminal uptake of zinc into enterocytes and its transfer into the blood. In the present study, in vitro zinc binding properties of mucins were analyzed using commercially available porcine mucins and secreted mucins of the goblet cell line HT-29-MTX. The molecular zinc binding capacity and average zinc binding affinity of these glycoproteins demonstrates that mucins contain multiple zinc-binding sites with biologically relevant affinity within one mucin molecule. Zinc uptake into the enterocyte cell line Caco-2 was impaired by zinc-depleted mucins. Yet this does not represent their form in the intestinal lumen in vivo under zinc adequate conditions. In fact, zinc-uptake studies into enterocytes in the presence of mucins with differing degree of zinc saturation revealed zinc buffering by these glycoproteins, indicating that mucin-bound zinc is still available for the cells. Finally, the impact of mucins on zinc resorption using three-dimensional cultures was studied comparing the zinc transfer of a Caco-2/HT-29-MTX co-culture and conventional Caco-2 monoculture. Here, the mucin secreting co-cultures yielded higher fractional zinc resorption and elevated zinc transport rates, suggesting that intestinal mucins facilitate the zinc uptake into enterocytes and act as a zinc delivery system for the intestinal epithelium.}, language = {en} } @article{UribeRamadassDograetal.2018, author = {Uribe, Veronica and Ramadass, Radhan and Dogra, Deepika and Rasouli, S. Javad and Gunawan, Felix and Nakajima, Hiroyuki and Chiba, Ayano and Reischauer, Sven and Mochizuki, Naoki and Stainier, Didier Y. R.}, title = {In vivo analysis of cardiomyocyte proliferation during trabeculation}, series = {Development : Company of Biologists}, volume = {145}, journal = {Development : Company of Biologists}, number = {14}, publisher = {Company biologists LTD}, address = {Cambridge}, issn = {0950-1991}, doi = {10.1242/dev.164194}, pages = {12}, year = {2018}, abstract = {Cardiomyocyte proliferation is crucial for cardiac growth, patterning and regeneration; however, few studies have investigated the behavior of dividing cardiomyocytes in vivo. Here, we use time-lapse imaging of beating hearts in combination with the FUCCI system to monitor the behavior of proliferating cardiomyocytes in developing zebrafish. Confirming in vitro observations, sarcomere disassembly, as well as changes in cell shape and volume, precede cardiomyocyte cytokinesis. Notably, cardiomyocytes in zebrafish embryos and young larvae mostly divide parallel to the myocardial wall in both the compact and trabecular layers, and cardiomyocyte proliferation is more frequent in the trabecular layer. While analyzing known regulators of cardiomyocyte proliferation, we observed that the Nrg/ErbB2 and TGF beta signaling pathways differentially affect compact and trabecular layer cardiomyocytes, indicating that distinct mechanisms drive proliferation in these two layers. In summary, our data indicate that, in zebrafish, cardiomyocyte proliferation is essential for trabecular growth, but not initiation, and set the stage to further investigate the cellular and molecular mechanisms driving cardiomyocyte proliferation in vivo.}, language = {en} } @misc{RomeroMujalliJeltschTiedemann2018, author = {Romero-Mujalli, Daniel and Jeltsch, Florian and Tiedemann, Ralph}, title = {Individual-based modeling of eco-evolutionary dynamics}, series = {Regional environmental change}, volume = {19}, journal = {Regional environmental change}, number = {1}, publisher = {Springer}, address = {Heidelberg}, issn = {1436-3798}, doi = {10.1007/s10113-018-1406-7}, pages = {1 -- 12}, year = {2018}, abstract = {A challenge for eco-evolutionary research is to better understand the effect of climate and landscape changes on species and their distribution. Populations of species can respond to changes in their environment through local genetic adaptation or plasticity, dispersal, or local extinction. The individual-based modeling (IBM) approach has been repeatedly applied to assess organismic responses to environmental changes. IBMs simulate emerging adaptive behaviors from the basic entities upon which both ecological and evolutionary mechanisms act. The objective of this review is to summarize the state of the art of eco-evolutionary IBMs and to explore to what degree they already address the key responses of organisms to environmental change. In this, we identify promising approaches and potential knowledge gaps in the implementation of eco-evolutionary mechanisms to motivate future research. Using mainly the ISI Web of Science, we reveal that most of the progress in eco-evolutionary IBMs in the last decades was achieved for genetic adaptation to novel local environmental conditions. There is, however, not a single eco-evolutionary IBM addressing the three potential adaptive responses simultaneously. Additionally, IBMs implementing adaptive phenotypic plasticity are rare. Most commonly, plasticity was implemented as random noise or reaction norms. Our review further identifies a current lack of models where plasticity is an evolving trait. Future eco-evolutionary models should consider dispersal and plasticity as evolving traits with their associated costs and benefits. Such an integrated approach could help to identify conditions promoting population persistence depending on the life history strategy of organisms and the environment they experience.}, language = {en} } @article{vanVelzenThieserBerendonketal.2018, author = {van Velzen, Ellen and Thieser, Tamara and Berendonk, Thomas U. and Weitere, Markus and Gaedke, Ursula}, title = {Inducible defense destabilizes predator-prey dynamics}, series = {Oikos}, volume = {127}, journal = {Oikos}, number = {11}, publisher = {Wiley}, address = {Hoboken}, issn = {0030-1299}, doi = {10.1111/oik.04868}, pages = {1551 -- 1562}, year = {2018}, abstract = {Phenotypic plasticity in prey can have a dramatic impact on predator-prey dynamics, e.g. by inducible defense against temporally varying levels of predation. Previous work has overwhelmingly shown that this effect is stabilizing: inducible defenses dampen the amplitudes of population oscillations or eliminate them altogether. However, such studies have neglected scenarios where being protected against one predator increases vulnerability to another (incompatible defense). Here we develop a model for such a scenario, using two distinct prey phenotypes and two predator species. Each prey phenotype is defended against one of the predators, and vulnerable to the other. In strong contrast with previous studies on the dynamic effects of plasticity involving a single predator, we find that increasing the level of plasticity consistently destabilizes the system, as measured by the amplitude of oscillations and the coefficients of variation of both total prey and total predator biomasses. We explain this unexpected and seemingly counterintuitive result by showing that plasticity causes synchronization between the two prey phenotypes (and, through this, between the predators), thus increasing the temporal variability in biomass dynamics. These results challenge the common view that plasticity should always have a stabilizing effect on biomass dynamics: adding a single predator-prey interaction to an established model structure gives rise to a system where different mechanisms may be at play, leading to dramatically different outcomes.}, language = {en} } @article{OprzeskaZingrebeMeyerRoloffetal.2018, author = {Oprzeska-Zingrebe, Ewa Anna and Meyer, Susann and Roloff, Alexander and Kunte, Hans-J{\"o}rg and Smiatek, Jens}, title = {Influence of compatible solute ectoine on distinct DNA structures}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {20}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {40}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c8cp03543a}, pages = {25861 -- 25874}, year = {2018}, abstract = {In nature, the cellular environment of DNA includes not only water and ions, but also other components and co-solutes, which can exert both stabilizing and destabilizing effects on particular oligonucleotide conformations. Among them, ectoine, known as an important osmoprotectant organic co-solute in a broad range of pharmaceutical products, turns out to be of particular relevance. In this article, we study the influence of ectoine on a short single-stranded DNA fragment and on double-stranded helical B-DNA in aqueous solution by means of atomistic molecular dynamics (MD) simulations in combination with molecular theories of solution. Our results demonstrate a conformation-dependent binding behavior of ectoine, which favors the unfolded state of DNA by a combination of electrostatic and dispersion interactions. In conjunction with the Kirkwood-Buff theory, we introduce a simple framework to compute the influence of ectoine on the DNA melting temperature. Our findings reveal a significant linear decrease of the melting temperature with increasing ectoine concentration, which is found to be in qualitative agreement with results from denaturation experiments. The outcomes of our computer simulations provide a detailed mechanistic rationale for the surprising destabilizing influence of ectoine on distinct DNA structures.}, language = {en} } @phdthesis{AlFadel2018, author = {Al Fadel, Frdoos}, title = {Influence of sphingosine 1-phosphate and its receptor modulators on the development of liver fibrosis}, school = {Universit{\"a}t Potsdam}, pages = {156}, year = {2018}, language = {en} } @article{RodriguezCubillosTongAlseekhetal.2018, author = {Rodriguez Cubillos, Andres Eduardo and Tong, Hao and Alseekh, Saleh and de Abreu e Lima, Francisco Anastacio and Yu, Jing and Fernie, Alisdair and Nikoloski, Zoran and Laitinen, Roosa A. E.}, title = {Inheritance patterns in metabolism and growth in diallel crosses of Arabidopsis thaliana from a single growth habitat}, series = {Heredity}, volume = {120}, journal = {Heredity}, number = {5}, publisher = {Nature Publ. Group}, address = {London}, issn = {0018-067X}, doi = {10.1038/s41437-017-0030-5}, pages = {463 -- 473}, year = {2018}, abstract = {Metabolism is a key determinant of plant growth and modulates plant adaptive responses. Increased metabolic variation due to heterozygosity may be beneficial for highly homozygous plants if their progeny is to respond to sudden changes in the habitat. Here, we investigate the extent to which heterozygosity contributes to the variation in metabolism and size of hybrids of Arabidopsis thaliana whose parents are from a single growth habitat. We created full diallel crosses among seven parents, originating from Southern Germany, and analysed the inheritance patterns in primary and secondary metabolism as well as in rosette size in situ. In comparison to primary metabolites, compounds from secondary metabolism were more variable and showed more pronounced non-additive inheritance patterns which could be attributed to epistasis. In addition, we showed that glucosinolates, among other secondary metabolites, were positively correlated with a proxy for plant size. Therefore, our study demonstrates that heterozygosity in local A. thaliana population generates metabolic variation and may impact several tasks directly linked to metabolism.}, language = {en} } @article{ScheunemannBradyNikoloski2018, author = {Scheunemann, Michael and Brady, Siobhan M. and Nikoloski, Zoran}, title = {Integration of large-scale data for extraction of integrated Arabidopsis root cell-type specific models}, series = {Scientific reports}, volume = {8}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-018-26232-8}, pages = {15}, year = {2018}, abstract = {Plant organs consist of multiple cell types that do not operate in isolation, but communicate with each other to maintain proper functions. Here, we extract models specific to three developmental stages of eight root cell types or tissue layers in Arabidopsis thaliana based on a state-of-the-art constraint-based modeling approach with all publicly available transcriptomics and metabolomics data from this system to date. We integrate these models into a multi-cell root model which we investigate with respect to network structure, distribution of fluxes, and concordance to transcriptomics and proteomics data. From a methodological point, we show that the coupling of tissue-specific models in a multi-tissue model yields a higher specificity of the interconnected models with respect to network structure and flux distributions. We use the extracted models to predict and investigate the flux of the growth hormone indole-3-actetate and its antagonist, trans-Zeatin, through the root. While some of predictions are in line with experimental evidence, constraints other than those coming from the metabolic level may be necessary to replicate the flow of indole-3-actetate from other simulation studies. Therefore, our work provides the means for data-driven multi-tissue metabolic model extraction of other Arabidopsis organs in the constraint-based modeling framework.}, language = {en} } @article{WusterChirioTrapeetal.2018, author = {Wuster, Wolfgang and Chirio, Laurent and Trape, Jean-Francois and Ineich, Ivan and Jackson, Kate and Greenbaum, Eli and Barron, Cesar and Kusamba, Chifundera and Nagy, Zoltan T. and Storey, Richard and Hall, Cara and Wuster, Catharine E. and Barlow, Axel and Broadley, Donald G.}, title = {Integration of nuclear and mitochondrial gene sequences and morphology reveals unexpected diversity in the forest cobra (Naja melanoleuca) species complex in Central and West Africa (Serpentes: Elapidae)}, series = {Zootaxa : an international journal of zootaxonomy ; a rapid international journal for animal taxonomists}, volume = {4455}, journal = {Zootaxa : an international journal of zootaxonomy ; a rapid international journal for animal taxonomists}, number = {1}, publisher = {Magnolia Press}, address = {Auckland}, issn = {1175-5326}, doi = {10.11646/zootaxa.4455.1.3}, pages = {68 -- 98}, year = {2018}, abstract = {Cobras are among the most widely known venomous snakes, and yet their taxonomy remains incompletely understood, particularly in Africa. Here, we use a combination of mitochondrial and nuclear gene sequences and morphological data to diagnose species limits within the African forest cobra, Naja (Boulengerina) melanoleuca. Mitochondrial DNA sequences reveal deep divergences within this taxon. Congruent patterns of variation in mtDNA, nuclear genes and morphology support the recognition of five separate species, confirming the species status of N. subfulva and N. peroescobari, and revealing two previously unnamed West African species, which are described as new: Naja (Boulengerina) guineensis sp. nov. Broadley, Trape, Chirio, Ineich \& Wuster, from the Upper Guinea forest of West Africa, and Naja (Boulengerina) savannula sp. nov. Broadley, Trape, Chirio \& Wuster, a banded form from the savanna-forest mosaic of the Guinea and Sudanian savannas of West Africa. The discovery of cryptic diversity in this iconic group highlights our limited understanding of tropical African biodiversity, hindering our ability to conserve it effectively.}, language = {en} } @article{CrawfordJeltschMayetal.2018, author = {Crawford, Michael and Jeltsch, Florian and May, Felix and Grimm, Volker and Schl{\"a}gel, Ulrike E.}, title = {Intraspecific trait variation increases species diversity in a trait-based grassland model}, series = {Oikos}, volume = {128}, journal = {Oikos}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {0030-1299}, doi = {10.1111/oik.05567}, pages = {441 -- 455}, year = {2018}, abstract = {Intraspecific trait variation (ITV) is thought to play a significant role in community assembly, but the magnitude and direction of its influence are not well understood. Although it may be critical to better explain population persistence, species interactions, and therefore biodiversity patterns, manipulating ITV in experiments is challenging. We therefore incorporated ITV into a trait- and individual-based model of grassland community assembly by adding variation to the plants' functional traits, which then drive life-history tradeoffs. Varying the amount of ITV in the simulation, we examine its influence on pairwise-coexistence and then on the species diversity in communities of different initial sizes. We find that ITV increases the ability of the weakest species to invade most, but that this effect does not scale to the community level, where the primary effect of ITV is to increase the persistence and abundance of the competitively-average species. Diversity of the initial community is also of critical importance in determining ITV's efficacy; above a threshold of interspecific diversity, ITV does not increase diversity further. For communities below this threshold, ITV mainly helps to increase diversity in those communities that would otherwise be low-diversity. These findings suggest that ITV actively maintains diversity by helping the species on the margins of persistence, but mostly in habitats of relatively low alpha and beta diversity.}, language = {en} } @article{YanFangNoecheletal.2018, author = {Yan, Wan and Fang, Liang and N{\"o}chel, Ulrich and Gould, Oliver E. C. and Behl, Marc and Kratz, Karl and Lendlein, Andreas}, title = {Investigating the roles of crystallizable and glassy switching segments within multiblock copolymer shape-memory materials}, series = {MRS Advances}, volume = {3}, journal = {MRS Advances}, number = {63}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {2059-8521}, doi = {10.1557/adv.2018.590}, pages = {3741 -- 3749}, year = {2018}, abstract = {The variation of the molecular architecture of multiblock copolymers has enabled the introduction of functional behaviour and the control of key mechanical properties. In the current study, we explore the synergistic relationship of two structural components in a shape-memory material formed of a multiblock copolymer with crystallizable poly(epsilon-caprolactone) and crystallizable polyfoligo(3S-iso-butylmorpholine-2,5-dione) segments (PCL-PIBMD). The thermal and structural properties of PCL-PIBMD films were compared with PCI.-PU and PMMD-PU investigated by means of DSC, SAXS and WARS measurements. The shape-memory properties were quantified by cyclic, thermomechanical tensile tests, where deformation strains up to 900\% were applied for programming PCL-PIBMD films at 50 degrees C. Toluene vapor treatment experiments demonstrated that the temporary shape was fixed mainly by glassy PIBMD domains at strains lower than 600\% with the PCL contribution to fixation increasing to 42 +/- 2\% at programming strains of 900\% This study into the shape-memory mechanism of PCL-PIBMD provides insight into the structure function relation in multiblock copolymers with both crystallizable and glassy switching segments.}, language = {en} } @article{AbbasVranicHoffmannetal.2018, author = {Abbas, Ioana M. and Vranic, Marija and Hoffmann, Holger and El-Khatib, Ahmed H. and Montes-Bay{\´o}n, Mar{\´i}a and M{\"o}ller, Heiko Michael and Weller, Michael G.}, title = {Investigations of the Copper Peptide Hepcidin-25 by LC-MS/MS and NMR⁺}, series = {International Journal of Molecular Sciences}, volume = {19}, journal = {International Journal of Molecular Sciences}, number = {8}, publisher = {Molecular Diversity Preservation International}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms19082271}, pages = {16}, year = {2018}, abstract = {Hepcidin-25 was identified as themain iron regulator in the human body, and it by binds to the sole iron-exporter ferroportin. Studies showed that the N-terminus of hepcidin is responsible for this interaction, the same N-terminus that encompasses a small copper(II) binding site known as the ATCUN (amino-terminal Cu(II)- and Ni(II)-binding) motif. Interestingly, this copper-binding property is largely ignored in most papers dealing with hepcidin-25. In this context, detailed investigations of the complex formed between hepcidin-25 and copper could reveal insight into its biological role. The present work focuses on metal-bound hepcidin-25 that can be considered the biologically active form. The first part is devoted to the reversed-phase chromatographic separation of copper-bound and copper-free hepcidin-25 achieved by applying basic mobile phases containing 0.1\% ammonia. Further, mass spectrometry (tandemmass spectrometry (MS/MS), high-resolutionmass spectrometry (HRMS)) and nuclear magnetic resonance (NMR) spectroscopy were employed to characterize the copper-peptide. Lastly, a three-dimensional (3D)model of hepcidin-25with bound copper(II) is presented. The identification of metal complexes and potential isoforms and isomers, from which the latter usually are left undetected by mass spectrometry, led to the conclusion that complementary analytical methods are needed to characterize a peptide calibrant or referencematerial comprehensively. Quantitative nuclear magnetic resonance (qNMR), inductively-coupled plasma mass spectrometry (ICP-MS), ion-mobility spectrometry (IMS) and chiral amino acid analysis (AAA) should be considered among others.}, language = {en} } @article{BurschelDecovicNuberetal.2018, author = {Burschel, Sabrina and Decovic, Doris Kreuzer and Nuber, Franziska and Stiller, Marie and Hofmann, Maud and Zupok, Arkadiusz and Siemiatkowska, Beata and Gorka, Michal Jakub and Leimk{\"u}hler, Silke and Friedrich, Thorsten}, title = {Iron-sulfur cluster carrier proteins involved in the assembly of Escherichia coli NADH}, series = {Molecular microbiology}, volume = {111}, journal = {Molecular microbiology}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {0950-382X}, doi = {10.1111/mmi.14137}, pages = {31 -- 45}, year = {2018}, abstract = {The NADH:ubiquinone oxidoreductase (respiratory complex I) is the main entry point for electrons into the Escherichia coli aerobic respiratory chain. With its sophisticated setup of 13 different subunits and 10 cofactors, it is anticipated that various chaperones are needed for its proper maturation. However, very little is known about the assembly of E. coli complex I, especially concerning the incorporation of the iron-sulfur clusters. To identify iron-sulfur cluster carrier proteins possibly involved in the process, we generated knockout strains of NfuA, BolA, YajL, Mrp, GrxD and IbaG that have been reported either to be involved in the maturation of mitochondrial complex I or to exert influence on the clusters of bacterial complex. We determined the NADH and succinate oxidase activities of membranes from the mutant strains to monitor the specificity of the individual mutations for complex I. The deletion of NfuA, BolA and Mrp led to a decreased stability and partially disturbed assembly of the complex as determined by sucrose gradient centrifugation and native PAGE. EPR spectroscopy of cytoplasmic membranes revealed that the BolA deletion results in the loss of the binuclear Fe/S cluster N1b.}, language = {en} } @misc{HiggsHarrisHegeretal.2018, author = {Higgs, Eric S. and Harris, Jim A. and Heger, Tina and Hobbs, Richard J. and Murphy, Stephen D. and Suding, Katharine N.}, title = {Keep ecological restoration open and flexible}, series = {Nature Ecology \& Evolution}, volume = {2}, journal = {Nature Ecology \& Evolution}, number = {4}, publisher = {Nature Publ. Group}, address = {London}, issn = {2397-334X}, doi = {10.1038/s41559-018-0483-9}, pages = {580 -- 580}, year = {2018}, language = {en} } @article{HochreinMitchellSchulzetal.2018, author = {Hochrein, Lena and Mitchell, Leslie A. and Schulz, Karina and Messerschmidt, Katrin and M{\"u}ller-R{\"o}ber, Bernd}, title = {L-SCRaMbLE as a tool for light-controlled Cre-mediated recombination in yeast}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-017-02208-6}, pages = {10}, year = {2018}, abstract = {The synthetic yeast genome constructed by the International Synthetic Yeast Sc2.0 consortium adds thousands of loxPsym recombination sites to all 16 redesigned chromosomes, allowing the shuffling of Sc2.0 chromosome parts by the Cre-loxP recombination system thereby enabling genome evolution experiments. Here, we present L-SCRaMbLE, a lightcontrolled Cre recombinase for use in the yeast Saccharomyces cerevisiae. L-SCRaMbLE allows tight regulation of recombinase activity with up to 179-fold induction upon exposure to red light. The extent of recombination depends on induction time and concentration of the chromophore phycocyanobilin (PCB), which can be easily adjusted. The tool presented here provides improved recombination control over the previously reported estradiol-dependent SCRaMbLE induction system, mediating a larger variety of possible recombination events in SCRaMbLE-ing a reporter plasmid. Thereby, L-SCRaMbLE boosts the potential for further customization and provides a facile application for use in the S. cerevisiae genome reengineering project Sc2.0 or in other recombination-based systems.}, language = {en} } @article{SchirrmeisterBobrovRaschkeetal.2018, author = {Schirrmeister, Lutz and Bobrov, Anatoly and Raschke, Elena and Herzschuh, Ulrike and Strauss, Jens and Pestryakova, Luidmila Agafyevna and Wetterich, Sebastian}, title = {Late Holocene ice-wedge polygon dynamics in northeastern Siberian coastal lowlands}, series = {Arctic, antarctic, and alpine research : an interdisciplinary journal}, volume = {50}, journal = {Arctic, antarctic, and alpine research : an interdisciplinary journal}, number = {1}, publisher = {Institute of Arctic and Alpine Research, University of Colorado}, address = {Boulder}, issn = {1523-0430}, doi = {10.1080/15230430.2018.1462595}, pages = {18}, year = {2018}, abstract = {Ice-wedge polygons are common features of northeastern Siberian lowland periglacial tundra landscapes. To deduce the formation and alternation of ice-wedge polygons in the Kolyma Delta and in the Indigirka Lowland, we studied shallow cores, up to 1.3 m deep, from polygon center and rim locations. The formation of well-developed low-center polygons with elevated rims and wet centers is shown by the beginning of peat accumulation, increased organic matter contents, and changes in vegetation cover from Poaceae-, Alnus-, and Betula-dominated pollen spectra to dominating Cyperaceae and Botryoccocus presence, and Carex and Drepanocladus revolvens macro-fossils. Tecamoebae data support such a change from wetland to open-water conditions in polygon centers by changes from dominating eurybiontic and sphagnobiontic to hydrobiontic species assemblages. The peat accumulation indicates low-center polygon formation and started between 2380 +/- 30 and 1676 +/- 32 years before present (BP) in the Kolyma Delta. We recorded an opposite change from open-water to wetland conditions because of rim degradation and consecutive high-center polygon formation in the Indigirka Lowland between 2144 +/- 33 and 1632 +/- 32 years BP. The late Holocene records of polygon landscape development reveal changes in local hydrology and soil moisture.}, language = {en} } @article{MittlerBlasiusGaedkeetal.2018, author = {Mittler, Udo and Blasius, Bernd and Gaedke, Ursula and Ryabov, Alexey B.}, title = {Length-volume relationship of lake phytoplankton}, series = {Limnology and Oceanography: Methods}, volume = {17}, journal = {Limnology and Oceanography: Methods}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {1541-5856}, doi = {10.1002/lom3.10296}, pages = {58 -- 68}, year = {2018}, abstract = {The shapes of phytoplankton units (unicellular organisms and colonies) are extremely diverse, and no unique relationship exists between their volume, V, and longest linear dimension, L. However, an approximate scaling between these parameters can be found because the shape variations within each size class are constrained by cell physiology, grazing pressure, and optimality of resource acquisition. To determine this scaling and to test for its seasonal and interannual variation under changing environmental conditions, we performed weighted regression analysis of time-dependent length-volume relations of the phytoplankton community in large deep Lake Constance from 1979 to 1999. We show that despite a large variability in species composition, the V(L) relationship can be approximated as a power law, V similar to L-alpha, with a scaling exponent alpha = 3 for small cells (L < 25 mu m) and alpha = 1.7 if the fitting is performed over the entire length range, including individual cells and colonies. The best description is provided by a transitional power function describing a regime change from a scaling exponent of 3 for small cells to an exponent of 0.4 in the range of large phytoplankton. Testing different weighted fitting approaches we show that remarkably the best prediction of the total community biovolume from measurements of L and cell density is obtained when the regression is weighted with the squares of species abundances. Our approach should also be applicable to other systems and allows converting phytoplankton length distributions (e.g., obtained with automatic monitoring such as flow cytometry) into distributions of biovolume and biovolume-related phytoplankton traits.}, language = {en} } @article{FischerMayerSchollImholtetal.2018, author = {Fischer, Stefan and Mayer-Scholl, Anne and Imholt, Christian and Spierling, Nastasja G. and Heuser, Elisa and Schmidt, Sabrina and Reil, Daniela and Rosenfeld, Ulrike and Jacob, Jens and N{\"o}ckler, Karsten and Ulrich, Rainer G.}, title = {Leptospira genomospecies and sequence type prevalence in small mammal populations in Germany}, series = {Vector-Borne and Zoonotic Diseases}, volume = {18}, journal = {Vector-Borne and Zoonotic Diseases}, number = {4}, publisher = {Liebert}, address = {New Rochelle}, issn = {1530-3667}, doi = {10.1089/vbz.2017.2140}, pages = {188 -- 199}, year = {2018}, abstract = {Leptospirosis is a worldwide emerging infectious disease caused by zoonotic bacteria of the genus Leptospira. Numerous mammals, including domestic and companion animals, can be infected by Leptospira spp., but rodents and other small mammals are considered the main reservoir. The annual number of recorded human leptospirosis cases in Germany (2001-2016) was 25-166. Field fever outbreaks in strawberry pickers, due to infection with Leptospira kirschneri serovar Grippotyphosa, were reported in 2007 and 2014. To identify the most commonly occurring Leptospira genomospecies, sequence types (STs), and their small mammal host specificity, a monitoring study was performed during 2010-2014 in four federal states of Germany. Initial screening of kidney tissues of 3,950 animals by PCR targeting the lipl32 gene revealed 435 rodents of 6 species and 89 shrews of three species positive for leptospiral DNA. PCR-based analyses resulted in the identification of the genomospecies L. kirschneri (62.7\%), Leptospira interrogans (28.3\%), and Leptospira borgpetersenii (9.0\%), which are represented by four, one, and two STs, respectively. The average Leptospira prevalence was highest (approximate to 30\%) in common voles (Microtus arvalis) and field voles (Microtus agrestis). Both species were exclusively infected with L. kirschneri. In contrast, in bank voles (Myodes glareolus) and yellow-necked mice (Apodemus flavicollis), DNA of all three genomospecies was detected, and in common shrews (Sorex araneus) DNA of L. kirschneri and L. borgpetersenii was identified. The association between individual infection status and demographic factors varied between species; infection status was always positively correlated to body weight. In conclusion, the study confirmed a broad geographical distribution of Leptospira in small mammals and suggested an important public health relevance of common and field voles as reservoirs of L. kirschneri. Furthermore, the investigations identified seasonal, habitat-related, as well as individual influences on Leptospira prevalence in small mammals that might impact public health.}, language = {en} } @article{HoffmannPalmeEccard2018, author = {Hoffmann, Julia and Palme, Rupert and Eccard, Jana}, title = {Long-term dim light during nighttime changes activity patterns and space use in experimental small mammal populations}, series = {Environmental pollution}, volume = {238}, journal = {Environmental pollution}, publisher = {Elsevier}, address = {Oxford}, issn = {0269-7491}, doi = {10.1016/j.envpol.2018.03.107}, pages = {844 -- 851}, year = {2018}, abstract = {Artificial light at night (ALAN) is spreading worldwide and thereby is increasingly interfering with natural dark-light cycles. Meanwhile, effects of very low intensities of light pollution on animals have rarely been investigated. We explored the effects of low intensity ALAN over seven months in eight experimental bank vole (Myodes glareolus) populations in large grassland enclosures over winter and early breeding season, using LED garden lamps. initial populations consisted of eight individuals (32 animals per hectare) in enclosures with or without ALAN. We found that bank voles under ALAN experienced changes in daily activity patterns and space use behavior, measured by automated radio telemetry. There were no differences in survival and body mass, measured with live trapping, and none in levels of fecal glucocorticoid metabolites. Voles in the ALAN treatment showed higher activity at night during half moon, and had larger day ranges during new moon. Thus, even low levels of light pollution as experienced in remote areas or by sky glow can lead to changes in animal behavior and could have consequences for species interactions. (C) 2018 Elsevier Ltd. All rights reserved.}, language = {en} } @article{SchererTiedemannSchlupp2018, author = {Scherer, Ulrike and Tiedemann, Ralph and Schlupp, Ingo}, title = {Male size, not female preferences influence female reproductive success in a poeciliid fish (Poecilia latipinna)}, series = {BMC Research Notes}, volume = {11}, journal = {BMC Research Notes}, number = {364}, publisher = {Biomed Central}, address = {London}, issn = {1756-0500}, doi = {10.1186/s13104-018-3487-2}, pages = {1 -- 5}, year = {2018}, abstract = {Objective We investigated the potential role of indirect benefits for female mate preferences in a highly promiscuous species of live-bearing fishes, the sailfin molly Poecilia latipinna using an integrative approach that combines methods from animal behavior, life-history evolution, and genetics. Males of this species solely contribute sperm for reproduction, and consequently females do not receive any direct benefits. Despite this, females typically show clear mate preferences. It has been suggested that females can increase their reproductive success through indirect benefits from choosing males of higher quality. Results Although preferences for large body size have been recorded as an honest signal for genetic quality, this particular study resulted in female preference being unaffected by male body size. Nonetheless, larger males did sire more offspring, but with no effect on offspring quality. This study presents a methodical innovation by combining preference testing with life history measurements—such as the determination of the dry weight of fish embryos—and paternity analyses on single fish embryos.}, language = {en} } @article{ChenBornhorstAschner2018, author = {Chen, Pan and Bornhorst, Julia and Aschner, Michael}, title = {Manganese metabolism in humans}, series = {Frontiers in Bioscience-Landmark}, volume = {23}, journal = {Frontiers in Bioscience-Landmark}, number = {9}, publisher = {Frontiers in Bioscience INC}, address = {Irvine}, issn = {1093-9946}, doi = {10.2741/4665}, pages = {1655 -- 1679}, year = {2018}, abstract = {Manganese (Mn) is an essential nutrient for intracellular activities; it functions as a cofactor for a variety of enzymes, including arginase, glutamine synthetase (GS), pyruvate carboxylase and Mn superoxide dismutase (Mn-SOD). Through these metalloproteins, Mn plays critically important roles in development, digestion, reproduction, antioxidant defense, energy production, immune response and regulation of neuronal activities. Mn deficiency is rare. In contrast Mn poisoning may be encountered upon overexposure to this metal. Excessive Mn tends to accumulate in the liver, pancreas, bone, kidney and brain, with the latter being the major target of Mn intoxication. Hepatic cirrhosis, polycythemia, hypermanganesemia, dystonia and Parkinsonism-like symptoms have been reported in patients with Mn poisoning. In recent years, Mn has come to the forefront of environmental concerns due to its neurotoxicity. Molecular mechanisms of Mn toxicity include oxidative stress, mitochondrial dysfunction, protein misfolding, endoplasmic reticulum (ER) stress, autophagy dysregulation, apoptosis, and disruption of other metal homeostasis. The mechanisms of Mn homeostasis are not fully understood. Here, we will address recent progress in Mn absorption, distribution and elimination across different tissues, as well as the intracellular regulation of Mn homeostasis in cells. We will conclude with recommendations for future research areas on Mn metabolism.}, language = {en} } @misc{FritzRosaSicard2018, author = {Fritz, Michael Andre and Rosa, Stefanie and Sicard, Adrien}, title = {Mechanisms Underlying the Environmentally Induced Plasticity of Leaf Morphology}, series = {Frontiers in genetics}, volume = {9}, journal = {Frontiers in genetics}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-8021}, doi = {10.3389/fgene.2018.00478}, pages = {25}, year = {2018}, abstract = {The primary function of leaves is to provide an interface between plants and their environment for gas exchange, light exposure and thermoregulation. Leaves have, therefore a central contribution to plant fitness by allowing an efficient absorption of sunlight energy through photosynthesis to ensure an optimal growth. Their final geometry will result from a balance between the need to maximize energy uptake while minimizing the damage caused by environmental stresses. This intimate relationship between leaf and its surroundings has led to an enormous diversification in leaf forms. Leaf shape varies between species, populations, individuals or even within identical genotypes when those are subjected to different environmental conditions. For instance, the extent of leaf margin dissection has, for long, been found to inversely correlate with the mean annual temperature, such that Paleobotanists have used models based on leaf shape to predict the paleoclimate from fossil flora. Leaf growth is not only dependent on temperature but is also regulated by many other environmental factors such as light quality and intensity or ambient humidity. This raises the question of how the different signals can be integrated at the molecular level and converted into clear developmental decisions. Several recent studies have started to shed the light on the molecular mechanisms that connect the environmental sensing with organ-growth and patterning. In this review, we discuss the current knowledge on the influence of different environmental signals on leaf size and shape, their integration as well as their importance for plant adaptation.}, language = {en} } @article{KozielSchefflerTutkuvieneetal.2018, author = {Koziel, Slawomir and Scheffler, Christiane and Tutkuviene, Janina and Jakimaviciene, Egle Marija and Mumm, Rebekka and Barbieri, Davide and Godina, Elena and El-Shabrawi, Mortada and Elhusseini, Mona and Musalek, Martin and Pruszkowska-Przybylska, Paulina and El Dash, Hanaa H. and Safar, Hebatalla Hassan and Lehmann, Andreas and Swanson, James and Bogin, Barry and Liu, Yuk-Chien and Groth, Detlef and Kirchengast, Sylvia and Siniarska, Anna and Nieczuja-Dwojacka, Joanna and Kralik, Miroslav and Satake, Takashi and Harc, Tomasz and Roelants, Mathieu and Hermanussen, Michael}, title = {Meeting Report: Growth and social environment}, series = {Pediatric Endocrinology Reviews}, volume = {15}, journal = {Pediatric Endocrinology Reviews}, number = {4}, publisher = {Medical Media}, address = {Netanya}, issn = {1565-4753}, doi = {10.17458/per.vol15.2018.ksh.mr.GrowthSocialEnvironment}, pages = {319 -- 329}, year = {2018}, abstract = {Twenty-two scientists met at Krobielowice, Poland, to discuss the impact of the social environment, spatial proximity, migration, poverty, but also psychological factors such as body perception and satisfaction, and social stressors such as elite sports, and teenage pregnancies, on child and adolescent growth. The data analysis included linear mixed effects models with different random effects, Monte Carlo analyses, and network simulations. The work stressed the importance of the peer group, but also included historic material, some considerations about body proportions, and growth in chronic liver, and congenital heart disease.}, language = {en} } @article{KnoblauchBeerLiebneretal.2018, author = {Knoblauch, Christian and Beer, Christian and Liebner, Susanne and Grigoriev, Mikhail N. and Pfeiffer, Eva-Maria}, title = {Methane production as key to the greenhouse gas budget of thawing permafrost}, series = {Nature climate change}, volume = {8}, journal = {Nature climate change}, number = {4}, publisher = {Nature Publ. Group}, address = {London}, issn = {1758-678X}, doi = {10.1038/s41558-018-0095-z}, pages = {309 -- 312}, year = {2018}, abstract = {Permafrost thaw liberates frozen organic carbon, which is decomposed into carbon dioxide (CO2) and methane (CH4). The release of these greenhouse gases (GHGs) forms a positive feedback to atmospheric CO2 and CH4 concentrations and accelerates climate change(1,2). Current studies report a minor importance of CH4 production in water-saturated (anoxic) permafrost soils(3-6) and a stronger permafrost carbon-climate feedback from drained (oxic) soils(1,7). Here we show through seven-year laboratory incubations that equal amounts of CO2 and CH4 are formed in thawing permafrost under anoxic conditions after stable CH4-producing microbial communities have established. Less permafrost carbon was mineralized under anoxic conditions but more CO2-carbon equivalents (CO2Ce) were formed than under oxic conditions when the higher global warming potential (GWP) of CH4 is taken into account(8). A model of organic carbon decomposition, calibrated with the observed decomposition data, predicts a higher loss of permafrost carbon under oxic conditions (113 +/- 58 g CO2-C kgC(-1) (kgC, kilograms of carbon)) by 2100, but a twice as high production of CO2-Ce (241 +/- 138 g CO2-Ce kgC(-1)) under anoxic conditions. These findings challenge the view of a stronger permafrost carbon-climate feedback from drained soils1,7 and emphasize the importance of CH4 production in thawing permafrost on climate-relevant timescales.}, language = {en} } @article{BatistaWoodhouseGrossartetal.2018, author = {Batista, A. M. M. and Woodhouse, Jason Nicholas and Grossart, Hans-Peter and Giani, A.}, title = {Methanogenic archaea associated to Microcystis sp. in field samples and in culture}, series = {Hydrobiologia : acta hydrobiologica, hydrographica, limnologica et protistologica}, volume = {831}, journal = {Hydrobiologia : acta hydrobiologica, hydrographica, limnologica et protistologica}, number = {1}, publisher = {Springer}, address = {Dordrecht}, issn = {0018-8158}, doi = {10.1007/s10750-018-3655-3}, pages = {163 -- 172}, year = {2018}, abstract = {Cyanobacterial mass developments impact the community composition of heterotrophic microorganisms with far-reaching consequences for biogeochemical and energy cycles of freshwater ecosystems including reservoirs. Here we sought to evaluate the temporal stability of methanogenic archaea in the water column and further scrutinize their associations with cyanobacteria. Monthly samples were collected from October 2009 to December 2010 in hypereutrophic Pampulha reservoir with permanently blooming cyanobacteria, and from January to December 2011 in oligotrophic Volta Grande reservoir with only sporadic cyanobacteria incidence. The presence of archaea in cyanobacterial cultures was investigated by screening numerous strains of Microcystis spp. from these reservoirs as well as from lakes in Europe, Asia, and North-America. We consistently determined the occurrence of archaea, in particular methanogenic archaea, in both reservoirs throughout the year. However, archaea were only associated with two strains (Microcystis sp. UFMG 165 and UFMG 175) recently isolated from these reservoirs. These findings do not implicate archaea in the occurrence of methane in the epilimnion of inland waters, but rather serve to highlight the potential of microhabitats associated with particles, including phytoplankton, to shelter unique microbial communities.}, language = {en} } @phdthesis{Bolius2018, author = {Bolius, Sarah}, title = {Microbial invasions in aquatic systems - strain identity, genetic diversity and timing}, school = {Universit{\"a}t Potsdam}, pages = {154}, year = {2018}, abstract = {Biological invasions are the dispersal and following establishment of species outside their native habitat. Due to globalisation, connectivity of regions and climate changes the number of invasive species and their successful establishment is rising. The impact of these species is mostly negative, can induce community and habitat alterations, and is one main cause for biodiversity loss. This impact is particularly high and less researched in aquatic systems and microbial organisms and despite the high impact, the knowledge about overall mechanisms and specific factors affecting invasions are not fully understood. In general, the characteristics of the habitat, native community and invader determine the invasiveness. In this thesis, I aimed to provide a better understanding of aquatic invasions focusing on the invader and its traits and identity. This thesis used a set of 12 strains of the invasive cyanobacterium Cylindrospermopsis raciborskii to examine the effect and impact of the invaders' identity and genetic diversity. Further, the effect of timing on the invasion potential and success was determined, because aquatic systems in particular undergo seasonal fluctuations. Most studies revealed a higher invasion success with increasing genetic diversity. Here, the increase of the genetic diversity, by either strain richness or phylogenetic dissimilarity, is not firstly driving the invasion, but the strain-identity. The high variability among the strains in traits important for invasions led to the highly varying strain-specific invasion success. This success was most dependent on nitrogen uptake and efficient resource use. The lower invasion success into communities comprising further N-fixing species indicates C. raciborskii can use this advantage only without the presence of competitive species. The relief of grazing pressure, which is suggested to be more important in aquatic invasions, was only promoting the invasion when unselective and larger consumers were present. High abundances of unselective consumers hampered the invasion success. This indicates a more complex and temporal interplay of competitive and consumptive resistance mechanisms during the invasion process. Further, the fluctuation abundance and presence of competitors (= primary producers) and consumers (= zooplankton) in lakes can open certain 'invasion windows'. Remarkably, the composition of the resident community was also strain-specific affected and altered, independent of a high or low invasion success. Prior, this was only documented on the species level. Further, investigations on the population of invasive strains can reveal more about the invasion patterns and how multiple strain invasions change resident communities. The present dissertation emphasises the importance of invader-addition experiments with a community context and the importance of the strain-level for microbial invasions and in general, e.g. for community assemblies and the outcome of experiments. The strain-specific community changes, also after days, may explain some sudden changes in communities, which have not been explained yet. This and further knowledge may also facilitate earlier and less cost-intensive management to step in, because these species are rarely tracked until they reach a high abundance or bloom, because of their small size. Concluded for C. raciborskii, it shows that this species is no 'generalistic' invader and its invasion success depends more on the competitor presence than grazing pressure. This may explain its, still unknown, invasion pattern, as C. raciborskii is not found in all lakes of a region.}, language = {en} } @article{SchuurmansBrinkmannMakoweretal.2018, author = {Schuurmans, Jasper Merijn and Brinkmann, Bregje W. and Makower, Katharina and Dittmann, Elke and Huisman, Jef and Matthijs, Hans C. P.}, title = {Microcystin interferes with defense against high oxidative stress in harmful cyanobacteria}, series = {Harmful algae}, volume = {78}, journal = {Harmful algae}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1568-9883}, doi = {10.1016/j.hal.2018.07.008}, pages = {47 -- 55}, year = {2018}, abstract = {Harmful cyanobacteria producing toxic microcystins are a major concern in water quality management. In recent years, hydrogen peroxide (H2O2) has been successfully applied to suppress cyanobacterial blooms in lakes. Physiological studies, however, indicate that microcystin protects cyanobacteria against oxidative stress, suggesting that H2O2 addition might provide a selective advantage for microcystin-producing (toxic) strains. This study compares the response of a toxic Microcystis strain, its non-toxic mutant, and a naturally non-toxic Microcystis strain to H2O2 addition representative of lake treatments. All three strains initially ceased growth upon H2O2 addition. Contrary to expectation, the non-toxic strain and non-toxic mutant rapidly degraded the added H2O2 and subsequently recovered, whereas the toxic strain did not degrade H2O2 and did not recover. Experimental catalase addition enabled recovery of the toxic strain, demonstrating that rapid H2O2 degradation is indeed essential for cyanobacterial survival. Interestingly, prior to H2O2 addition, gene expression of a thioredoxin and peroxiredoxin was much lower in the toxic strain than in its non-toxic mutant. Thioredoxin and peroxiredoxin are both involved in H2O2 degradation, and microcystin may potentially suppress their activity. These results show that microcystin-producing strains are less prepared for high levels of oxidative stress, and are therefore hit harder by H2O2 addition than non-toxic strains.}, language = {en} } @article{AriasAndresKluemperRojasJimenezetal.2018, author = {Arias-Andres, Maria and Kluemper, Uli and Rojas-Jimenez, Keilor and Grossart, Hans-Peter}, title = {Microplastic pollution increases gene exchange in aquatic ecosystems}, series = {Environmental pollution}, volume = {237}, journal = {Environmental pollution}, publisher = {Elsevier}, address = {Oxford}, issn = {0269-7491}, doi = {10.1016/j.envpol.2018.02.058}, pages = {253 -- 261}, year = {2018}, abstract = {Pollution by microplastics in aquatic ecosystems is accumulating at an unprecedented scale, emerging as a new surface for biofilm formation and gene exchange. In this study, we determined the permissiveness of aquatic bacteria towards a model antibiotic resistance plasmid, comparing communities that form biofilms on microplastics vs. those that are free-living. We used an exogenous and red-fluorescent E. coli donor strain to introduce the green-fluorescent broad-host-range plasmid pKJKS which encodes for trimethoprim resistance. We demonstrate an increased frequency of plasmid transfer in bacteria associated with microplastics compared to bacteria that are free-living or in natural aggregates. Moreover, comparison of communities grown on polycarbonate filters showed that increased gene exchange occurs in a broad range of phylogenetically-diverse bacteria. Our results indicate horizontal gene transfer in this habitat could distinctly affect the ecology of aquatic microbial communities on a global scale. The spread of antibiotic resistance through microplastics could also have profound consequences for the evolution of aquatic bacteria and poses a neglected hazard for human health.}, language = {en} } @article{AriasAndresKettnerMikietal.2018, author = {Arias Andr{\´e}s, Mar{\´i}a de Jes{\´u}s and Kettner, Marie Therese and Miki, Takeshi and Grossart, Hans-Peter}, title = {Microplastics: New substrates for heterotrophic activity contribute to altering organic matter cycles in aquatic ecosystems}, series = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, volume = {635}, journal = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0048-9697}, doi = {10.1016/j.scitotenv.2018.04.199}, pages = {1152 -- 1159}, year = {2018}, abstract = {Heterotrophic microbes with the capability to process considerable amounts of organic matter can colonize microplastic particles (MP) in aquatic ecosystems. Weather colonization of microorganisms on MP will alter ecological niche and functioning of microbial communities remains still unanswered. Therefore, we compared the functional diversity of biofilms on microplastics when incubated in three lakes in northeastern Germany differing in trophy and limnological features. For all lakes, we compared heterotrophic activities of MP biofilms with those of microorganisms in the surrounding water by using Biolog (R) EcoPlates and assessed their oxygen consumption in microcosm assays with and without MP. The present study found that the total biofilm biomass was higher in the oligo-mesotrophic and dystrophic lakes than in the eutrophic lake. In all lakes, functional diversity profiles of MP biofilms consistently differed from those in the surrounding water. However, solely in the oligo-mesotrophic lake MP biofilms had a higher functional richness compared to the ambient water. These results demonstrate that the functionality and hence the ecological role of MP-associated microbial communities are context-dependent, i.e. different environments lead to substantial changes in biomass build up and heterotrophic activities of MP biofilms. We propose that MP surfaces act as new niches for aquatic microorganisms and that the constantly increasing MP pollution has the potential to globally impact carbon dynamics of pelagic environments by altering heterotrophic activities. (C) 2018 Elsevier B.V. All rights reserved.}, language = {en} } @misc{MuehlenbruchGrossartEigemannetal.2018, author = {M{\"u}hlenbruch, Marco and Grossart, Hans-Peter and Eigemann, Falk and Voss, Maren}, title = {Mini-review: Phytoplankton-derived polysaccharides in the marine environment and their interactions with heterotrophic bacteria}, series = {Environmental microbiology}, volume = {20}, journal = {Environmental microbiology}, number = {8}, publisher = {Wiley}, address = {Hoboken}, issn = {1462-2912}, doi = {10.1111/1462-2920.14302}, pages = {2671 -- 2685}, year = {2018}, abstract = {Within the wealth of molecules constituting marine dissolved organic matter, carbohydrates make up the largest coherent and quantifiable fraction. Their main sources are from primary producers, which release large amounts of photosynthetic products - mainly polysaccharides - directly into the surrounding water via passive and active exudation. The organic carbon and other nutrients derived from these photosynthates enrich the 'phycosphere' and attract heterotrophic bacteria. The rapid uptake and remineralization of dissolved free monosaccharides by heterotrophic bacteria account for the barely detectable levels of these compounds. By contrast, dissolved combined polysaccharides can reach high concentrations, especially during phytoplankton blooms. Polysaccharides are too large to be taken up directly by heterotrophic bacteria, instead requiring hydrolytic cleavage to smaller oligo- or monomers by bacteria with a suitable set of exoenzymes. The release of diverse polysaccharides by various phytoplankton taxa is generally interpreted as the deposition of excess organic material. However, these molecules likely also fulfil distinct, yet not fully understood functions, as inferred from their active modulation in terms of quality and quantity when phytoplankton becomes nutrient limited or is exposed to heterotrophic bacteria. This minireview summarizes current knowledge regarding the exudation and composition of phytoplankton-derived exopolysaccharides and acquisition of these compounds by heterotrophic bacteria.}, language = {en} } @misc{QuiterioMartinsOnofreetal.2018, author = {Quiterio, Ana and Martins, Joao and Onofre, Marcos and Costa, Joao and Rodrigues, Joao Mota and Gerlach, Erin and Scheur, Claude and Herrmann, Christian}, title = {MOBAK 1 assessment in primary physical education}, series = {Perceptual \& motor skills}, volume = {125}, journal = {Perceptual \& motor skills}, number = {6}, publisher = {Sage Publ.}, address = {Thousand Oaks}, issn = {0031-5125}, doi = {10.1177/0031512518804358}, pages = {1055 -- 1069}, year = {2018}, abstract = {Children's motor competence is known to have a determinant role in learning and engaging later in complex motor skills and, thus, in physical activity. The development of adequate motor competence is a central aim of physical education, and assuring that pupils are learning and developing motor competence depends on accurate assessment protocols. The MOBAK 1 test battery is a recent instrument developed to assess motor competence in primary physical education. This study used the MOBAK 1 to explore motor competence levels and gender differences among 249 (Mage = 6.3, SD = 0.5 years; 127 girls and 122 boys) Grade 1 primary school Portuguese children. On independent sample t tests, boys presented higher object movement motor competence than girls (boys: M = 5.8, SD = 1.7; girls: M = 4.0, SD = 1.7; p < .001), while girls were more proficient among self-movement skills (girls: M = 5.1, SD = 1.8; boys: M = 4.3, SD = 1.7; p < .01). On "total motor competence," boys (M = 10.3, SD = 2.6) averaged one point ahead of girls (M = 9.1, SD = 2.9). The percentage of girls in the first quartile of object movement was 18.9\%, while, for "self movement," the percentage of boys in the first quartile was almost double that of girls (30.3\% and 17.3\%, respectively). The confirmatory model to test for construct validity confirmed the assumed theoretical two-factor structure of MOBAK 1 test items in this Portuguese sample. These results support the MOBAK 1 instrument for assessing motor competence and highlighted gender differences, of relevance to intervention efforts.}, language = {en} } @article{GarciaBuckHamiltonetal.2018, author = {Garcia, Sarahi L. and Buck, Moritz and Hamilton, Joshua J. and Wurzbacher, Christian and Grossart, Hans-Peter and McMahon, Katherine D. and Eiler, Alexander}, title = {Model communities hint at promiscuous metabolic linkages between ubiquitous free-living freshwater bacteria}, series = {mSphere}, volume = {3}, journal = {mSphere}, number = {3}, publisher = {American Society for Microbiology}, address = {Washington}, issn = {2379-5042}, doi = {10.1128/mSphere.00202-18}, pages = {8}, year = {2018}, abstract = {Genome streamlining is frequently observed in free-living aquatic microorganisms and results in physiological dependencies between microorganisms. However, we know little about the specificity of these microbial associations. In order to examine the specificity and extent of these associations, we established mixed cultures from three different freshwater environments and analyzed the cooccurrence of organisms using a metagenomic time series. Free-living microorganisms with streamlined genomes lacking multiple biosynthetic pathways showed no clear recurring pattern in their interaction partners. Free-living freshwater bacteria form promiscuous cooperative associations. This notion contrasts with the well-documented high specificities of interaction partners in host-associated bacteria. Considering all data together, we suggest that highly abundant free-living bacterial lineages are functionally versatile in their interactions despite their distinct streamlining tendencies at the single-cell level. This metabolic versatility facilitates interactions with a variable set of community members.}, language = {en} } @article{KaufmannDuffusMitrovaetal.2018, author = {Kaufmann, Hans Paul and Duffus, Benjamin R. and Mitrova, Biljana and Iobbi-Nivol, Chantal and Teutloff, Christian and Nimtz, Manfred and Jaensch, Lothar and Wollenberger, Ulla and Leimk{\"u}hler, Silke}, title = {Modulating the Molybdenum Coordination Sphere of Escherichia coli Trimethylamie N-Oxide Reductase}, series = {Biochemistry}, volume = {57}, journal = {Biochemistry}, number = {7}, publisher = {American Chemical Society}, address = {Washington}, issn = {0006-2960}, doi = {10.1021/acs.biochem.7b01108}, pages = {1130 -- 1143}, year = {2018}, abstract = {The well-studied enterobacterium Escherichia coli present in the human gut can reduce trimethylamine N-oxide (TMAO) to trimethylamine during anaerobic respiration. The TMAO reductase TorA is a monomeric, bis-molybdopterin guanine dinucleotide (bis-MGD) cofactor-containing enzyme that belongs to the dimethyl sulfoxide reductase family of molybdoenzymes. We report on a system for the in vitro reconstitution of TorA with molybdenum cofactors (Moco) from different sources. Higher TMAO reductase activities for TorA were obtained when using Moco sources containing a sulfido ligand at the molybdenum atom. For the first time, we were able to isolate functional bis-MGD from Rhodobacter capsulatus formate dehydrogenase (FDH), which remained intact in its isolated state and after insertion into apo-TorA yielded a highly active enzyme. Combined characterizations of the reconstituted TorA enzymes by electron paramagnetic resonance spectroscopy and direct electrochemistry emphasize that TorA activity can be modified by changes in the Mo coordination sphere. The combination of these results together with studies of amino acid exchanges at the active site led us to propose a novel model for binding of the substrate to the molybdenum atom of TorA.}, language = {en} } @phdthesis{Lawas2018, author = {Lawas, Lovely Mae F.}, title = {Molecular characterization of rice exposed to heat and drought stress at flowering and early grain filling}, pages = {VII, 150}, year = {2018}, language = {en} } @article{JetzschmannYarmanRustametal.2018, author = {Jetzschmann, Katharina J. and Yarman, Aysu and Rustam, L. and Kielb, P. and Urlacher, V. B. and Fischer, A. and Weidinger, I. M. and Wollenberger, Ulla and Scheller, Frieder W.}, title = {Molecular LEGO by domain-imprinting of cytochrome P450 BM3}, series = {Colloids and surfaces : an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin ; B, Biointerfaces}, volume = {164}, journal = {Colloids and surfaces : an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin ; B, Biointerfaces}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0927-7765}, doi = {10.1016/j.colsurfb.2018.01.047}, pages = {240 -- 246}, year = {2018}, abstract = {Hypothesis: Electrosynthesis of the MIP nano-film after binding of the separated domains or holocytochrome BM3 via an engineered anchor should result in domain-specific cavities in the polymer layer. Experiments: Both the two domains and the holo P450 BM3 have been bound prior polymer deposition via a N-terminal engineered his6-anchor to the electrode surface. Each step of MIP preparation was characterized by cyclic voltammetry of the redox-marker ferricyanide. Rebinding after template removal was evaluated by quantifying the suppression of the diffusive permeability of the signal for ferricyanide and by the NADH-dependent reduction of cytochrome c by the reductase domain (BMR). Findings: The working hypothesis is verified by the discrimination of the two domains by the respective MIPs: The holoenzyme P450 BM3 was ca. 5.5 times more effectively recognized by the film imprinted with the oxidase domain (BMO) as compared to the BMR-MIP or the non-imprinted polymer (NIP). Obviously, a cavity is formed during the imprinting process around the hiss-tag-anchored BMR which cannot accommodate the broader BMO or the P450 BM3. The affinity of the MIP towards P450 BM3 is comparable with that to the monomer in solution. The hiss-tagged P450 BM3 binds (30 percent) stronger which shows the additive effect of the interaction with the MIP and the binding to the electrode.}, language = {en} } @misc{RudKaethnerGiesseretal.2018, author = {Rud, R. and K{\"a}thner, Jana and Giesser, J. and Pasche, R. and Giebel, Antje and Selbeck, J{\"o}rn and Shenderey, C. and Fleury, D. and Zude, Manuela and Alchanatis, Victor}, title = {Monitoring spatial variability in an apple orchard under different water regimes}, series = {International Symposium on Sensing Plant Water Status - Methods and Applications in Horticultural Science}, volume = {1197}, journal = {International Symposium on Sensing Plant Water Status - Methods and Applications in Horticultural Science}, publisher = {International Society for Horticultural Science}, address = {The Hague}, isbn = {978-94-62611-93-1}, issn = {0567-7572}, doi = {10.17660/ActaHortic.2018.1197.19}, pages = {139 -- 146}, year = {2018}, abstract = {Precision fruticulture addresses site or tree-adapted crop management. In the present study, soil and tree status, as well as fruit quality at harvest were analysed in a commercial apple (Malus × domestica 'Gala Brookfield'/Pajam1) orchard in a temperate climate. Trees were irrigated in addition to precipitation. Three irrigation levels (0, 50 and 100\%) were applied. Measurements included readings of apparent electrical conductivity of soil (ECa), stem water potential, canopy temperature obtained by infrared camera, and canopy volume estimated by LiDAR and RGB colour imaging. Laboratory analyses of 6 trees per treatment were done on fruit considering the pigment contents and quality parameters. Midday stem water potential (SWP), normalized crop water stress index (CWSI) calculated from thermal data, and fruit yield and quality at harvest were analysed. Spatial patterns of the variability of tree water status were estimated by CWSI imaging supported by SWP readings. CWSI ranged from 0.1 to 0.7 indicating high variability due to irrigation and precipitation. Canopy volume data were less variable. Soil ECa appeared homogeneous in the range of 0 to 4 mS m-1. Fruit harvested in a drought stress zone showed enhanced portion of pheophytin in the chlorophyll pool. Irrigation affected soluble solids content and, hence, the quality of fruit. Overall, results highlighted that spatial variation in orchards can be found even if marginal variability of soil properties can be assumed.}, language = {en} } @article{TuckerBoehningGaeseFaganetal.2018, author = {Tucker, Marlee A. and Boehning-Gaese, Katrin and Fagan, William F. and Fryxell, John M. and Van Moorter, Bram and Alberts, Susan C. and Ali, Abdullahi H. and Allen, Andrew M. and Attias, Nina and Avgar, Tal and Bartlam-Brooks, Hattie and Bayarbaatar, Buuveibaatar and Belant, Jerrold L. and Bertassoni, Alessandra and Beyer, Dean and Bidner, Laura and van Beest, Floris M. and Blake, Stephen and Blaum, Niels and Bracis, Chloe and Brown, Danielle and de Bruyn, P. J. Nico and Cagnacci, Francesca and Calabrese, Justin M. and Camilo-Alves, Constanca and Chamaille-Jammes, Simon and Chiaradia, Andre and Davidson, Sarah C. and Dennis, Todd and DeStefano, Stephen and Diefenbach, Duane and Douglas-Hamilton, Iain and Fennessy, Julian and Fichtel, Claudia and Fiedler, Wolfgang and Fischer, Christina and Fischhoff, Ilya and Fleming, Christen H. and Ford, Adam T. and Fritz, Susanne A. and Gehr, Benedikt and Goheen, Jacob R. and Gurarie, Eliezer and Hebblewhite, Mark and Heurich, Marco and Hewison, A. J. Mark and Hof, Christian and Hurme, Edward and Isbell, Lynne A. and Janssen, Rene and Jeltsch, Florian and Kaczensky, Petra and Kane, Adam and Kappeler, Peter M. and Kauffman, Matthew and Kays, Roland and Kimuyu, Duncan and Koch, Flavia and Kranstauber, Bart and LaPoint, Scott and Leimgruber, Peter and Linnell, John D. C. and Lopez-Lopez, Pascual and Markham, A. Catherine and Mattisson, Jenny and Medici, Emilia Patricia and Mellone, Ugo and Merrill, Evelyn and Mourao, Guilherme de Miranda and Morato, Ronaldo G. and Morellet, Nicolas and Morrison, Thomas A. and Diaz-Munoz, Samuel L. and Mysterud, Atle and Nandintsetseg, Dejid and Nathan, Ran and Niamir, Aidin and Odden, John and Oliveira-Santos, Luiz Gustavo R. and Olson, Kirk A. and Patterson, Bruce D. and de Paula, Rogerio Cunha and Pedrotti, Luca and Reineking, Bjorn and Rimmler, Martin and Rogers, Tracey L. and Rolandsen, Christer Moe and Rosenberry, Christopher S. and Rubenstein, Daniel I. and Safi, Kamran and Said, Sonia and Sapir, Nir and Sawyer, Hall and Schmidt, Niels Martin and Selva, Nuria and Sergiel, Agnieszka and Shiilegdamba, Enkhtuvshin and Silva, Joao Paulo and Singh, Navinder and Solberg, Erling J. and Spiegel, Orr and Strand, Olav and Sundaresan, Siva and Ullmann, Wiebke and Voigt, Ulrich and Wall, Jake and Wattles, David and Wikelski, Martin and Wilmers, Christopher C. and Wilson, John W. and Wittemyer, George and Zieba, Filip and Zwijacz-Kozica, Tomasz and Mueller, Thomas}, title = {Moving in the Anthropocene}, series = {Science}, volume = {359}, journal = {Science}, number = {6374}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.aam9712}, pages = {466 -- 469}, year = {2018}, abstract = {Animal movement is fundamental for ecosystem functioning and species survival, yet the effects of the anthropogenic footprint on animal movements have not been estimated across species. Using a unique GPS-tracking database of 803 individuals across 57 species, we found that movements of mammals in areas with a comparatively high human footprint were on average one-half to one-third the extent of their movements in areas with a low human footprint. We attribute this reduction to behavioral changes of individual animals and to the exclusion of species with long-range movements from areas with higher human impact. Global loss of vagility alters a key ecological trait of animals that affects not only population persistence but also ecosystem processes such as predator-prey interactions, nutrient cycling, and disease transmission.}, language = {en} } @article{SustrHlavačekDuschletal.2018, author = {Sustr, David and Hlav{\´a}ček, Anton{\´i}n and Duschl, Claus and Volodkin, Dmitry}, title = {Multi-fractional analysis of molecular diffusion in polymer multilayers by FRAP}, series = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical}, volume = {122}, journal = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical}, number = {3}, publisher = {American Chemical Society}, address = {Washington}, issn = {1520-6106}, doi = {10.1021/acs.jpcb.7b11051}, pages = {1323 -- 1333}, year = {2018}, abstract = {Comprehensive analysis of the multifractional molecular diffusion provides a deeper understanding of the diffusion phenomenon in the fields of material science, molecular and cell biology, advanced biomaterials, etc. Fluorescence recovery after photobleaching (FRAP) is commonly employed to probe the molecular diffusion. Despite FRAP being a very popular method, it is not easy to assess multifractional molecular diffusion due to limited possibilities of approaches for analysis. Here we present a novel simulation-optimization-based approach (S-approach) that significantly broadens possibilities of the analysis. In the S-approach, possible fluorescence recovery scenarios are primarily simulated and afterward compared with a real measurement while optimizing parameters of a model until a sufficient match is achieved. This makes it possible to reveal multifractional molecular diffusion. Fluorescent latex particles of different size and fluorescein isothiocyanate in an aqueous medium were utilized as test systems. Finally, the S-approach has been used to evaluate diffusion of cytochrome c loaded into multilayers made of hyaluronan and polylysine. Software for evaluation of multifractional molecular diffusion by S-approach has been developed aiming to offer maximal versatility and user-friendly way for analysis.}, language = {en} } @article{ThorpeBarlowSurgetGrobaetal.2018, author = {Thorpe, Roger and Barlow, Axel and Surget-Groba, Yann and Malhotra, Anita}, title = {Multilocus phylogeny, species age and biogeography of the Lesser Antillean anoles}, series = {Molecular phylogenetics and evolution}, volume = {127}, journal = {Molecular phylogenetics and evolution}, publisher = {Elsevier}, address = {San Diego}, issn = {1055-7903}, doi = {10.1016/j.ympev.2018.06.014}, pages = {682 -- 695}, year = {2018}, abstract = {Lesser Antillean anoles provide classic examples of island radiations. A detailed knowledge of their phylogeny and biogeography, in particular how the age of species relate to the ages of their respective islands and the age of their radiation, is essential to elucidate the tempo and mechanisms of these radiations. We conduct a large-scale phylogenetic and phylogeographic investigation of the Lesser Antillean anoles using multiple genetic markers and comprehensive geographic sampling of most species. The multilocus phylogeny gives the first well-supported reconstruction of the interspecific relationships, and the densely sampled phylogeography reveals a highly dynamic system, driven by overseas dispersal, with several alternative post-dispersal colonisation trajectories. These radiations currently occupy both the outer-older (Eocene to Miocene), and the inner-younger (< 8mybp), Lesser Antillean arcs. The origin of these radiations corresponds with the age of the ancient outer arc. However, the ages of extant species (compatible with the age of other small terrestrial amniotes) are much younger, about the age of the emergence of the younger arc, or less. The difference between the age of the radiation and the age of the extant species suggests substantial species turnover on older arc islands, most likely through competitive replacement. Although extant anoles are extremely speciose, this may represent only a fraction of their biodiversity over time. While paraphyly enables us to infer several recent colonization events, the absence of the younger arc islands and extant species at the earlier and middle stages of the radiation, does not allow the earlier inter-island colonization to be reliably inferred. Reproductive isolation in allopatry takes a very considerable time (in excess of 8my) and sympatry appears to occur only late in the radiation. The resolved multilocus phylogeny, and relative species age, raise difficulties for some earlier hypotheses regarding size evolution, and provide no evidence for within-island speciation.}, language = {en} } @article{DeyBergmannCuellarCamachoetal.2018, author = {Dey, Pradip and Bergmann, Tobias and Cuellar-Camacho, Jose Luis and Ehrmann, Svenja and Chowdhury, Mohammad Suman and Zhang, Minze and Dahmani, Ismail and Haag, Rainer and Azad, Walid}, title = {Multivalent flexible nanogels exhibit broad-spectrum antiviral activity by blocking virus entry}, series = {ACS nano}, volume = {12}, journal = {ACS nano}, number = {7}, publisher = {American Chemical Society}, address = {Washington}, issn = {1936-0851}, doi = {10.1021/acsnano.8b01616}, pages = {6429 -- 6442}, year = {2018}, abstract = {The entry process of viruses into host cells is complex and involves stable but transient multivalent interactions with different cell surface receptors. The initial contact of several viruses begins with attachment to heparan sulfate (HS) proteoglycans on the cell surface, which results in a cascade of events that end up with virus entry. The development of antiviral agents based on multivalent interactions to shield virus particles and block initial interactions with cellular receptors has attracted attention in antiviral research. Here, we designed nanogels with different degrees of flexibility based on dendritic polyglycerol sulfate to mimic cellular HS. The designed nanogels are nontoxic and broad-spectrum, can multivalently interact with viral glycoproteins, shield virus surfaces, and efficiently block infection. We also visualized virus-nanogel interactions as well as the uptake of nanogels by the cells through clathrin-mediated endocytosis using confocal microscopy. As many human viruses attach to the cells through HS moieties, we introduce our flexible nanogels as robust inhibitors for these viruses.}, language = {en} } @article{HuLudsinMartinetal.2018, author = {Hu, Chenlin and Ludsin, Stuart A. and Martin, Jay F. and Dittmann, Elke and Lee, Jiyoung}, title = {Mycosporine-like amino acids (MAAs)-producing Microcystis in Lake Erie}, series = {Harmful algae}, volume = {77}, journal = {Harmful algae}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1568-9883}, doi = {10.1016/j.hal.2018.05.010}, pages = {1 -- 10}, year = {2018}, abstract = {Mycosporine-like amino acids (MAAs) are UV-absorbing metabolites found in cyanobacteria. While their protective role from UV in Microcystis has been studied in a laboratory setting, a full understanding of the ecology of MAA-producing versus non-MAA-producing Microcystis in natural environments is lacking. This study presents a new tool for quantifying MAA-producing Microcystis and applies it to obtain insight into the dynamics of MAA-producing and non-MAA-producing Microcystis in Lake Erie. This study first developed a sensitive, specific TaqMan real-time PCR assay that targets MAA synthetase gene C (mysC) of Microcystis (quantitative range: 1.7 × 101 to 1.7 × 107 copies/assay). Using this assay, Microcystis was quantified with a MAA-producing genotype (mysC+) in water samples (n = 96) collected during March-November 2013 from 21 Lake Erie sites (undetectable - 8.4 × 106 copies/ml). The mysC+ genotype comprised 0.3-37.8\% of the Microcystis population in Lake Erie during the study period. The proportion of the mysC+ genotype during high solar UV irradiation periods (mean = 18.8\%) was significantly higher than that during lower UV periods (mean = 9.7\%). Among the MAAs, shinorine (major) and porphyra (minor) were detected with HPLC-PDA-MS/MS from the Microcystis isolates and water samples. However, no significant difference in the MAA concentrations existed between higher and lower solar UV periods when the MAA concentrations were normalized with Microcystis mysC abundance. Collectively, this study's findings suggest that the MAA-producing Microcystis are present in Lake Erie, and they may be ecologically advantageous under high UV conditions, but not to the point that they exclusively predominate over the non-MAA-producers.}, language = {en} } @article{KurzeHeinkenFartmann2018, author = {Kurze, Susanne and Heinken, Thilo and Fartmann, Thomas}, title = {Nitrogen enrichment in host plants increases the mortality of common Lepidoptera species}, series = {Oecologia}, volume = {188}, journal = {Oecologia}, number = {4}, publisher = {Springer}, address = {New York}, issn = {0029-8549}, doi = {10.1007/s00442-018-4266-4}, pages = {1227 -- 1237}, year = {2018}, abstract = {The recent decline of Lepidoptera species strongly correlates with the increasing intensification of agriculture in Western and Central Europe. However, the effects of changed host-plant quality through agricultural fertilization on this insect group remain largely unexplored. For this reason, we tested the response of six common butterfly and moth species to host-plant fertilization using fertilizer quantities usually applied in agriculture. The larvae of the study species Coenonympha pamphilus, Lycaena phlaeas, Lycaena tityrus, Pararge aegeria, Rivula sericealis and Timandra comae were distributed according to a split-brood design to three host-plant treatments comprising one control treatment without fertilization and two fertilization treatments with an input of 150 and 300kgNha(-1)year(-1), respectively. In L.tityrus, we used two additional fertilization treatments with an input of 30 and 90kgNha(-1)year(-1), respectively. Fertilization increased the nitrogen concentration of both host-plant species, Rumex acetosella and Poa pratensis, and decreased the survival of larvae in all six Lepidoptera species by at least one-third, without clear differences between sorrel- and grass-feeding species. The declining survival rate in all species contradicts the well-accepted nitrogen-limitation hypothesis, which predicts a positive response in species performance to dietary nitrogen content. In contrast, this study presents the first evidence that current fertilization quantities in agriculture exceed the physiological tolerance of common Lepidoptera species. Our results suggest that (1) the negative effect of plant fertilization on Lepidoptera has previously been underestimated and (2) that it contributes to the range-wide decline of Lepidoptera.}, language = {en} } @article{SchefflerKruetzfeldtDasguptaetal.2018, author = {Scheffler, Christiane and Kruetzfeldt, Louisa-Marie and Dasgupta, Parasmani and Hermanussen, Michael}, title = {No association between fat tissue and height in 5019 children and adolescents, measured between 1982 and 2011 in Kolkata/India}, series = {Journal of biological and clinical anthropology}, volume = {74}, journal = {Journal of biological and clinical anthropology}, number = {5}, publisher = {Schweizerbart}, address = {Stuttgart}, issn = {0003-5548}, doi = {10.1127/anthranz/2018/0827}, pages = {403 -- 411}, year = {2018}, abstract = {Body height has traditionally been looked upon as a mirror of the condition of society, short height being an indicator of poor nutritional status, poor education, and low social status and income. This view has recently been questioned. We aimed to quantify the effects of nutrition, education, sibship size, and household income, factors that are conventionally considered to be related to child growth, on body height of children and adolescents raised under urban Indian conditions. Sample and methods: We re-analyzed several anthropometric measurements and questionnaires with questions on sibship size, fathers' and mother's education, and monthly family expenditure, from two cross-sectional growth studies performed in Kolkata, India. The first Kolkata Growth Study (KG1) took place in 1982-1983, with data on 825 Bengali boys aged 7 to 16 years; and the second Kolkata Growth Study (KG2) between 1999 and 2011 with data of 1999 boys aged 7 to 21 years from Bengali Hindu families, and data of 2195 girls obtained between 2005 and 2011. Results: Indian children showed positive insignificant secular trends in height and a significant secular trend in weight and BMI between between 1982 and 2011. Yet, multiple regression analysis failed to detect an association between nutritional status (expressed in terms of skinfold thickness), monthly family expenditure and sibship size with body height of these children. The analysis only revealed an influence of parental education on female, but not on male height. Conclusion: We failed to detect influences of nutrition, sibship size, and monthly family expenditure on body height in a large sample of children and adolescents raised in Kolkata, India, between 1982 and 2011. We found a mild positive association between parental education and girls' height. The data question current concepts regarding the impact of nutrition, and household and economic factors on growth, but instead underscore the effect of parental education.}, language = {en} } @article{EhrlichGaedke2018, author = {Ehrlich, Elias and Gaedke, Ursula}, title = {Not attackable or not crackable}, series = {Ecology and Evolution}, volume = {8}, journal = {Ecology and Evolution}, number = {13}, publisher = {Wiley}, issn = {2045-7758}, doi = {10.1002/ece3.4145}, pages = {6625 -- 6637}, year = {2018}, abstract = {It is well-known that prey species often face trade-offs between defense against predation and competitiveness, enabling predator-mediated coexistence. However, we lack an understanding of how the large variety of different defense traits with different competition costs affects coexistence and population dynamics. Our study focusses on two general defense mechanisms, that is, pre-attack (e.g., camouflage)and post-attack defenses (e.g., weaponry) that act at different phases of the predator—prey interaction. We consider a food web model with one predator, two prey types and one resource. One prey type is undefended, while the other one is pre-or post-attack defended paying costs either by a higher half-saturation constant for resource uptake or a lower maximum growth rate. We show that post-attack defenses promote prey coexistence and stabilize the population dynamics more strongly than pre-attack defenses by interfering with the predator's functional response: Because the predator spends time handling "noncrackable" prey, the undefended prey is indirectly facilitated. A high half-saturation constant as defense costs promotes coexistence more and stabilizes the dynamics less than a low maximum growth rate. The former imposes high costs at low resource concentrations but allows for temporally high growth rates at predator-induced resource peaks preventing the extinction of the defended prey. We evaluate the effects of the different defense mechanisms and costs on coexistence under different enrichment levels in order to vary the importance of bottom-up and top-down control of the prey community.}, language = {en} } @article{HilgersHartmannHofreiteretal.2018, author = {Hilgers, Leon and Hartmann, Stefanie and Hofreiter, Michael and von Rintelen, Thomas}, title = {Novel Genes, Ancient Genes, and Gene Co-Option Contributed o the Genetic Basis of the Radula, a Molluscan Innovation}, series = {Molecular biology and evolution}, volume = {35}, journal = {Molecular biology and evolution}, number = {7}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0737-4038}, doi = {10.1093/molbev/msy052}, pages = {1638 -- 1652}, year = {2018}, abstract = {The radula is the central foraging organ and apomorphy of the Mollusca. However, in contrast to other innovations, including the mollusk shell, genetic underpinnings of radula formation remain virtually unknown. Here, we present the first radula formative tissue transcriptome using the viviparous freshwater snail Tylomelania sarasinorum and compare it to foot tissue and the shell-building mantle of the same species. We combine differential expression, functional enrichment, and phylostratigraphic analyses to identify both specific and shared genetic underpinnings of the three tissues as well as their dominant functions and evolutionary origins. Gene expression of radula formative tissue is very distinct, but nevertheless more similar to mantle than to foot. Generally, the genetic bases of both radula and shell formation were shaped by novel orchestration of preexisting genes and continuous evolution of novel genes. A significantly increased proportion of radula-specific genes originated since the origin of stem-mollusks, indicating that novel genes were especially important for radula evolution. Genes with radula-specific expression in our study are frequently also expressed during the formation of other lophotrochozoan hard structures, like chaetae (hes1, arx), spicules (gbx), and shells of mollusks (gbx, heph) and brachiopods (heph), suggesting gene co-option for hard structure formation. Finally, a Lophotrochozoa-specific chitin synthase with a myosin motor domain (CS-MD), which is expressed during mollusk and brachiopod shell formation, had radula-specific expression in our study. CS-MD potentially facilitated the construction of complex chitinous structures and points at the potential of molecular novelties to promote the evolution of different morphological innovations.}, language = {en} } @article{SchibalskiKoernerMaieretal.2018, author = {Schibalski, Anett and K{\"o}rner, Katrin and Maier, Martin and Jeltsch, Florian and Schr{\"o}der, Boris}, title = {Novel model coupling approach for resilience analysis of coastal plant communities}, series = {Ecological applications : a publication of the Ecological Society of America}, volume = {28}, journal = {Ecological applications : a publication of the Ecological Society of America}, number = {6}, publisher = {Wiley}, address = {Hoboken}, issn = {1051-0761}, doi = {10.1002/eap.1758}, pages = {1640 -- 1654}, year = {2018}, abstract = {Resilience is a major research focus covering a wide range of topics from biodiversity conservation to ecosystem (service) management. Model simulations can assess the resilience of, for example, plant species, measured as the return time to conditions prior to a disturbance. This requires process-based models (PBM) that implement relevant processes such as regeneration and reproduction and thus successfully reproduce transient dynamics after disturbances. Such models are often complex and thus limited to either short-term or small-scale applications, whereas many research questions require species predictions across larger spatial and temporal scales. We suggest a framework to couple a PBM and a statistical species distribution model (SDM), which transfers the results of a resilience analysis by the PBM to SDM predictions. The resulting hybrid model combines the advantages of both approaches: the convenient applicability of SDMs and the relevant process detail of PBMs in abrupt environmental change situations. First, we simulate dynamic responses of species communities to a disturbance event with a PBM. We aggregate the response behavior in two resilience metrics: return time and amplitude of the response peak. These metrics are then used to complement long-term SDM projections with dynamic short-term responses to disturbance. To illustrate our framework, we investigate the effect of abrupt short-term groundwater level and salinity changes on coastal vegetation at the German Baltic Sea. We found two example species to be largely resilient, and, consequently, modifications of SDM predictions consisted mostly of smoothing out peaks in the occurrence probability that were not confirmed by the PBM. Discrepancies between SDM- and PBM-predicted species responses were caused by community dynamics simulated in the PBM and absent from the SDM. Although demonstrated with boosted regression trees (SDM) and an existing individual-based model, IBC-grass (PBM), our flexible framework can easily be applied to other PBM and SDM types, as well as other definitions of short-term disturbances or long-term trends of environmental change. Thus, our framework allows accounting for biological feedbacks in the response to short- and long-term environmental changes as a major advancement in predictive vegetation modeling.}, language = {en} }