@misc{AutenriethErnstDeavilleetal.2018, author = {Autenrieth, Marijke and Ernst, Anja and Deaville, Rob and Demaret, Fabien and Ijsseldijk, Lonneke L. and Siebert, Ursula and Tiedemann, Ralph}, title = {Putative origin and maternal relatedness of male sperm whales (Physeter macrocephalus) recently stranded in the North Sea}, series = {Mammalian biology = Zeitschrift f{\"u}r S{\"a}ugetierkunde}, volume = {88}, journal = {Mammalian biology = Zeitschrift f{\"u}r S{\"a}ugetierkunde}, publisher = {Elsevier}, address = {M{\"u}nchen}, issn = {1616-5047}, doi = {10.1016/j.mambio.2017.09.003}, pages = {156 -- 160}, year = {2018}, abstract = {The globally distributed sperm whale (Physeter macrocephalus) has a partly matrilineal social structure with predominant male dispersal. At the beginning of 2016, a total of 30 male sperm whales stranded in five different countries bordering the southern North Sea. It has been postulated that these individuals were on a migration route from the north to warmer temperate and tropical waters where females live in social groups. By including samples from four countries (n = 27), this event provided a unique chance to genetically investigate the maternal relatedness and the putative origin of these temporally and spatially co-occuring male sperm whales. To utilize existing genetic resources, we sequenced 422 bp of the mitochondrial control region, a molecular marker for which sperm whale data are readily available from the entire distribution range. Based on four single nucleotide polymorphisms (SNPs) within the mitochondrial control region, five matrilines could be distinguished within the stranded specimens, four of which matched published haplotypes previously described in the Atlantic. Among these male sperm whales, multiple matrilineal lineages co-occur. We analyzed the population differentiation and could show that the genetic diversity of these male sperm whales is comparable to the genetic diversity in sperm whales from the entire Atlantic Ocean. We confirm that within this stranding event, males do not comprise maternally related individuals and apparently include assemblages of individuals from different geographic regions. (c) 2017 Deutsche Gesellschaft fur Saugetierkunde. Published by Elsevier GmbH. All rights reserved.}, language = {en} } @article{LiuLaemkeLinetal.2018, author = {Liu, Hsiang-chin and L{\"a}mke, J{\"o}rn and Lin, Siou-ying and Hung, Meng-Ju and Liu, Kuan-Ming and Charng, Yee-yung and B{\"a}urle, Isabel}, title = {Distinct heat shock factors and chromatin modifications mediate the organ-autonomous transcriptional memory of heat stress}, series = {The plant journal}, volume = {95}, journal = {The plant journal}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {0960-7412}, doi = {10.1111/tpj.13958}, pages = {401 -- 413}, year = {2018}, abstract = {Plants can be primed by a stress cue to mount a faster or stronger activation of defense mechanisms upon subsequent stress. A crucial component of such stress priming is the modified reactivation of genes upon recurring stress; however, the underlying mechanisms of this are poorly understood. Here, we report that dozens of Arabidopsis thaliana genes display transcriptional memory, i.e. stronger upregulation after a recurring heat stress, that lasts for at least 3 days. We define a set of transcription factors involved in this memory response and show that the transcriptional memory results in enhanced transcriptional activation within minutes of the onset of a heat stress cue. Further, we show that the transcriptional memory is active in all tissues. It may last for up to a week, and is associated during this time with histone H3 lysine 4 hypermethylation. This transcriptional memory is cis-encoded, as we identify a promoter fragment that confers memory onto a heterologous gene. In summary, heat-induced transcriptional memory is a widespread and sustained response, and our study provides a framework for future mechanistic studies of somatic stress memory in higher plants.}, language = {en} } @article{BaeurleBrzezinkaAltmann2018, author = {B{\"a}urle, Isabel and Brzezinka, Krzysztof and Altmann, Simone}, title = {BRUSHY1/TONSOKU/MGOUN3 is required for heat stress memory}, series = {Plant Cell \& Environment}, volume = {42}, journal = {Plant Cell \& Environment}, doi = {10.1111/pce.13365}, pages = {771 -- 781}, year = {2018}, abstract = {Plants encounter biotic and abiotic stresses many times during their life cycle and this limits their productivity. Moderate heat stress (HS) primes a plant to survive higher temperatures that are lethal in the na{\"i}ve state. Once temperature stress subsides, the memory of the priming event is actively retained for several days preparing the plant to better cope with recurring HS. Recently, chromatin regulation at different levels has been implicated in HS memory. Here, we report that the chromatin protein BRUSHY1 (BRU1)/TONSOKU/MGOUN3 plays a role in the HS memory in Arabidopsis thaliana. BRU1 is also involved in transcriptional gene silencing and DNA damage repair. This corresponds with the functions of its mammalian orthologue TONSOKU-LIKE/NFΚBIL2. During HS memory, BRU1 is required to maintain sustained induction of HS memory-associated genes, whereas it is dispensable for the acquisition of thermotolerance. In summary, we report that BRU1 is required for HS memory in A. thaliana, and propose a model where BRU1 mediates the epigenetic inheritance of chromatin states across DNA replication and cell division.}, language = {en} } @article{PitzenAskarzadaGraefetal.2018, author = {Pitzen, Valentin and Askarzada, Sophie and Gr{\"a}f, Ralph and Meyer, Irene}, title = {CDK5RAP2 Is an Essential Scaffolding Protein of the Corona of the Dictyostelium Centrosome}, series = {Cells}, volume = {7}, journal = {Cells}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {2073-4409}, doi = {10.3390/cells7040032}, pages = {17}, year = {2018}, abstract = {Dictyostelium centrosomes consist of a nucleus-associated cylindrical, three-layered core structure surrounded by a corona consisting of microtubule-nucleation complexes embedded in a scaffold of large coiled-coil proteins. One of them is the conserved CDK5RAP2 protein. Here we focus on the role of Dictyostelium CDK5RAP2 for maintenance of centrosome integrity, its interaction partners and its dynamic behavior during interphase and mitosis. GFP-CDK5RAP2 is present at the centrosome during the entire cell cycle except from a short period during prophase, correlating with the normal dissociation of the corona at this stage. RNAi depletion of CDK5RAP2 results in complete disorganization of centrosomes and microtubules suggesting that CDK5RAP2 is required for organization of the corona and its association to the core structure. This is in line with the observation that overexpressed GFP-CDK5RAP2 elicited supernumerary cytosolic MTOCs. The phenotype of CDK5RAP2 depletion was very reminiscent of that observed upon depletion of CP148, another scaffolding protein of the corona. BioID interaction assays revealed an interaction of CDK5RAP2 not only with the corona markers CP148, gamma-tubulin, and CP248, but also with the core components Cep192, CP75, and CP91. Furthermore, protein localization studies in both depletion strains revealed that CP148 and CDK5RAP2 cooperate in corona organization.}, language = {en} } @misc{Graef2018, author = {Gr{\"a}f, Ralph}, title = {Comparative Biology of Centrosomal Structures in Eukaryotes}, series = {Cells}, volume = {7}, journal = {Cells}, number = {11}, publisher = {MDPI}, address = {Basel}, issn = {2073-4409}, doi = {10.3390/cells7110202}, pages = {9}, year = {2018}, abstract = {The centrosome is not only the largest and most sophisticated protein complex within a eukaryotic cell, in the light of evolution, it is also one of its most ancient organelles. This special issue of "Cells" features representatives of three main, structurally divergent centrosome types, i.e., centriole-containing centrosomes, yeast spindle pole bodies (SPBs), and amoebozoan nucleus-associated bodies (NABs). Here, I discuss their evolution and their key-functions in microtubule organization, mitosis, and cytokinesis. Furthermore, I provide a brief history of centrosome research and highlight recently emerged topics, such as the role of centrioles in ciliogenesis, the relationship of centrosomes and centriolar satellites, the integration of centrosomal structures into the nuclear envelope and the involvement of centrosomal components in non-centrosomal microtubule organization.}, language = {en} } @article{RyllEidenHeuseretal.2018, author = {Ryll, Rene and Eiden, Martin and Heuser, Elisa and Weinhardt, Markus and Ziege, Madlen and Hoeper, Dirk and Groschup, Martin H. and Heckel, Gerald and Johne, Reimar and Ulrich, Rainer G.}, title = {Hepatitis E virus in feral rabbits along a rural-urban transect in Central Germany}, series = {Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics and infectious diseases (MEEGID)}, volume = {61}, journal = {Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics and infectious diseases (MEEGID)}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1567-1348}, doi = {10.1016/j.meegid.2018.03.019}, pages = {155 -- 159}, year = {2018}, abstract = {Rabbit associated genotype 3 hepatitis E virus (HEV) strains were detected in feral, pet and farm rabbits in different parts of the world since 2009 and recently also in human patients. Here, we report a serological and molecular survey on 72 feral rabbits, collected along a rural-urban transect in and next to Frankfurt am Main, Central Germany. ELISA investigations revealed in 25 of 72 (34.7\%) animals HEV-specific antibodies. HEV derived RNA was detected in 18 of 72 (25\%) animals by reverse transcription-polymerase chain reaction assay. The complete genomes from two rabbitHEV-strains, one from a rural site and the other from an inner-city area, were generated by a combination of high-throughput sequencing, a primer walking approach and 5′- and 3′- rapid amplification of cDNA ends. Phylogenetic analysis of open reading frame (ORF)1-derived partial and complete ORF1/ORF2 concatenated coding sequences indicated their similarity to rabbit-associated HEV strains. The partial sequences revealed one cluster of closely-related rabbitHEV sequences from the urban trapping sites that is well separated from several clusters representing rabbitHEV sequences from rural trapping sites. The complete genome sequences of the two novel strains indicated similarities of 75.6-86.4\% to the other 17 rabbitHEV sequences; the amino acid sequence identity of the concatenated ORF1/ORF2-encoded proteins reached 89.0-93.1\%. The detection of rabbitHEV in an inner-city area with a high human population density suggests a high risk of potential human infection with the zoonotic rabbitHEV, either by direct or indirect contact with infected animals. Therefore, future investigations on the occurrence and frequency of human infections with rabbitHEV are warranted in populations with different contact to rabbits.}, language = {en} } @article{MontiglioDammhahnMessieretal.2018, author = {Montiglio, Pierre-Olivier and Dammhahn, Melanie and Messier, Gabrielle Dubuc and Reale, Denis}, title = {The pace-of-life syndrome revisited}, series = {Behavioral ecology and sociobiology}, volume = {72}, journal = {Behavioral ecology and sociobiology}, number = {7}, publisher = {Springer}, address = {New York}, issn = {0340-5443}, doi = {10.1007/s00265-018-2526-2}, pages = {9}, year = {2018}, abstract = {The pace-of-life syndrome (i.e., POLS) hypothesis posits that behavioral and physiological traits mediate the trade-off between current and future reproduction. This hypothesis predicts that life history, behavioral, and physiological traits will covary under clearly defined conditions. Empirical tests are equivocal and suggest that the conditions necessary for the POLS to emerge are not always met. We nuance and expand the POLS hypothesis to consider alternative relationships among behavior, physiology, and life history. These relationships will vary with the nature of predation risk, the challenges posed by resource acquisition, and the energy management strategies of organisms. We also discuss how the plastic response of behavior, physiology, and life history to changes in ecological conditions and variation in resource acquisition among individuals determine our ability to detect a fast-slow pace of life in the first place or associations among these traits. Future empirical studies will provide most insights on the coevolution among behavior, physiology, and life history by investigating these traits both at the genetic and phenotypic levels in varying types of predation regimes and levels of resource abundance.}, language = {en} } @article{LaemkeUnsicker2018, author = {L{\"a}mke, J{\"o}rn. S. and Unsicker, Sybille Barbara}, title = {Phytochemical variation in treetops}, series = {Oecologia}, volume = {187}, journal = {Oecologia}, number = {2}, publisher = {Springer}, address = {New York}, issn = {0029-8549}, doi = {10.1007/s00442-018-4087-5}, pages = {377 -- 388}, year = {2018}, abstract = {The interaction of plants and their herbivorous opponents has shaped the evolution of an intricate network of defences and counter-defences for millions of years. The result is an astounding diversity of phytochemicals and plant strategies to fight and survive. Trees are specifically challenged to resist the plethora of abiotic and biotic stresses due to their dimension and longevity. Here, we review the recent literature on the consequences of phytochemical variation in trees on insect-tree-herbivore interactions. We discuss the importance of genotypic and phenotypic variation in tree defence against insects and suggest some molecular mechanisms that might bring about phytochemical diversity in crowns of individual trees.}, language = {en} } @article{vanVelzenGaedke2018, author = {van Velzen, Ellen and Gaedke, Ursula}, title = {Reversed predator-prey cycles are driven by the amplitude of prey oscillations}, series = {Ecology and evolution}, volume = {8}, journal = {Ecology and evolution}, number = {12}, publisher = {Wiley}, address = {Hoboken}, issn = {2045-7758}, doi = {10.1002/ece3.4184}, pages = {6317 -- 6329}, year = {2018}, abstract = {Ecoevolutionary feedbacks in predator-prey systems have been shown to qualitatively alter predator-prey dynamics. As a striking example, defense-offense coevolution can reverse predator-prey cycles, so predator peaks precede prey peaks rather than vice versa. However, this has only rarely been shown in either model studies or empirical systems. Here, we investigate whether this rarity is a fundamental feature of reversed cycles by exploring under which conditions they should be found. For this, we first identify potential conditions and parameter ranges most likely to result in reversed cycles by developing a new measure, the effective prey biomass, which combines prey biomass with prey and predator traits, and represents the prey biomass as perceived by the predator. We show that predator dynamics always follow the dynamics of the effective prey biomass with a classic 1/4-phase lag. From this key insight, it follows that in reversed cycles (i.e., -lag), the dynamics of the actual and the effective prey biomass must be in antiphase with each other, that is, the effective prey biomass must be highest when actual prey biomass is lowest, and vice versa. Based on this, we predict that reversed cycles should be found mainly when oscillations in actual prey biomass are small and thus have limited impact on the dynamics of the effective prey biomass, which are mainly driven by trait changes. We then confirm this prediction using numerical simulations of a coevolutionary predator-prey system, varying the amplitude of the oscillations in prey biomass: Reversed cycles are consistently associated with regions of parameter space leading to small-amplitude prey oscillations, offering a specific and highly testable prediction for conditions under which reversed cycles should occur in natural systems.}, language = {en} } @misc{WozniakSicard2018, author = {Wozniak, Natalia Joanna and Sicard, Adrien}, title = {Evolvability of flower geometry}, series = {Seminars in cell \& developmental biology}, volume = {79}, journal = {Seminars in cell \& developmental biology}, publisher = {Elsevier}, address = {London}, issn = {1084-9521}, doi = {10.1016/j.semcdb.2017.09.028}, pages = {3 -- 15}, year = {2018}, abstract = {Flowers represent a key innovation during plant evolution. Driven by reproductive optimization, evolution of flower morphology has been central in boosting species diversification. In most cases, this has happened through specialized interactions with animal pollinators and subsequent reduction of gene flow between specialized morphs. While radiation has led to an enormous variability in flower forms and sizes, recurrent evolutionary patterns can be observed. Here, we discuss the targets of selection involved in major trends of pollinator-driven flower evolution. We review recent findings on their adaptive values, developmental grounds and genetic bases, in an attempt to better understand the repeated nature of pollinator-driven flower evolution. This analysis highlights how structural innovation can provide flexibility in phenotypic evolution, adaptation and speciation. (C) 2017 Elsevier Ltd. All rights reserved.}, language = {en} } @article{HuLudsinMartinetal.2018, author = {Hu, Chenlin and Ludsin, Stuart A. and Martin, Jay F. and Dittmann, Elke and Lee, Jiyoung}, title = {Mycosporine-like amino acids (MAAs)-producing Microcystis in Lake Erie}, series = {Harmful algae}, volume = {77}, journal = {Harmful algae}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1568-9883}, doi = {10.1016/j.hal.2018.05.010}, pages = {1 -- 10}, year = {2018}, abstract = {Mycosporine-like amino acids (MAAs) are UV-absorbing metabolites found in cyanobacteria. While their protective role from UV in Microcystis has been studied in a laboratory setting, a full understanding of the ecology of MAA-producing versus non-MAA-producing Microcystis in natural environments is lacking. This study presents a new tool for quantifying MAA-producing Microcystis and applies it to obtain insight into the dynamics of MAA-producing and non-MAA-producing Microcystis in Lake Erie. This study first developed a sensitive, specific TaqMan real-time PCR assay that targets MAA synthetase gene C (mysC) of Microcystis (quantitative range: 1.7 × 101 to 1.7 × 107 copies/assay). Using this assay, Microcystis was quantified with a MAA-producing genotype (mysC+) in water samples (n = 96) collected during March-November 2013 from 21 Lake Erie sites (undetectable - 8.4 × 106 copies/ml). The mysC+ genotype comprised 0.3-37.8\% of the Microcystis population in Lake Erie during the study period. The proportion of the mysC+ genotype during high solar UV irradiation periods (mean = 18.8\%) was significantly higher than that during lower UV periods (mean = 9.7\%). Among the MAAs, shinorine (major) and porphyra (minor) were detected with HPLC-PDA-MS/MS from the Microcystis isolates and water samples. However, no significant difference in the MAA concentrations existed between higher and lower solar UV periods when the MAA concentrations were normalized with Microcystis mysC abundance. Collectively, this study's findings suggest that the MAA-producing Microcystis are present in Lake Erie, and they may be ecologically advantageous under high UV conditions, but not to the point that they exclusively predominate over the non-MAA-producers.}, language = {en} } @article{HorreoPelaezSuarezetal.2018, author = {Horreo, Jose L. and Pelaez, Maria L. and Suarez, Teresa and Breedveld, Merel Cathelijne and Heulin, Benoit and Surget-Groba, Yann and Oksanen, Tuula A. and Fitze, Patrick S.}, title = {Phylogeography, evolutionary history and effects of glaciations in a species (Zootoca vivipara) inhabiting multiple biogeographic regions}, series = {Journal of biogeography}, volume = {45}, journal = {Journal of biogeography}, number = {7}, publisher = {Wiley}, address = {Hoboken}, issn = {0305-0270}, doi = {10.1111/jbi.13349}, pages = {1616 -- 1627}, year = {2018}, abstract = {Location Eurasia. Methods We generated the largest molecular dataset to date of Z. vivipara, ran phylogenetic analyses, reconstructed its evolutionary history, determined the location of glacial refuges and reconstructed ancestral biogeographic regions. Results The phylogenetic analyses revealed a complex evolutionary history, driven by expansions and contractions of the distribution due to glacials and interglacials, and the colonization of new biogeographic regions by all lineages of Z. vivipara. Many glacial refugia were detected, most were located close to the southern limit of the Last Glacial Maximum. Two subclades recolonized large areas covered by permafrost during the last glaciation: namely, Western and Northern Europe and North-Eastern Europe and Asia.}, language = {en} } @article{PoradaVanStanKleidon2018, author = {Porada, Philipp and Van Stan, John T. and Kleidon, Axel}, title = {Significant contribution of non-vascular vegetation to global rainfall interception}, series = {Nature geoscience}, volume = {11}, journal = {Nature geoscience}, number = {8}, publisher = {Nature Publ. Group}, address = {New York}, issn = {1752-0894}, doi = {10.1038/s41561-018-0176-7}, pages = {563 -- +}, year = {2018}, abstract = {Non-vascular vegetation has been shown to capture considerable quantities of rainfall, which may affect the hydrological cycle and climate at continental scales. However, direct measurements of rainfall interception by non-vascular vegetation are confined to the local scale, which makes extrapolation to the global effects difficult. Here we use a process-based numerical simulation model to show that non-vascular vegetation contributes substantially to global rainfall interception. Inferred average global water storage capacity including non-vascular vegetation was 2.7 mm, which is consistent with field observations and markedly exceeds the values used in land surface models, which average around 0.4 mm. Consequently, we find that the total evaporation of free water from the forest canopy and soil surface increases by 61\% when non-vascular vegetation is included, resulting in a global rainfall interception flux that is 22\% of the terrestrial evaporative flux (compared with only 12\% for simulations where interception excludes non-vascular vegetation). We thus conclude that non-vascular vegetation is likely to significantly influence global rainfall interception and evaporation with consequences for regional-to continental-scale hydrologic cycling and climate.}, language = {en} } @article{KobelHoellerGleyJochinkeetal.2018, author = {Kobel-H{\"o}ller, Konstanze and Gley, Kevin and Jochinke, Janina and Heider, Kristina and Fritsch, Verena Nadin and Ha Viet Duc Nguyen, and Lischke, Timo and Radek, Renate and Baumgrass, Ria and Mutzel, Rupert and Thewes, Sascha}, title = {Calcineurin Silencing in Dictyostelium discoideum Leads to Cellular Alterations Affecting Mitochondria, Gene Expression, and Oxidative Stress Response}, series = {Protist}, volume = {169}, journal = {Protist}, number = {4}, publisher = {Elsevier GMBH}, address = {M{\"u}nchen}, issn = {1434-4610}, doi = {10.1016/j.protis.2018.04.004}, pages = {584 -- 602}, year = {2018}, abstract = {Calcineurin is involved in development and cell differentiation of the social amoeba Dictyostelium discoideum. However, since knockouts of the calcineurin-encoding genes are not possible in D. discoideum it is assumed that the phosphatase also plays a crucial role during vegetative growth of the amoebae. Therefore, we investigated the role of calcineurin during vegetative growth in D. discoideum. RNAi-silenced calcineurin mutants showed cellular alterations with an abnormal morphology of mitochondria and had increased content of mitochondrial DNA (mtDNA). In contrast, mitochondria showed no substantial functional impairment. Calcineurin-silencing led to altered expression of calcium-regulated genes as well as mitochondrially-encoded genes. Furthermore, genes related to oxidative stress were higher expressed in the mutants, which correlated to an increased resistance towards reactive oxygen species (ROS). Most of the changes observed during vegetative growth were not seen after starvation of the calcineurin mutants. We show that impairment of calcineurin led to many subtle, but in the sum crucial cellular alterations in vegetative D. discoideum cells. As these alterations were not observed after starvation we propose a dual role for calcineurin during growth and development. Our results imply that calcineurin is one player in the mutual interplay between mitochondria and ROS during vegetative growth.}, language = {en} } @article{UribeRamadassDograetal.2018, author = {Uribe, Veronica and Ramadass, Radhan and Dogra, Deepika and Rasouli, S. Javad and Gunawan, Felix and Nakajima, Hiroyuki and Chiba, Ayano and Reischauer, Sven and Mochizuki, Naoki and Stainier, Didier Y. R.}, title = {In vivo analysis of cardiomyocyte proliferation during trabeculation}, series = {Development : Company of Biologists}, volume = {145}, journal = {Development : Company of Biologists}, number = {14}, publisher = {Company biologists LTD}, address = {Cambridge}, issn = {0950-1991}, doi = {10.1242/dev.164194}, pages = {12}, year = {2018}, abstract = {Cardiomyocyte proliferation is crucial for cardiac growth, patterning and regeneration; however, few studies have investigated the behavior of dividing cardiomyocytes in vivo. Here, we use time-lapse imaging of beating hearts in combination with the FUCCI system to monitor the behavior of proliferating cardiomyocytes in developing zebrafish. Confirming in vitro observations, sarcomere disassembly, as well as changes in cell shape and volume, precede cardiomyocyte cytokinesis. Notably, cardiomyocytes in zebrafish embryos and young larvae mostly divide parallel to the myocardial wall in both the compact and trabecular layers, and cardiomyocyte proliferation is more frequent in the trabecular layer. While analyzing known regulators of cardiomyocyte proliferation, we observed that the Nrg/ErbB2 and TGF beta signaling pathways differentially affect compact and trabecular layer cardiomyocytes, indicating that distinct mechanisms drive proliferation in these two layers. In summary, our data indicate that, in zebrafish, cardiomyocyte proliferation is essential for trabecular growth, but not initiation, and set the stage to further investigate the cellular and molecular mechanisms driving cardiomyocyte proliferation in vivo.}, language = {en} } @article{ZhangYarmanErdossyetal.2018, author = {Zhang, Xiaorong and Yarman, Aysu and Erdossy, Julia and Katz, Sagie and Zebger, Ingo and Jetzschmann, Katharina J. and Altintas, Zeynep and Wollenberger, Ulla and Gyurcsanyi, Robert E. and Scheller, Frieder W.}, title = {Electrosynthesized MIPs for transferrin}, series = {Biosensors and bioelectronics : the principal international journal devoted to research, design development and application of biosensors and bioelectronics}, volume = {105}, journal = {Biosensors and bioelectronics : the principal international journal devoted to research, design development and application of biosensors and bioelectronics}, publisher = {Elsevier}, address = {Oxford}, issn = {0956-5663}, doi = {10.1016/j.bios.2018.01.011}, pages = {29 -- 35}, year = {2018}, abstract = {Molecularly imprinted polymer (MP) nanofilrns for transferrin (Trf) have been synthesized on gold surfaces by electro-polymerizing the functional monomer scopoletin in the presence of the protein target or around pre-adsorbed Trf. As determined by atomic force microscopy (AFM) the film thickness was comparable with the molecular dimension of the target. The target (re)binding properties of the electro-synthesized MIP films was evaluated by cyclic voltammetry (CV) and square wave voltammetry (SWV) through the target-binding induced permeability changes of the MIP nanofilms to the ferricyanide redox marker, as well as by surface plasmon resonance (SPR) and surface enhanced infrared absorption spectroscopy (SEIRAS) of the immobilized protein molecules. For Trf a linear concentration dependence in the lower micromolar range and an imprinting factor of similar to 5 was obtained by SWV and SPR. Furthermore, non-target proteins including the iron-free apo-Trf were discriminated by pronounced size and shape specificity. Whilst it is generally assumed that the rebinding of the target or of cross-reacting proteins exclusively takes place at the polymer here we considered also the interaction of the protein molecules with the underlying gold transducers. We demonstrate by SWV that adsorption of proteins suppresses the signal of the redox marker even at the bare gold surface and by SEIRAS that the treatment of the MIP with proteinase K or NaOH only partially removes the target protein. Therefore, we conclude that when interpreting binding of proteins to directly MIP-covered gold electrodes the interactions between the protein and the gold surface should also be considered.}, language = {en} } @article{KaufmannDuffusTeutloffetal.2018, author = {Kaufmann, Paul and Duffus, Benjamin R. and Teutloff, Christian and Leimk{\"u}hler, Silke}, title = {Functional Studies on Oligotropha carboxidovorans Molybdenum-Copper CO Dehydrogenase Produced in Escherichia coli}, series = {Biochemistry}, volume = {57}, journal = {Biochemistry}, number = {19}, publisher = {American Chemical Society}, address = {Washington}, issn = {0006-2960}, doi = {10.1021/acs.biochem.8b00128}, pages = {2889 -- 2901}, year = {2018}, abstract = {The Mo/Cu-dependent CO dehydrogenase (CODH) from Oligotropha carboxidovorans is an enzyme that is able to catalyze both the oxidation of CO to CO2 and the oxidation of H-2 to protons and electrons. Despite the close to atomic resolution structure (1.1 angstrom), significant uncertainties have remained with regard to the reaction mechanism of substrate oxidation at the unique Mo/Cu center, as well as the nature of intermediates formed during the catalytic cycle. So far, the investigation of the role of amino acids at the active site was hampered by the lack of a suitable expression system that allowed for detailed site-directed mutagenesis studies at the active site. Here, we report on the establishment of a functional heterologous expression system of O. carboxidovorans CODH in Escherichia coli. We characterize the purified enzyme in detail by a combination of kinetic and spectroscopic studies and show that it was purified in a form with characteristics comparable to those of the native enzyme purified from O. carboxidovorans. With this expression system in hand, we were for the first time able to generate active-site variants of this enzyme. Our work presents the basis for more detailed studies of the reaction mechanism for CO and H-2 oxidation of Mo/Cu-dependent CODHs in the future.}, language = {en} } @article{KunstmannGohlkeBroekeretal.2018, author = {Kunstmann, Ruth Sonja and Gohlke, Ulrich and Br{\"o}ker, Nina Kristin and Roske, Yvette and Heinemann, Udo and Santer, Mark and Barbirz, Stefanie}, title = {Solvent networks tune thermodynamics of oligosaccharide complex formation in an extended protein binding site}, series = {Journal of the American Chemical Society}, volume = {140}, journal = {Journal of the American Chemical Society}, number = {33}, publisher = {American Chemical Society}, address = {Washington}, issn = {0002-7863}, doi = {10.1021/jacs.8b03719}, pages = {10447 -- 10455}, year = {2018}, abstract = {The principles of protein-glycan binding are still not well understood on a molecular level. Attempts to link affinity and specificity of glycan recognition to structure suffer from the general lack of model systems for experimental studies and the difficulty to describe the influence of solvent. We have experimentally and computationally addressed energetic contributions of solvent in protein-glycan complex formation in the tailspike protein (TSP) of E. coli bacteriophage HK620. HK620TSP is a 230 kDa native trimer of right-handed, parallel beta-helices that provide extended, rigid binding sites for bacterial cell surface O-antigen polysaccharides. A set of high affinity mutants bound hexa- or pentasaccharide O-antigen fragments with very similar affinities even though hexasaccharides introduce an additional glucose branch into an occluded protein surface cavity. Remarkably different thermodynamic binding signatures were found for different mutants; however, crystal structure analyses indicated that no major oligosaccharide or protein topology changes had occurred upon complex formation. This pointed to a solvent effect. Molecular dynamics simulations using a mobility-based approach revealed an extended network of solvent positions distributed over the entire oligosaccharide binding site. However, free energy calculations showed that a small water network inside the glucose-binding cavity had the most notable influence on the thermodynamic signature. The energy needed to displace water from the glucose binding pocket depended on the amino acid at the entrance, in agreement with the different amounts of enthalpy-entropy compensation found for introducing glucose into the pocket in the different mutants. Studies with small molecule drugs have shown before that a few active water molecules can control protein complex formation. HK620TSP oligosaccharide binding shows that similar fundamental principles also apply for glycans, where a small number of water molecules can dominate the thermodynamic signature in an extended binding site.}, language = {en} } @article{KhozroughiKrohSchlueteretal.2018, author = {Khozroughi, Amin Ghadiri and Kroh, Lothar W. and Schlueter, Oliver and Rawel, Harshadrai Manilal}, title = {Assessment of the bacterial impact on the post-mortem formation of zinc protoporphyrin IX in pork meat}, series = {Food chemistry}, volume = {256}, journal = {Food chemistry}, publisher = {Elsevier}, address = {Oxford}, issn = {0308-8146}, doi = {10.1016/j.foodchem.2018.01.045}, pages = {25 -- 30}, year = {2018}, abstract = {The post-mortem accumulation of the heme biosynthesis metabolite zinc protoporphyrin IX (ZnPP) in porcine muscle is associated with both a meat-inherent and a bacterial enzymatic reaction during meat storage. To estimate the bacterial impact on ZnPP formation, meat and meat-like media were investigated by HPLC-FLD (and MALDI-TOF-MS) after inoculation with a representative microorganism (P. fluorescens). Results indicate the principal ability of meat-inherent bacteria to form ZnPP in meat extracts and meat-like media, but not on the meat muscle. Thus it was concluded that the ZnPP formation in meat is due to a meat-inherent enzymatic reaction induced by porcine ferrochelatase (FECH), while the bacterial (FECH) induced reaction seems to be not significant.}, language = {en} } @misc{FischerShaki2018, author = {Fischer, Martin H. and Shaki, Samuel}, title = {Number concepts: abstract and embodied}, series = {Philosophical transactions of the Royal Society of London : B, Biological sciences}, volume = {373}, journal = {Philosophical transactions of the Royal Society of London : B, Biological sciences}, number = {1752}, publisher = {Royal Society}, address = {London}, issn = {0962-8436}, doi = {10.1098/rstb.2017.0125}, pages = {8}, year = {2018}, abstract = {Numerical knowledge, including number concepts and arithmetic procedures, seems to be a clear-cut case for abstract symbol manipulation. Yet, evidence from perceptual and motor behaviour reveals that natural number knowledge and simple arithmetic also remain closely associated with modal experiences. Following a review of behavioural, animal and neuroscience studies of number processing, we propose a revised understanding of psychological number concepts as grounded in physical constraints, embodied in experience and situated through task-specific intentions. The idea that number concepts occupy a range of positions on the continuum between abstract and modal conceptual knowledge also accounts for systematic heuristics and biases in mental arithmetic, thus inviting psycho-logical approaches to the study of the mathematical mind.}, language = {en} } @article{DeLombaerdeVerheyenPerringetal.2018, author = {De Lombaerde, Emiel and Verheyen, Kris and Perring, Michael P. and Bernhardt-Roemermann, Markus and Van Calster, Hans and Brunet, Jorg and Chudomelova, Marketa and Decocq, Guillaume and Diekmann, Martin and Durak, Tomasz and Hedl, Radim and Heinken, Thilo and Hommel, Patrick and Jaroszewicz, Bogdan and Kopecky, Martin and Lenoir, Jonathan and Macek, Martin and M{\´a}liš, František and Mitchell, Fraser J. G. and Naaf, Tobias and Newman, Miles and Petř{\´i}k, Petr and Reczyńska, Kamila and Schmidt, Wolfgang and Swierkosz, Krzysztof and Vild, Ondrej and Wulf, Monika and Baetena, Lander}, title = {Responses of competitive understorey species to spatial environmental gradients inaccurately explain temporal changes}, series = {Basic and applied ecology : Journal of the Gesellschaft f{\"u}r {\"O}kologie}, volume = {30}, journal = {Basic and applied ecology : Journal of the Gesellschaft f{\"u}r {\"O}kologie}, publisher = {Elsevier GMBH}, address = {M{\"u}nchen}, issn = {1439-1791}, doi = {10.1016/j.baae.2018.05.013}, pages = {52 -- 64}, year = {2018}, abstract = {Understorey plant communities play a key role in the functioning of forest ecosystems. Under favourable environmental conditions, competitive understorey species may develop high abundances and influence important ecosystem processes such as tree regeneration. Thus, understanding and predicting the response of competitive understorey species as a function of changing environmental conditions is important for forest managers. In the absence of sufficient temporal data to quantify actual vegetation changes, space-for-time (SFT) substitution is often used, i.e. studies that use environmental gradients across space to infer vegetation responses to environmental change over time. Here we assess the validity of such SFT approaches and analysed 36 resurvey studies from ancient forests with low levels of recent disturbances across temperate Europe to assess how six competitive understorey plant species respond to gradients of overstorey cover, soil conditions, atmospheric N deposition and climatic conditions over space and time. The combination of historical and contemporary surveys allows (i) to test if observed contemporary patterns across space are consistent at the time of the historical survey, and, crucially, (ii) to assess whether changes in abundance over time given recorded environmental change match expectations from patterns recorded along environmental gradients in space. We found consistent spatial relationships at the two periods: local variation in soil variables and overstorey cover were the best predictors of individual species' cover while interregional variation in coarse-scale variables, i.e. N deposition and climate, was less important. However, we found that our SFT approach could not accurately explain the large variation in abundance changes over time. We thus recommend to be cautious when using SFT substitution to infer species responses to temporal changes.}, language = {en} } @article{MuhlRoelkeZoharyetal.2018, author = {Muhl, Rika M. W. and Roelke, Daniel L. and Zohary, Tamar and Moustaka-Gouni, Maria and Sommer, Ulrich and Borics, Gabor and Gaedke, Ursula and Withrow, Frances G. and Bhattacharyya, Joydeb}, title = {Resisting annihilation}, series = {Ecology letters}, volume = {21}, journal = {Ecology letters}, number = {9}, publisher = {Wiley}, address = {Hoboken}, issn = {1461-023X}, doi = {10.1111/ele.13109}, pages = {1390 -- 1400}, year = {2018}, abstract = {Allelopathic species can alter biodiversity. Using simulated assemblages that are characterised by neutrality, lumpy coexistence and intransitivity, we explore relationships between within-assemblage competitive dissimilarities and resistance to allelopathic species. An emergent behaviour from our models is that assemblages are more resistant to allelopathy when members strongly compete exploitatively (high competitive power). We found that neutral assemblages were the most vulnerable to allelopathic species, followed by lumpy and then by intransitive assemblages. We find support for our modeling in real-world time-series data from eight lakes of varied morphometry and trophic state. Our analysis of this data shows that a lake's history of allelopathic phytoplankton species biovolume density and dominance is related to the number of species clusters occurring in the plankton assemblages of those lakes, an emergent trend similar to that of our modeling. We suggest that an assemblage's competitive power determines its allelopathy resistance.}, language = {en} } @article{KlauschiesCoutinhoGaedke2018, author = {Klauschies, Toni and Coutinho, Renato Mendes and Gaedke, Ursula}, title = {A beta distribution-based moment closure enhances the reliability of trait-based aggregate models for natural populations and communities}, series = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, volume = {381}, journal = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-3800}, doi = {10.1016/j.ecolmodel.2018.02.001}, pages = {46 -- 77}, year = {2018}, abstract = {Ecological communities are complex adaptive systems that exhibit remarkable feedbacks between their biomass and trait dynamics. Trait-based aggregate models cope with this complexity by focusing on the temporal development of the community's aggregate properties such as its total biomass, mean trait and trait variance. They are based on particular assumptions about the shape of the underlying trait distribution, which is commonly assumed to be normal. However, ecologically important traits are usually restricted to a finite range, and empirical trait distributions are often skewed or multimodal. As a result, normal distribution-based aggregate models may fail to adequately represent the biomass and trait dynamics of natural communities. We resolve this mismatch by developing a new moment closure approach assuming the trait values to be beta-distributed. We show that the beta distribution captures important shape properties of both observed and simulated trait distributions, which cannot be captured by a Gaussian. We further demonstrate that a beta distribution-based moment closure can strongly enhance the reliability of trait-based aggregate models. We compare the biomass, mean trait and variance dynamics of a full trait distribution (FD) model to the ones of beta (BA) and normal (NA) distribution-based aggregate models, under different selection regimes. This way, we demonstrate under which general conditions (stabilizing, fluctuating or disruptive selection) different aggregate models are reliable tools. All three models predicted very similar biomass and trait dynamics under stabilizing selection yielding unimodal trait distributions with small standing trait variation. We also obtained an almost perfect match between the results of the FD and BA models under fluctuating selection, promoting skewed trait distributions and ongoing oscillations in the biomass and trait dynamics. In contrast, the NA model showed unrealistic trait dynamics and exhibited different alternative stable states, and thus a high sensitivity to initial conditions under fluctuating selection. Under disruptive selection, both aggregate models failed to reproduce the results of the FD model with the mean trait values remaining within their ecologically feasible ranges in the BA model but not in the NA model. Overall, a beta distribution-based moment closure strongly improved the realism of trait-based aggregate models.}, language = {en} } @article{OprzeskaZingrebeMeyerRoloffetal.2018, author = {Oprzeska-Zingrebe, Ewa Anna and Meyer, Susann and Roloff, Alexander and Kunte, Hans-J{\"o}rg and Smiatek, Jens}, title = {Influence of compatible solute ectoine on distinct DNA structures}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {20}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {40}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c8cp03543a}, pages = {25861 -- 25874}, year = {2018}, abstract = {In nature, the cellular environment of DNA includes not only water and ions, but also other components and co-solutes, which can exert both stabilizing and destabilizing effects on particular oligonucleotide conformations. Among them, ectoine, known as an important osmoprotectant organic co-solute in a broad range of pharmaceutical products, turns out to be of particular relevance. In this article, we study the influence of ectoine on a short single-stranded DNA fragment and on double-stranded helical B-DNA in aqueous solution by means of atomistic molecular dynamics (MD) simulations in combination with molecular theories of solution. Our results demonstrate a conformation-dependent binding behavior of ectoine, which favors the unfolded state of DNA by a combination of electrostatic and dispersion interactions. In conjunction with the Kirkwood-Buff theory, we introduce a simple framework to compute the influence of ectoine on the DNA melting temperature. Our findings reveal a significant linear decrease of the melting temperature with increasing ectoine concentration, which is found to be in qualitative agreement with results from denaturation experiments. The outcomes of our computer simulations provide a detailed mechanistic rationale for the surprising destabilizing influence of ectoine on distinct DNA structures.}, language = {en} } @misc{RandallJuengelRimannetal.2018, author = {Randall, Matthew J. and J{\"u}ngel, Astrid and Rimann, Markus and Wuertz-Kozak, Karin}, title = {Advances in the biofabrication of 3D Skin in vitro}, series = {Frontiers in Bioengineeringand Biotechnology}, volume = {6}, journal = {Frontiers in Bioengineeringand Biotechnology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {2296-4185}, doi = {10.3389/fbioe.2018.00154}, pages = {12}, year = {2018}, abstract = {The relevance for in vitro three-dimensional (3D) tissue culture of skin has been present for almost a century. From using skin biopsies in organ culture, to vascularized organotypic full-thickness reconstructed human skin equivalents, in vitro tissue regeneration of 3D skin has reached a golden era. However, the reconstruction of 3D skin still has room to grow and develop. The need for reproducible methodology, physiological structures and tissue architecture, and perfusable vasculature are only recently becoming a reality, though the addition of more complex structures such as glands and tactile corpuscles require advanced technologies. In this review, we will discuss the current methodology for biofabrication of 3D skin models and highlight the advantages and disadvantages of the existing systems as well as emphasize how new techniques can aid in the production of a truly physiologically relevant skin construct for preclinical innovation.}, language = {en} } @article{JetzschmannYarmanRustametal.2018, author = {Jetzschmann, Katharina J. and Yarman, Aysu and Rustam, L. and Kielb, P. and Urlacher, V. B. and Fischer, A. and Weidinger, I. M. and Wollenberger, Ulla and Scheller, Frieder W.}, title = {Molecular LEGO by domain-imprinting of cytochrome P450 BM3}, series = {Colloids and surfaces : an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin ; B, Biointerfaces}, volume = {164}, journal = {Colloids and surfaces : an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin ; B, Biointerfaces}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0927-7765}, doi = {10.1016/j.colsurfb.2018.01.047}, pages = {240 -- 246}, year = {2018}, abstract = {Hypothesis: Electrosynthesis of the MIP nano-film after binding of the separated domains or holocytochrome BM3 via an engineered anchor should result in domain-specific cavities in the polymer layer. Experiments: Both the two domains and the holo P450 BM3 have been bound prior polymer deposition via a N-terminal engineered his6-anchor to the electrode surface. Each step of MIP preparation was characterized by cyclic voltammetry of the redox-marker ferricyanide. Rebinding after template removal was evaluated by quantifying the suppression of the diffusive permeability of the signal for ferricyanide and by the NADH-dependent reduction of cytochrome c by the reductase domain (BMR). Findings: The working hypothesis is verified by the discrimination of the two domains by the respective MIPs: The holoenzyme P450 BM3 was ca. 5.5 times more effectively recognized by the film imprinted with the oxidase domain (BMO) as compared to the BMR-MIP or the non-imprinted polymer (NIP). Obviously, a cavity is formed during the imprinting process around the hiss-tag-anchored BMR which cannot accommodate the broader BMO or the P450 BM3. The affinity of the MIP towards P450 BM3 is comparable with that to the monomer in solution. The hiss-tagged P450 BM3 binds (30 percent) stronger which shows the additive effect of the interaction with the MIP and the binding to the electrode.}, language = {en} } @article{PerringBernhardtRoemermannBaetenetal.2018, author = {Perring, Michael P. and Bernhardt-Roemermann, Markus and Baeten, Lander and Midolo, Gabriele and Blondeel, Haben and Depauw, Leen and Landuyt, Dries and Maes, Sybryn L. and De Lombaerde, Emiel and Caron, Maria Mercedes and Vellend, Mark and Brunet, Joerg and Chudomelova, Marketa and Decocq, Guillaume and Diekmann, Martin and Dirnboeck, Thomas and Doerfler, Inken and Durak, Tomasz and De Frenne, Pieter and Gilliam, Frank S. and Hedl, Radim and Heinken, Thilo and Hommel, Patrick and Jaroszewicz, Bogdan and Kirby, Keith J. and Kopecky, Martin and Lenoir, Jonathan and Li, Daijiang and Malis, Frantisek and Mitchell, Fraser J. G. and Naaf, Tobias and Newman, Miles and Petrik, Petr and Reczynska, Kamila and Schmidt, Wolfgang and Standovar, Tibor and Swierkosz, Krzysztof and Van Calster, Hans and Vild, Ondrej and Wagner, Eva Rosa and Wulf, Monika and Verheyen, Kris}, title = {Global environmental change effects on plant community composition trajectories depend upon management legacies}, series = {Global change biology}, volume = {24}, journal = {Global change biology}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {1354-1013}, doi = {10.1111/gcb.14030}, pages = {1722 -- 1740}, year = {2018}, abstract = {The contemporary state of functional traits and species richness in plant communities depends on legacy effects of past disturbances. Whether temporal responses of community properties to current environmental changes are altered by such legacies is, however, unknown. We expect global environmental changes to interact with land-use legacies given different community trajectories initiated by prior management, and subsequent responses to altered resources and conditions. We tested this expectation for species richness and functional traits using 1814 survey-resurvey plot pairs of understorey communities from 40 European temperate forest datasets, syntheses of management transitions since the year 1800, and a trait database. We also examined how plant community indicators of resources and conditions changed in response to management legacies and environmental change. Community trajectories were clearly influenced by interactions between management legacies from over 200 years ago and environmental change. Importantly, higher rates of nitrogen deposition led to increased species richness and plant height in forests managed less intensively in 1800 (i.e., high forests), and to decreases in forests with a more intensive historical management in 1800 (i.e., coppiced forests). There was evidence that these declines in community variables in formerly coppiced forests were ameliorated by increased rates of temperature change between surveys. Responses were generally apparent regardless of sites' contemporary management classifications, although sometimes the management transition itself, rather than historic or contemporary management types, better explained understorey responses. Main effects of environmental change were rare, although higher rates of precipitation change increased plant height, accompanied by increases in fertility indicator values. Analysis of indicator values suggested the importance of directly characterising resources and conditions to better understand legacy and environmental change effects. Accounting for legacies of past disturbance can reconcile contradictory literature results and appears crucial to anticipating future responses to global environmental change.}, language = {en} } @article{KellerKunzeBommeretal.2018, author = {Keller, Sebastian and Kunze, Cindy and Bommer, Martin and Paetz, Christian and Menezes, Riya C. and Svatos, Ales and Dobbek, Holger and Schubert, Torsten}, title = {Selective Utilization of Benzimidazolyl-Norcobamides as Cofactors by the Tetrachloroethene Reductive Dehalogenase of Sulfurospirillum multivorans}, series = {Journal of bacteriology}, volume = {200}, journal = {Journal of bacteriology}, number = {8}, publisher = {American Society for Microbiology}, address = {Washington}, issn = {0021-9193}, doi = {10.1128/JB.00584-17}, pages = {14}, year = {2018}, abstract = {The organohalide-respiring bacterium Sulfurospirillum multivorans produces a unique cobamide, namely, norpseudo-B-12, which serves as cofactor of the tetrachloroethene (PCE) reductive dehalogenase (PceA). As previously reported, a replacement of the adeninyl moiety, the lower base of the cofactor, by exogenously applied 5,6-dimethylbenzimidazole led to inactive PceA. To explore the general effect of benzimidazoles on the PCE metabolism, the susceptibility of the organism for guided biosynthesis of various singly substituted benzimidazolyl-norcobamides was investigated, and their use as cofactor by PceA was analyzed. Exogenously applied 5-methylbenzimidazole (5-MeBza), 5-hydroxybenzimidazole (5-OHBza), and 5-methoxybenzimidazole (5-OMeBza) were found to be efficiently incorporated as lower bases into norcobamides (NCbas). Structural analysis of the NCbas by nuclear magnetic resonance spectroscopy uncovered a regioselectivity in the utilization of these precursors for NCba biosynthesis. When 5-MeBza was added, a mixture of 5-MeBza-norcobamide and 6-MeBza-norcobamide was formed, and the PceA enzyme activity was affected. In the presence of 5-OHBza, almost exclusively 6-OHBza-norcobamide was produced, while in the presence of 5-OMeBza, predominantly 5-OMeBza-norcobamide was detected. Both NCbas were incorporated into PceA, and no negative effect on the PceA activity was observed. In crystal structures of PceA, both NCbas were bound in the base-off mode with the 6-OHBza and 5-OMeBza lower bases accommodated by the same solvent-exposed hydrophilic pocket that harbors the adenine as the lower base of authentic norpseudo-B-12. In this study, a selective production of different norcobamide isomers containing singly substituted benzimidazoles as lower bases is shown, and unique structural insights into their utilization as co-factors by a cobamide-containing enzyme are provided. IMPORTANCE Guided biosynthesis of norcobamides containing singly substituted benzimidazoles as lower bases by the organohalide-respiring epsilonproteobacterium Sulfurospirillum multivorans is reported. An unprecedented specificity in the formation of norcobamide isomers containing hydroxylated or methoxylated benzimidazoles was observed that implicated a strict regioselectivity of the norcobamide biosynthesis in the organism. In contrast to 5,6-dimethylbenzimidazolyl-norcobamide, the incorporation of singly substituted benzimidazolyl-norcobamides as a cofactor into the tetrachloroethene reductive dehalogenase was not impaired. The enzyme was found to be functional with different isomers and not limited to the use of adeninyl-norcobamide. Structural analysis of the enzyme equipped with either adeninyl-or benzimidazolyl-norcobamide cofactors visualized for the first time structurally different cobamides bound in base-off conformation to the cofactor-binding site of a cobamide-containing enzyme.}, language = {en} } @article{HilongaOtienoGhorbanietal.2018, author = {Hilonga, S. and Otieno, Joseph N. and Ghorbani, Abdolbaset and Pereus, D. and Kocyan, Alexander and de Boer, H.}, title = {Trade of wild-harvested medicinal plant species in local markets of Tanzania and its implications for conservation}, series = {South African journal of botany : an international interdisciplinary journal for botanical sciences}, volume = {122}, journal = {South African journal of botany : an international interdisciplinary journal for botanical sciences}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0254-6299}, doi = {10.1016/j.sajb.2018.08.012}, pages = {214 -- 224}, year = {2018}, abstract = {In Tanzania, about 10\% of the reported 12,000 species of higher plants are estimated to be used as medicine for treating different human health problems. Most of the medicinal plants are collected from wild populations, but their trade and quantities are not properly recorded. Monitoring of trade in wild-harvested medicinal plants is challenging asmostmaterials are traded in various processed forms and most vendors practice informal trade. Yet, monitoring is important for conservation and sustainability. This study aims to assess the trade of wild-harvested medicinal plant species in local markets of Tanzania and its implications for conservation. Semi-structured interviews were used to record frequency, volume of trade and uses of wild-harvested medicinal plants in Arusha, Dodoma, Mbeya, Morogoro and Mwanza regions. Relative frequency of citation and informant consensus factor were calculated for each species and mentioned use category. Forty vendors were interviewed, and 400 out of 522 collected market samples were identified to 162 species from herbarium-deposited collections. Plant parts with the largest volume of trade were roots (3818 kg), bark (1163 kg) and leaves (492 kg). The most frequently traded species were Zanthoxylum chalybaeum Engl., Albizia anthelmintica Brongn., Zanha africana (Radlk.) Exell, Warburgia stuhlmannii and Vachellia nilotica (L.) P.J.H. Hurter \& Mabb. The most popular medicinal plants in the markets are connected to local health problems including malaria, libido disorders or infertility. The high diversity of commercialized plants used for medicinal issues mainly relies on wild stock for local consumption and international trade, and this has significant implications for conservation concerns. (C) 2018 SAAB. Published by Elsevier B.V. All rights reserved.}, language = {en} } @article{PereusOtienoGhorbanietal.2018, author = {Pereus, D. and Otieno, J. N. and Ghorbani, Abdolbaset and Kocyan, Alexander and Hilonga, S. and de Boer, H. J.}, title = {Diversity of Hypoxis species used in ethnomedicine in Tanzania}, series = {South African journal of botany : an international interdisciplinary journal for botanical sciences}, volume = {122}, journal = {South African journal of botany : an international interdisciplinary journal for botanical sciences}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0254-6299}, doi = {10.1016/j.sajb.2018.03.004}, pages = {336 -- 341}, year = {2018}, abstract = {The corms of different Hypoxis species (Hypoxidaceae) are used for the treatment and management of a variety of human ailments and disorders in African traditional medicine. However, the used corms are morphologically similar and it is not known whether this has resulted in different species being harvested, prescribed and sold as the same species. Ethnomedicinal information regarding its use in Tanzania is scanty and the available ethnobotanical information about the plants is mostly from various studies done outside Tanzania. The objective of the study was to document the diverse uses of Hypoxis in Tanzania and study what species are used and whether preferences exist for specific species. Focus group discussions and in depth interviews with informants were done in 15 regions of Tanzania to document local uses of Hypoxis species and collect vouchers for identification. Traditional practitioners use Hypoxis to manage a variety of human illness in Tanzania, and appear to use different species indiscriminately for medicine, socio-cultural applications and for food. Medicinal uses include treatment of benign prostate hypertrophy, cancer, diabetes, gout, headache, HIV/AIDS, infertility, ringworms, stomachache, and urinary tract infections. In Tanzania, different Hypoxis species are used indiscriminately for a range of sociocultural and medicinal purposes. The reported medicinal uses could aid testing and evaluation of traditional herbal medicine and more research is needed to test their pharmacological effects. (C) 2018 SAAB. Published by Elsevier B.V. All rights reserved.}, language = {en} } @article{PratHajnyGrunewaldetal.2018, author = {Prat, Tomas and Hajny, Jakub and Grunewald, Wim and Vasileva, Mina and Molnar, Gergely and Tejos, Ricardo and Schmid, Markus and Sauer, Michael and Friml, Jiř{\´i}}, title = {WRKY23 is a component of the transcriptional network mediating auxin feedback on PIN polarity}, series = {PLoS Genetics : a peer-reviewed, open-access journal}, volume = {14}, journal = {PLoS Genetics : a peer-reviewed, open-access journal}, number = {1}, publisher = {PLoS}, address = {San Fransisco}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1007177}, pages = {18}, year = {2018}, abstract = {Auxin is unique among plant hormones due to its directional transport that is mediated by the polarly distributed PIN auxin transporters at the plasma membrane. The canalization hypothesis proposes that the auxin feedback on its polar flow is a crucial, plant-specific mechanism mediating multiple self-organizing developmental processes. Here, we used the auxin effect on the PIN polar localization in Arabidopsis thaliana roots as a proxy for the auxin feedback on the PIN polarity during canalization. We performed microarray experiments to find regulators of this process that act downstream of auxin. We identified genes that were transcriptionally regulated by auxin in an AXR3/IAA17-and ARF7/ARF19-dependent manner. Besides the known components of the PIN polarity, such as PID and PIP5K kinases, a number of potential new regulators were detected, among which the WRKY23 transcription factor, which was characterized in more detail. Gain-and loss-of-function mutants confirmed a role for WRKY23 in mediating the auxin effect on the PIN polarity. Accordingly, processes requiring auxin-mediated PIN polarity rearrangements, such as vascular tissue development during leaf venation, showed a higher WRKY23 expression and required the WRKY23 activity. Our results provide initial insights into the auxin transcriptional network acting upstream of PIN polarization and, potentially, canalization-mediated plant development.}, language = {en} } @article{LuReichetzederPrehnetal.2018, author = {Lu, Yong-Ping and Reichetzeder, Christoph and Prehn, Cornelia and von Websky, Karoline and Slowinski, Torsten and Chen, You-Peng and Yin, Liang-Hong and Kleuser, Burkhard and Yang, Xue-Song and Adamski, Jerzy and Hocher, Berthold}, title = {Fetal serum metabolites are independently associated with Gestational diabetes mellitus}, series = {Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology}, volume = {45}, journal = {Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology}, number = {2}, publisher = {Karger}, address = {Basel}, issn = {1015-8987}, doi = {10.1159/000487119}, pages = {625 -- 638}, year = {2018}, abstract = {Background/Aims: Gestational diabetes (GDM) might be associated with alterations in the metabolomic profile of affected mothers and their offspring. Until now, there is a paucity of studies that investigated both, the maternal and the fetal serum metabolome in the setting of GDM. Mounting evidence suggests that the fetus is not just passively affected by gestational disease but might play an active role in it. Metabolomic studies performed in maternal blood and fetal cord blood could help to better discern distinct fetal from maternal disease interactions. Methods: At the time of birth, serum samples from mothers and newborns (cord blood samples) were collected and screened for 163 metabolites utilizing tandem mass spectrometry. The cohort consisted of 412 mother/child pairs, including 31 cases of maternal GDM. Results: An initial non-adjusted analysis showed that eight metabolites in the maternal blood and 54 metabolites in the cord blood were associated with GDM. After Benjamini-Hochberg (BH) procedure and adjustment for confounding factors for GDM, fetal phosphatidylcholine acyl-alkyl C 32:1 and proline still showed an independent association with GDM. Conclusions: This study found metabolites in cord blood which were associated with GDM, even after adjustment for established risk factors of GDM. To the best of our knowledge, this is the first study demonstrating an independent association between fetal serum metabolites and maternal GDM. Our findings might suggest a potential effect of the fetal metabolome on maternal GDM. (c) 2018 The Author(s) Published by S. Karger AG, Basel}, language = {en} } @article{GeigerKocyan2018, author = {Geiger, Daniel L. and Kocyan, Alexander}, title = {Studies on Oberonia 3. Aberrant flowers and other floral modifications in the orchid genus Oberonia}, series = {Nordic Journal of botany}, volume = {36}, journal = {Nordic Journal of botany}, number = {1-2}, publisher = {Wiley}, address = {Hoboken}, issn = {0107-055X}, doi = {10.1111/njb.01699}, pages = {8}, year = {2018}, abstract = {Orchid flowers are amongst the most conspicuous attractions that plants have generated over evolutionary epochs. However, organ homology in particular of androecium and gynoecium of orchid flowers have been, and are still, the subject of long-term discussion. Studies of aberrant - teratologic - flowers have traditionally helped to clarify organ identity in orchids. We here present for the first time teratological flowers within the florally smallest and inconspicuous orchid genus Oberonia and illustrate them by light and scanning electron microscopy. Pseudopeloria with half of a lateral petal transformed into a lip was found in O. costeriana J.J.Sm. and O. mucronata (D.Don) Ormerod \& Seidenf. A supernumerary lip is known from O. mucronata. Oberonia rufilabris Lindl. is documented with multiple aberrations: triple gynostemium and a total of 10 tepals, twin flowers, and duplicate lips. We interpret these aberrations in light of known floral developmental and organ identity information.}, language = {en} } @article{TejosRodriguezFurlanAdamowskietal.2018, author = {Tejos, Ricardo and Rodriguez-Furlan, Cecilia and Adamowski, Maciej and Sauer, Michael and Norambuena, Lorena and Friml, Jiri}, title = {PATELLINS are regulators of auxin-mediated PIN1 relocation and plant development in Arabidopsis thaliana}, series = {Journal of cell science}, volume = {131}, journal = {Journal of cell science}, number = {2}, publisher = {Company of Biologists Limited}, address = {Cambridge}, issn = {0021-9533}, doi = {10.1242/jcs.204198}, pages = {10}, year = {2018}, abstract = {Coordinated cell polarization in developing tissues is a recurrent theme in multicellular organisms. In plants, a directional distribution of the plant hormone auxin is at the core of many developmental programs. A feedback regulation of auxin on the polarized localization of PIN auxin transporters in individual cells has been proposed as a self-organizing mechanism for coordinated tissue polarization, but the molecular mechanisms linking auxin signalling to PIN-dependent auxin transport remain unknown. We used a microarray-based approach to find regulators of the auxin-induced PIN relocation in Arabidopsis thaliana root, and identified a subset of a family of phosphatidylinositol transfer proteins (PITPs), the PATELLINs (PATLs). Here, we show that PATLs are expressed in partially overlapping cell types in different tissues going through mitosis or initiating differentiation programs. PATLs are plasma membrane-associated proteins accumulated in Arabidopsis embryos, primary roots, lateral root primordia and developing stomata. Higher order patl mutants display reduced PIN1 repolarization in response to auxin, shorter root apical meristem, and drastic defects in embryo and seedling development. This suggests that PATLs play a redundant and crucial role in polarity and patterning in Arabidopsis.}, language = {en} } @article{LukanMachensColletal.2018, author = {Lukan, Tjaša and Machens, Fabian and Coll, Anna and Baebler, Špela and Messerschmidt, Katrin and Gruden, Kristina}, title = {Plant X-tender}, series = {PLOS ONE}, volume = {13}, journal = {PLOS ONE}, number = {1}, publisher = {Public Library of Science}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0190526}, pages = {19}, year = {2018}, abstract = {Cloning multiple DNA fragments for delivery of several genes of interest into the plant genome is one of the main technological challenges in plant synthetic biology. Despite several modular assembly methods developed in recent years, the plant biotechnology community has not widely adopted them yet, probably due to the lack of appropriate vectors and software tools. Here we present Plant X-tender, an extension of the highly efficient, scar-free and sequence-independent multigene assembly strategy AssemblX, based on overlap-depended cloning methods and rare-cutting restriction enzymes. Plant X-tender consists of a set of plant expression vectors and the protocols for most efficient cloning into the novel vector set needed for plant expression and thus introduces advantages of AssemblX into plant synthetic biology. The novel vector set covers different backbones and selection markers to allow full design flexibility. We have included ccdB counterselection, thereby allowing the transfer of multigene constructs into the novel vector set in a straightforward and highly efficient way. Vectors are available as empty backbones and are fully flexible regarding the orientation of expression cassettes and addition of linkers between them, if required. We optimised the assembly and subcloning protocol by testing different scar-less assembly approaches: the noncommercial SLiCE and TAR methods and the commercial Gibson assembly and NEBuilder HiFi DNA assembly kits. Plant X-tender was applicable even in combination with low efficient homemade chemically competent or electrocompetent Escherichia coli. We have further validated the developed procedure for plant protein expression by cloning two cassettes into the newly developed vectors and subsequently transferred them to Nicotiana benthamiana in a transient expression setup. Thereby we show that multigene constructs can be delivered into plant cells in a streamlined and highly efficient way. Our results will support faster introduction of synthetic biology into plant science.}, language = {en} } @article{OezerScheffler2018, author = {{\"O}zer, Aydan and Scheffler, Christiane}, title = {Affinity to host population stimulates physical growth in adult offspring of Turkish migrants in Germany}, series = {Journal of biological and clinical anthropology}, volume = {74}, journal = {Journal of biological and clinical anthropology}, number = {5}, publisher = {Schweizerbart}, address = {Stuttgart}, issn = {0003-5548}, doi = {10.1127/anthranz/2018/0825}, pages = {359 -- 364}, year = {2018}, abstract = {Because of political conflicts and climate change, migration will be increased worldwide and integration in host societies is a challenge also for migrants. We hypothesize that migrants, who take up the challenge in a new social environment are taller than migrants who do not pose this challenge. We analyze by a questionnaire possible social, nutritional and ethnic influencing factors to body height (BH) of adult offspring of Turkish migrants (n = 82, 39 males) aged from 18 to 34 years (mean age 24.6 years). The results of multiple regression (downward selection) show that the more a male adult offspring of Turkish migrants feels like belonging to the Turkish culture, the smaller he is (95\% CI, -3.79, -0.323). Further, the more a male adult offspring of Turkish migrants feels like belonging to the German culture, the taller he is (95\% CI, -0.152, 1.738). We discussed it comparable to primates taking up their challenge in dominance, where as a result their body size increase is associated with higher IGF-1 level. IGF-1 is associated with emotional belonging and has a fundamental role in the regulation of metabolism and growth of the human body. With all pilot characteristics of our study results show that the successful challenge of integration in a new society is strongly associated with the emotional integration and identification in the sense of a personal sense of belonging to society. We discuss taller BH as a signal of social growth adjustment. In this sense, a secular trend of BH adaptation of migrants to hosts is a sign of integration.}, language = {en} } @article{BentsGrothSatake2018, author = {Bents, Dominik and Groth, Detlef and Satake, Takashi}, title = {The secular trend and network effects on height of male Japanese students from 1955 to 2015}, series = {Journal of biological and clinical anthropology}, volume = {74}, journal = {Journal of biological and clinical anthropology}, number = {5}, publisher = {Schweizerbart}, address = {Stuttgart}, issn = {0003-5548}, doi = {10.1127/anthranz/2018/0838}, pages = {423 -- 429}, year = {2018}, abstract = {Introduction: Body height is influenced by biological factors such as genetics, nutrition and health, but also by the social network, and environmental and economical factors. During centuries, the Japanese society has developed on islands. This setting provides ideal natural conditions for studying the influence of social networks on human height. Material and methods: We investigated body height of male Japanese students aged 17.5 years obtained in 47 prefectures, from the Japanese school health survey of the years 1955, 1975, 1995, and 2015. Results: Japanese students increased in height from 163.23 cm in 1955 to 170.84 cm in 1995, with no further increase thereafter (170.63 cm in 2015). Students living in neighboring prefectures were similar in height. The correlation of height between neighboring prefectures ranged between r = 0.79 and r = 0.49 among first degree neighbors, between r = 0.49 and r = 0.21 among second degree neighbors and dropped to insignificance among third degree neighbors indicating psychosocial effects of the community on body height. Tall stature and short stature prefectures did not remain tall or short throughout history. Autocorrelations of height within the same prefectures decreased from the 20 years periods of 1955-1975, 1975-1995 and 1995-2015 (r = 0.52, r = 0.61, r = 0.63, respectively) to the 40 years periods of 1955-1995 and 1975-2015 (r = 0.49, r = 0.52), down to the 60 years period of 1955-2015 (r = 0.27), indicating significant volatility of height. Conclusion: Body height of 17.5 years old Japanese students increased since 1955. Body height depended on height of the neighboring prefecture, but was volatile with decreasing autocorrelation during a period of 60 years.}, language = {en} } @article{LiuGroth2018, author = {Liu, Yuk-Chien and Groth, Detlef}, title = {Body height, social dominance and the political climate}, series = {Journal of biological and clinical anthropology}, volume = {74}, journal = {Journal of biological and clinical anthropology}, number = {5}, publisher = {Schweizerbart}, address = {Stuttgart}, issn = {0003-5548}, doi = {10.1127/anthranz/2018/0855}, pages = {445 -- 450}, year = {2018}, abstract = {Background: The association between stature and social dominance is known. Dominance within social groups and current politics are related issues. We therefore aimed to compare estimates of the opinion of a population about their current political issues, with physical growth. Material and methods: We used data on the 2012 and the 2014 elections for the Japanese House of Representatives and the percent proportion of votes of the 47 prefectures of Japan, and regional data on body height of 17.5 year old men and women. Information on capita income, possession of mobile phones, urban/rural population ratio, and age distribution were added to capture socioeconomic factors. Four political parties were present in most of the 47 prefectures: the Liberal Democratic Party (LDP), the Democratic Party of Japan (DPJ), the New Komeito Party (Kom) that is known for their social network community, and the Japanese Communist Party (JCP). Results: A dense network of associations exists between height, age distribution, per capita income, number of smartphones, and voting results. Male and female body height was inversely related with the proportion of votes for New Komeito Party. Average stature decreases by one mm per percent votes for this political party. Medium strong positive associations were found for male body height and voting results of the DPJ and for female body height with the JCP election results. Conclusion: In modern Japan, popular preferences for conservative political structures coincide with shorter stature.}, language = {en} } @article{TischewDierschkeSchwabeetal.2018, author = {Tischew, Sabine and Dierschke, Hartmut and Schwabe, Angelika and Garve, Eckhard and Heinken, Thilo and Holzel, Norbert and Bergmeier, Erwin and Remy, Dominique and Haerdtle, Werner}, title = {Pflanzengesellschaft des Jahres 2019: Die Glatthaferwiese}, series = {Tuexenia : Mitteilungen der Floristisch-Soziologischen Arbeitsgemeinschaft}, journal = {Tuexenia : Mitteilungen der Floristisch-Soziologischen Arbeitsgemeinschaft}, number = {38}, publisher = {Floristisch-Soziologische Arbeitsgemeinschaft}, address = {G{\"o}ttingen}, issn = {0722-494X}, doi = {10.14471/2018.38.011}, pages = {287 -- 295}, year = {2018}, abstract = {Um Themen des Schutzes von Pflanzengemeinschaften wirksamer in der breiten {\"O}ffentlichkeit zu kommunizieren wird der Vorstand der „Floristisch-Soziologischen Arbeitsgemeinschaft (FlorSoz)" ab 2019 eine „Pflanzengesellschaft des Jahres" ausrufen. Damit sollen politische und administrative Entscheidungs- und Umsetzungsprozesse zur Erhaltung der Vielfalt von {\"O}kosystemen und Pflanzengesellschaften in Deutschlands gezielt unterst{\"u}tzt werden. F{\"u}r das Jahr 2019 wurde die Glatthaferwiese ausgew{\"a}hlt. Sie z{\"a}hlt aktuell zu den durch Artenverarmung und Fl{\"a}chenr{\"u}ckgang besonders bedrohten Pflanzengesellschaften Deutschlands. Es sind deshalb dringend Maßnahmen zum Schutz und zur Wiederherstellung notwendig. Dieser Artikel gibt einen kurzen {\"U}berblick zur naturschutzfachlichen Bedeutung von Glatthaferwiesen und deren {\"O}kosystemleistungen sowie zur floristisch-soziologischen Erforschung, zu Ursachen ihres R{\"u}ckgangs und zu geeigneten Gegenmaßnahmen.}, language = {de} } @article{ZhaoXiaWuetal.2018, author = {Zhao, Liming and Xia, Yan and Wu, Xiao-Yuan and Schippers, Jos H. M. and Jing, Hai-Chun}, title = {Phenotypic analysis and molecular markers of leaf senescence}, series = {Plant Senescence: Methods and Protocols}, volume = {1744}, journal = {Plant Senescence: Methods and Protocols}, publisher = {Humana Press Inc.}, address = {Totowa}, isbn = {978-1-4939-7672-0}, issn = {1064-3745}, doi = {10.1007/978-1-4939-7672-0_3}, pages = {35 -- 48}, year = {2018}, abstract = {The process of leaf senescence consists of the final stage of leaf development. It has evolved as a mechanism to degrade macromolecules and micronutrients and remobilize them to other developing parts of the plant; hence it plays a central role for the survival of plants and crop production. During senescence, a range of physiological, morphological, cellular, and molecular events occur, which are generally referred to as the senescence syndrome that includes several hallmarks such as visible yellowing, loss of chlorophyll and water content, increase of ion leakage and cell death, deformation of chloroplast and cell structure, as well as the upregulation of thousands of so-called senescence-associated genes (SAGs) and downregulation of photosynthesis-associated genes (PAGs). This chapter is devoted to methods characterizing the onset and progression of leaf senescence at the morphological, physiological, cellular, and molecular levels. Leaf senescence normally progresses in an age-dependent manner but is also induced prematurely by a variety of environmental stresses in plants. Focused on the hallmarks of the senescence syndrome, a series of protocols is described to asses quantitatively the senescence process caused by developmental cues or environmental perturbations. We first briefly describe the senescence process, the events associated with the senescence syndrome, and the theories and methods to phenotype senescence. Detailed protocols for monitoring senescence in planta and in vitro, using the whole plant and the detached leaf, respectively, are presented. For convenience, most of the protocols use the model plant species Arabidopsis and rice, but they can be easily extended to other plants.}, language = {en} } @article{SolovyevPrakashBhatiaetal.2018, author = {Solovyev, Nikolay and Prakash, N. Tejo and Bhatia, Poonam and Prakash, Ranjana and Drobyshev, Evgenii J. and Michalke, Bernhard}, title = {Selenium-rich mushrooms cultivation on a wheat straw substrate from seleniferous area in Punjab, India}, series = {Journal of trace elements in medicine and biology}, volume = {50}, journal = {Journal of trace elements in medicine and biology}, publisher = {Elsevier}, address = {Jena}, issn = {0946-672X}, doi = {10.1016/j.jtemb.2018.07.027}, pages = {362 -- 366}, year = {2018}, abstract = {Intensive rice-wheat cultivation cycle in Northern belt of India in general and in the State of Punjab in particular results in large volumes of straw and other post-harvest residue annually. The agricultural area, bordering the districts of Nawanshahr and Hoshiarpur, is popularly known as the seleniferous belt of India. The agri-residues, generated in seleniferous region of this state, are observed to contain significantly high concentration of selenium (Se). The present study was aimed to evaluate the Se uptake by different mushroom species: Pleurotus sajorcaju, Pleurotus ostreatus, Pleurotus citrinopileatus, Agaricus bisporus, and Volvariella volvacea, cultivated on Se-rich wheat and paddy straw from the seleniferous region. Wheat (Pleurotus species and A. bisporus) and paddy straw (V. volvacea) was inoculated with the mycelium spawn and left for 7-20 days, depending on the species, to grow. Control mushrooms were grown analogously using the agricultural residues from non-seleniferous area of the State of Punjab. All fruiting bodies were collected and analyzed in triplicate. Se was quantified using inductively coupled plasma sector field mass spectrometry. The Se accumulation was high in all species under study, being the highest in A. bisporus (1396 mu g/g vs. 46.8 mu g/g in controls - dry weight) and V. volvacea (231 mu g/g vs. 3.77 mu g/g - dry weight). The observed biological efficiency and total yield for all mushroom species showed good and unaltered productivity in Se-rich conditions, if compared to the controls. The Se-rich mushrooms can be prospective Se-supplements sourcing and biofortified foods, providing readily bioavailable and accessible Se for the diets deficient of this biologically essential element.}, language = {en} } @article{PerillonvandeWeyerPaezoltetal.2018, author = {Perillon, Cecile and van de Weyer, Klaus and P{\"a}zolt, Jens and Kasprzak, Peter and Hilt, Sabine}, title = {Changes in submerged macrophyte colonization in shallow areas of an oligo-mesotrophic lake and the potential role of groundwater}, series = {Limnologica : ecology and management of inland waters}, volume = {68}, journal = {Limnologica : ecology and management of inland waters}, publisher = {Elsevier}, address = {Jena}, issn = {0075-9511}, doi = {10.1016/j.limno.2017.03.002}, pages = {168 -- 176}, year = {2018}, abstract = {Groundwater influx can significantly contribute to nutrient budgets of lakes and its influence is strongest in shallow littoral areas. In oligo-or mesotrophic systems, additional nutrient supply by groundwater influx may affect benthic primary producers and their interactions. Potential changes can be expected in community composition, biomass, stoichiometry and interactions between submerged macrophytes and epiphyton.}, language = {en} } @article{KoloraWeigertSaffarietal.2018, author = {Kolora, Sree Rohit Raj and Weigert, Anne and Saffari, Amin and Kehr, Stephanie and Walter Costa, Maria Beatriz and Spr{\"o}er, Cathrin and Indrischek, Henrike and Chintalapati, Manjusha and Lohse, Konrad and Doose, Gero and Overmann, J{\"o}rg and Bunk, Boyke and Bleidorn, Christoph and Grimm-Seyfarth, Annegret and Henle, Klaus and Nowick, Katja and Faria, Rui and Stadler, Peter F. and Schlegel, Martin}, title = {Divergent evolution in the genomes of closely related lacertids, Lacerta viridis and L. bilineata, and implications for speciation}, series = {GigaScience}, volume = {8}, journal = {GigaScience}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {2047-217X}, doi = {10.1093/gigascience/giy160}, pages = {15}, year = {2018}, abstract = {Background Lacerta viridis and Lacerta bilineata are sister species of European green lizards (eastern and western clades, respectively) that, until recently, were grouped together as the L. viridis complex. Genetic incompatibilities were observed between lacertid populations through crossing experiments, which led to the delineation of two separate species within the L. viridis complex. The population history of these sister species and processes driving divergence are unknown. We constructed the first high-quality de novo genome assemblies for both L. viridis and L. bilineata through Illumina and PacBio sequencing, with annotation support provided from transcriptome sequencing of several tissues. To estimate gene flow between the two species and identify factors involved in reproductive isolation, we studied their evolutionary history, identified genomic rearrangements, detected signatures of selection on non-coding RNA, and on protein-coding genes. Findings Here we show that gene flow was primarily unidirectional from L. bilineata to L. viridis after their split at least 1.15 million years ago. We detected positive selection of the non-coding repertoire; mutations in transcription factors; accumulation of divergence through inversions; selection on genes involved in neural development, reproduction, and behavior, as well as in ultraviolet-response, possibly driven by sexual selection, whose contribution to reproductive isolation between these lacertid species needs to be further evaluated. Conclusion The combination of short and long sequence reads resulted in one of the most complete lizard genome assemblies. The characterization of a diverse array of genomic features provided valuable insights into the demographic history of divergence among European green lizards, as well as key species differences, some of which are candidates that could have played a role in speciation. In addition, our study generated valuable genomic resources that can be used to address conservation-related issues in lacertids.}, language = {en} } @article{VannesteValdesVerheyenetal.2018, author = {Vanneste, Thomas and Valdes, Alicia and Verheyen, Kris and Perring, Michael P. and Bernhardt-Roemermann, Markus and Andrieu, Emilie and Brunet, Jorg and Cousins, Sara A. O. and Deconchat, Marc and De Smedt, Pallieter and Diekmann, Martin and Ehrmann, Steffen and Heinken, Thilo and Hermy, Martin and Kolb, Annette and Lenoir, Jonathan and Liira, Jaan and Naaf, Tobias and Paal, Taavi and Wulf, Monika and Decocq, Guillaume and De Frenne, Pieter}, title = {Functional trait variation of forest understorey plant communities across Europe}, series = {Basic and applied ecology : Journal of the Gesellschaft f{\"u}r {\"O}kologie}, volume = {34}, journal = {Basic and applied ecology : Journal of the Gesellschaft f{\"u}r {\"O}kologie}, publisher = {Elsevier GmbH}, address = {M{\"u}nchen}, issn = {1439-1791}, doi = {10.1016/j.baae.2018.09.004}, pages = {1 -- 14}, year = {2018}, abstract = {Global environmental changes are expected to alter the functional characteristics of understorey herb-layer communities, potentially affecting forest ecosystem functioning. However, little is known about what drives the variability of functional traits in forest understories. Here, we assessed the role of different environmental drivers in shaping the functional trait distribution of understorey herbs in fragmented forests across three spatial scales. We focused on 708 small, deciduous forest patches located in 16 agricultural landscape windows, spanning a 2500-km macroclimatic gradient across the temperate forest biome in Europe. We estimated the relative effect of patch-scale, landscape-scale and macroclimatic variables on the community mean and variation of plant height, specific leaf area and seed mass. Macroclimatic variables (monthly temperature and precipitation extremes) explained the largest proportion of variation in community trait means (on average 77\% of the explained variation). In contrast, patch-scale factors dominated in explaining community trait variation (on average 68\% of the explained variation). Notably, patch age, size and internal heterogeneity had a positive effect on the community-level variability. Landscape-scale variables explained only a minor part of the variation in both trait distribution properties. The variation explained by shared combinations of the variable groups was generally negligible. These findings highlight the importance of considering multiple spatial scales in predictions of environmental-change effects on the functionality of forest understories. We propose that forest management sustainability could benefit from conserving larger, historically continuous and internally heterogeneous forest patches to maximise ecosystem service diversity in rural landscapes. (C) 2018 Gesellschaft fur Okologie. Published by Elsevier GmbH. All rights reserved.}, language = {en} } @article{ZhivkovaKieckerLangeretal.2018, author = {Zhivkova, Veselina and Kiecker, Felix and Langer, Peter and Eberle, J{\"u}rgen}, title = {Crucial role of reactive oxygen species (ROS) for the proapoptotic effects of indirubin derivative DKP-073 in melanoma cells}, series = {Molecular carcinogenesis}, volume = {58}, journal = {Molecular carcinogenesis}, number = {2}, publisher = {Wiley}, address = {Hoboken}, issn = {0899-1987}, doi = {10.1002/mc.22924}, pages = {258 -- 269}, year = {2018}, abstract = {Melanoma represents a prime example demonstrating the success of targeted therapy in cancer. Nevertheless, it remained a deadly disease until now, and the identification of new, independent strategies as well as the understanding of their molecular mechanisms may help to finally overcome the high mortality. Both indirubins and TNF-related apoptosis-inducing ligand (TRAIL) represent promising candidates. Here, the indirubin derivative DKP-073 is shown to trigger apoptosis in melanoma cells, which is enhanced by the combination with TRAIL and is accompanied by complete loss of cell viability. Addressing the signaling cascade, characteristic molecular steps were identified as caspase-3 activation, downregulation of XIAP, upregulation of p53 and TRAIL receptor 2, loss of mitochondrial membrane potential, and STAT-3 dephosphorylation. The decisive step, however, turned out to be the early production of ROS already at 1 h. This was proven by antioxidant pretreatment, which completely abolished apoptosis induction and loss of cell viability as well as abrogated all signaling effects listed above. Thus, ROS appeared as upstream of all proapoptotic signaling. The data indicate a dominant role of ROS in apoptosis regulation, and the new pathway may expose a possible Achilles heel of melanoma.}, language = {en} } @article{BurschelDecovicNuberetal.2018, author = {Burschel, Sabrina and Decovic, Doris Kreuzer and Nuber, Franziska and Stiller, Marie and Hofmann, Maud and Zupok, Arkadiusz and Siemiatkowska, Beata and Gorka, Michal Jakub and Leimk{\"u}hler, Silke and Friedrich, Thorsten}, title = {Iron-sulfur cluster carrier proteins involved in the assembly of Escherichia coli NADH}, series = {Molecular microbiology}, volume = {111}, journal = {Molecular microbiology}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {0950-382X}, doi = {10.1111/mmi.14137}, pages = {31 -- 45}, year = {2018}, abstract = {The NADH:ubiquinone oxidoreductase (respiratory complex I) is the main entry point for electrons into the Escherichia coli aerobic respiratory chain. With its sophisticated setup of 13 different subunits and 10 cofactors, it is anticipated that various chaperones are needed for its proper maturation. However, very little is known about the assembly of E. coli complex I, especially concerning the incorporation of the iron-sulfur clusters. To identify iron-sulfur cluster carrier proteins possibly involved in the process, we generated knockout strains of NfuA, BolA, YajL, Mrp, GrxD and IbaG that have been reported either to be involved in the maturation of mitochondrial complex I or to exert influence on the clusters of bacterial complex. We determined the NADH and succinate oxidase activities of membranes from the mutant strains to monitor the specificity of the individual mutations for complex I. The deletion of NfuA, BolA and Mrp led to a decreased stability and partially disturbed assembly of the complex as determined by sucrose gradient centrifugation and native PAGE. EPR spectroscopy of cytoplasmic membranes revealed that the BolA deletion results in the loss of the binuclear Fe/S cluster N1b.}, language = {en} } @article{PancraceIshidaBriandetal.2018, author = {Pancrace, Claire and Ishida, Keishi and Briand, Enora and Pichi, Douglas Gatte and Weiz, Annika R. and Guljarmow, Arthur and Scalvenzi, Thibault and Sassoon, Nathalie and Hertweck, Christian and Dittmann, Elke and Gugger, Muriel}, title = {Unique Biosynthetic Pathway in Bloom-Forming Cyanobacterial Genus Microcystis Jointly Assembles Cytotoxic Aeruginoguanidines and Microguanidines}, series = {ACS chemical biology}, volume = {14}, journal = {ACS chemical biology}, number = {1}, publisher = {American Chemical Society}, address = {Washington}, issn = {1554-8929}, doi = {10.1021/acschembio.8b00918}, pages = {67 -- 75}, year = {2018}, abstract = {The cyanobacterial genus Microcystis is known to produce an elaborate array of structurally unique and biologically active natural products, including hazardous cyanotoxins. Cytotoxic aeruginoguanidines represent a yet unexplored family of peptides featuring a trisubstituted benzene unit and farnesylated arginine derivatives. In this study, we aimed at assigning these compounds to a biosynthetic gene cluster by utilizing biosynthetic attributes deduced from public genomes of Microcystis and the sporadic distribution of the metabolite in axenic strains of the Pasteur Culture Collection of Cyanobacteria. By integrating genome mining with untargeted metabolomics using liquid chromatography with mass spectrometry, we linked aeruginoguanidine (AGD) to a nonribosomal peptide synthetase gene cluster and coassigned a significantly smaller product to this pathway, microguanidine (MGD), previously only reported from two Microcystis blooms. Further, a new intermediate class of compounds named microguanidine amides was uncovered, thereby further enlarging this compound family. The comparison of structurally divergent AGDs and MGDs reveals an outstanding versatility of this biosynthetic pathway and provides insights into the assembly of the two compound subfamilies. Strikingly, aeruginoguanidines and microguanidines were found to be as widespread as the hepatotoxic microcystins, but the occurrence of both toxin families appeared to be mutually exclusive.}, language = {en} } @article{MittlerBlasiusGaedkeetal.2018, author = {Mittler, Udo and Blasius, Bernd and Gaedke, Ursula and Ryabov, Alexey B.}, title = {Length-volume relationship of lake phytoplankton}, series = {Limnology and Oceanography: Methods}, volume = {17}, journal = {Limnology and Oceanography: Methods}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {1541-5856}, doi = {10.1002/lom3.10296}, pages = {58 -- 68}, year = {2018}, abstract = {The shapes of phytoplankton units (unicellular organisms and colonies) are extremely diverse, and no unique relationship exists between their volume, V, and longest linear dimension, L. However, an approximate scaling between these parameters can be found because the shape variations within each size class are constrained by cell physiology, grazing pressure, and optimality of resource acquisition. To determine this scaling and to test for its seasonal and interannual variation under changing environmental conditions, we performed weighted regression analysis of time-dependent length-volume relations of the phytoplankton community in large deep Lake Constance from 1979 to 1999. We show that despite a large variability in species composition, the V(L) relationship can be approximated as a power law, V similar to L-alpha, with a scaling exponent alpha = 3 for small cells (L < 25 mu m) and alpha = 1.7 if the fitting is performed over the entire length range, including individual cells and colonies. The best description is provided by a transitional power function describing a regime change from a scaling exponent of 3 for small cells to an exponent of 0.4 in the range of large phytoplankton. Testing different weighted fitting approaches we show that remarkably the best prediction of the total community biovolume from measurements of L and cell density is obtained when the regression is weighted with the squares of species abundances. Our approach should also be applicable to other systems and allows converting phytoplankton length distributions (e.g., obtained with automatic monitoring such as flow cytometry) into distributions of biovolume and biovolume-related phytoplankton traits.}, language = {en} } @article{vanVelzenThieserBerendonketal.2018, author = {van Velzen, Ellen and Thieser, Tamara and Berendonk, Thomas U. and Weitere, Markus and Gaedke, Ursula}, title = {Inducible defense destabilizes predator-prey dynamics}, series = {Oikos}, volume = {127}, journal = {Oikos}, number = {11}, publisher = {Wiley}, address = {Hoboken}, issn = {0030-1299}, doi = {10.1111/oik.04868}, pages = {1551 -- 1562}, year = {2018}, abstract = {Phenotypic plasticity in prey can have a dramatic impact on predator-prey dynamics, e.g. by inducible defense against temporally varying levels of predation. Previous work has overwhelmingly shown that this effect is stabilizing: inducible defenses dampen the amplitudes of population oscillations or eliminate them altogether. However, such studies have neglected scenarios where being protected against one predator increases vulnerability to another (incompatible defense). Here we develop a model for such a scenario, using two distinct prey phenotypes and two predator species. Each prey phenotype is defended against one of the predators, and vulnerable to the other. In strong contrast with previous studies on the dynamic effects of plasticity involving a single predator, we find that increasing the level of plasticity consistently destabilizes the system, as measured by the amplitude of oscillations and the coefficients of variation of both total prey and total predator biomasses. We explain this unexpected and seemingly counterintuitive result by showing that plasticity causes synchronization between the two prey phenotypes (and, through this, between the predators), thus increasing the temporal variability in biomass dynamics. These results challenge the common view that plasticity should always have a stabilizing effect on biomass dynamics: adding a single predator-prey interaction to an established model structure gives rise to a system where different mechanisms may be at play, leading to dramatically different outcomes.}, language = {en} } @article{vanKleunenEsslPergletal.2018, author = {van Kleunen, Mark and Essl, Franz and Pergl, Jan and Brundu, Giuseppe and Carboni, Marta and Dullinger, Stefan and Early, Regan and Gonzalez-Moreno, Pablo and Groom, Quentin J. M. and Hulme, Philip E. and Kueffer, Christoph and K{\"u}hn, Ingolf and Maguas, Cristina and Maurel, Noelie and Novoa, Ana and Parepa, Madalin and Pysek, Petr and Seebens, Hanno and Tanner, Rob and Touza, Julia and Verbrugge, Laura and Weber, Ewald and Dawson, Wayne and Kreft, Holger and Weigelt, Patrick and Winter, Marten and Klonner, Guenther and Talluto, Matthew V. and Dehnen-Schmutz, Katharina}, title = {The changing role of ornamental horticulture in alien plant invasions}, series = {Biological reviews}, volume = {93}, journal = {Biological reviews}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {1464-7931}, doi = {10.1111/brv.12402}, pages = {1421 -- 1437}, year = {2018}, abstract = {The number of alien plants escaping from cultivation into native ecosystems is increasing steadily. We provide an overview of the historical, contemporary and potential future roles of ornamental horticulture in plant invasions. We show that currently at least 75\% and 93\% of the global naturalised alien flora is grown in domestic and botanical gardens, respectively. Species grown in gardens also have a larger naturalised range than those that are not. After the Middle Ages, particularly in the 18th and 19th centuries, a global trade network in plants emerged. Since then, cultivated alien species also started to appear in the wild more frequently than non-cultivated aliens globally, particularly during the 19th century. Horticulture still plays a prominent role in current plant introduction, and the monetary value of live-plant imports in different parts of the world is steadily increasing. Historically, botanical gardens - an important component of horticulture - played a major role in displaying, cultivating and distributing new plant discoveries. While the role of botanical gardens in the horticultural supply chain has declined, they are still a significant link, with one-third of institutions involved in retail-plant sales and horticultural research. However, botanical gardens have also become more dependent on commercial nurseries as plant sources, particularly in North America. Plants selected for ornamental purposes are not a random selection of the global flora, and some of the plant characteristics promoted through horticulture, such as fast growth, also promote invasion. Efforts to breed non-invasive plant cultivars are still rare. Socio-economical, technological, and environmental changes will lead to novel patterns of plant introductions and invasion opportunities for the species that are already cultivated. We describe the role that horticulture could play in mediating these changes. We identify current research challenges, and call for more research efforts on the past and current role of horticulture in plant invasions. This is required to develop science-based regulatory frameworks to prevent further plant invasions.}, language = {en} } @article{BeermannWestburyHofreiteretal.2018, author = {Beermann, Jan and Westbury, Michael V. and Hofreiter, Michael and Hilgers, Leon and Deister, Fabian and Neumann, Hermann and Raupach, Michael J.}, title = {Cryptic species in a well-known habitat}, series = {Scientific reports}, volume = {8}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-018-25225-x}, pages = {26}, year = {2018}, abstract = {Taxonomy plays a central role in biological sciences. It provides a communication system for scientists as it aims to enable correct identification of the studied organisms. As a consequence, species descriptions should seek to include as much available information as possible at species level to follow an integrative concept of 'taxonomics'. Here, we describe the cryptic species Epimeria frankei sp. nov. from the North Sea, and also redescribe its sister species, Epimeria cornigera. The morphological information obtained is substantiated by DNA barcodes and complete nuclear 18S rRNA gene sequences. In addition, we provide, for the first time, full mitochondrial genome data as part of a metazoan species description for a holotype, as well as the neotype. This study represents the first successful implementation of the recently proposed concept of taxonomics, using data from high-throughput technologies for integrative taxonomic studies, allowing the highest level of confidence for both biodiversity and ecological research.}, language = {en} } @article{KnebelNeebZahnetal.2018, author = {Knebel, Constanze and Neeb, Jannika and Zahn, Elisabeth and Schmidt, Flavia and Carazo, Alejandro and Holas, Ondej and Pavek, Petr and P{\"u}schel, Gerhard Paul and Zanger, Ulrich M. and S{\"u}ssmuth, Roderich and Lampen, Alfonso and Marx-Stoelting, Philip and Braeuning, Albert}, title = {Unexpected Effects of Propiconazole, Tebuconazole, and Their Mixture on the Receptors CAR and PXR in Human Liver Cells}, series = {Toxicological sciences}, volume = {163}, journal = {Toxicological sciences}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {1096-6080}, doi = {10.1093/toxsci/kfy026}, pages = {170 -- 181}, year = {2018}, abstract = {Analyzing mixture toxicity requires an in-depth understanding of the mechanisms of action of its individual components. Substances with the same target organ, same toxic effect and same mode of action (MoA) are believed to cause additive effects, whereas substances with different MoAs are assumed to act independently. Here, we tested 2 triazole fungicides, propiconazole, and tebuconazole (Te), for individual and combined effects on liver toxicity-related endpoints. Both triazoles are proposed to belong to the same cumulative assessment group and are therefore thought to display similar and additive behavior. Our data show that Te is an antagonist of the constitutive androstane receptor (CAR) in rats and humans, while propiconazole is an agonist of this receptor. Both substances activate the pregnane X-receptor (PXR) and further induce mRNA expression of CYP3A4. CYP3A4 enzyme activity, however, is inhibited by propiconazole. For common targets of PXR and CAR, the activation of PXR by Te overrides CAR inhibition. In summary, propiconazole and Te affect different hepatotoxicity-relevant cellular targets and, depending on the individual endpoint analyzed, act via similar or dissimilar mechanisms. The use of molecular data based on research in human cell systems extends the picture to refine cumulative assessment group grouping and substantially contributes to the understanding of mixture effects of chemicals in biological systems.}, language = {en} } @article{MummGodinaKozieletal.2018, author = {Mumm, Rebekka and Godina, Elena and Koziel, Slawomir and Musalek, Martin and Sedlak, Petr and Wittwer-Backofen, Ursula and Hess, Volker and Dasgupta, Parasmani and Henneberg, Maciej and Scheffler, Christiane}, title = {External skeletal robusticity of children and adolescents}, series = {Journal of biological and clinical anthropology}, volume = {74}, journal = {Journal of biological and clinical anthropology}, number = {5}, publisher = {Schweizerbart}, address = {Stuttgart}, issn = {0003-5548}, doi = {10.1127/anthranz/2018/0826}, pages = {383 -- 391}, year = {2018}, abstract = {Background: In our modern world, the way of life in nutritional and activity behaviour has changed. As a consequence, parallel trends of an epidemic of overweight and a decline in external skeletal robusticity are observed in children and adolescents. Aim: We aim to develop reference centiles for external skeletal robusticity of European girls and boys aged 0 to 18 years using the Frame Index as an indicator and identify population specific age-related patterns. Methods: We analysed cross-sectional \& longitudinal data on body height and elbow breadth of boys and girls from Europe (0-18 years, n = 41.679), India (7-18 years, n = 3.297) and South Africa (3-18 years, n = 4.346). As an indicator of external skeletal robusticity Frame Index after Frisancho (1990) was used. We developed centiles for boys and girls using the LMS-method and its extension. Results: Boys have greater external skeletal robusticity than girls. Whereas in girls Frame Index decreases continuously during growth, an increase of Frame Index from 12 to 16 years in European boys can be observed. Indian and South African boys are almost similar in Frame Index to European boys. In girls, the pattern is slightly different. Whereas South African girls are similar to European girls, Indian girls show a lesser external skeletal robusticity. Conclusion: Accurate references for external skeletal robusticity are needed to evaluate if skeletal development is adequate per age. They should be used to monitor effects of changes in way of life and physical activity levels in children and adolescents to avoid negative health outcomes like osteoporosis and arthrosis.}, language = {en} } @phdthesis{deVera2018, author = {de Vera, Jean-Pierre Paul}, title = {The relevance of ecophysiology in astrobiology and planetary research}, school = {Universit{\"a}t Potsdam}, pages = {219}, year = {2018}, abstract = {Eco-physiological processes are expressing the interaction of organisms within an environmental context of their habitat and their degree of adaptation, level of resistance as well as the limits of life in a changing environment. The present study focuses on observations achieved by methods used in this scientific discipline of "Ecophysiology" and to enlarge the scientific context in a broader range of understanding with universal character. The present eco-physiological work is building the basis for classifying and exploring the degree of habitability of another planet like Mars by a bio-driven experimentally approach. It offers also new ways of identifying key-molecules which are playing a specific role in physiological processes of tested organisms to serve as well as potential biosignatures in future space exploration missions with the goal to search for life. This has important implications for the new emerging scientific field of Astrobiology. Astrobiology addresses the study of the origin, evolution, distribution and future of life in the universe. The three fundamental questions which are hidden behind this definition are: how does life begin and evolve? Is there life beyond Earth and, if so, how can we detect it? What is the future of life on Earth and in the universe? It means that this multidisciplinary field encompasses the search for habitable environments in our Solar System and habitable planets outside our Solar System. It comprises the search for the evidence of prebiotic chemistry and life on Mars and other bodies in our Solar System like the icy moons of the Jovian and Saturnian system, laboratory and field research into the origins and early evolution of life on Earth, and studies of the potential for life to adapt to challenges on Earth and in space. For this purpose an integrated research strategy was applied, which connects field research, laboratory research allowing planetary simulation experiments with investigation enterprises performed in space (particularly performed in the low Earth Orbit.}, language = {en} } @misc{CisekTokarzKontenisetal.2018, author = {Cisek, Richard and Tokarz, Danielle and Kontenis, Lukas and Barzda, Virginijus and Steup, Martin}, title = {Polarimetric second harmonic generation microscopy}, series = {Starch-Starke}, volume = {70}, journal = {Starch-Starke}, number = {1-2}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0038-9056}, doi = {10.1002/star.201700031}, pages = {15}, year = {2018}, abstract = {Second harmonic generation (SHG) is a nonlinear optical process that inherently generates signal in non-centrosymmetric materials, such as starch granules, and therefore can be used for label-free imaging. Both intensity and polarization of SHG are determined by material properties that are characterized by the nonlinear susceptibility tensor, ((2)). Examination of the tensor is performed for each focal volume of the image by measuring the outgoing polarization state of the SHG signal for a set of incoming laser beam polarizations. Mapping of nonlinear properties expressed as the susceptibility ratio reveals structural features including the organization of crystalline material within a single starch granule, and the distribution of structural properties in a population of granules. Isolated granules, as well as in situ starch, can be analyzed using polarimetric SHG microscopy. Due to the fast sample preparation and short imaging times, polarimetric SHG microscopy allows for a quick assessment of starch structure and permits rapid feedback for bioengineering applications. This article presents the basics of SHG theory and microscopy applications for starch-containing materials. Quantification of ultrastructural features within individual starch granules is described. New results obtained by polarization resolved SHG microscopy of starch granules are presented for various maize genotypes revealing heterogeneity within a single starch particle and between various granules.}, language = {en} } @article{GrzesiukSpijkermanLachmannetal.2018, author = {Grzesiuk, Malgorzata and Spijkerman, Elly and Lachmann, Sabrina C. and Wacker, Alexander}, title = {Environmental concentrations of pharmaceuticals directly affect phytoplankton and effects propagate through trophic interactions}, series = {Ecotoxicology and Environmental Safety}, volume = {156}, journal = {Ecotoxicology and Environmental Safety}, publisher = {Elsevier}, address = {San Diego}, issn = {0147-6513}, doi = {10.1016/j.ecoenv.2018.03.019}, pages = {271 -- 278}, year = {2018}, abstract = {Pharmaceuticals are found in freshwater ecosystems where even low concentrations in the range of ng L-1 may affect aquatic organisms. In the current study, we investigated the effects of chronic exposure to three pharmaceuticals on two microalgae, a potential modulation of the effects by additional inorganic phosphorus (Pi) limitation, and a potential propagation of the pharmaceuticals' effect across a trophic interaction. The latter considers that pharmaceuticals are bioaccumulated by algae, potentially metabolized into more (or less) toxic derivates and consequently consumed by zooplankton. We cultured Acutodesmus obliquus and Nannochloropsis limnetica in Pi-replete and Pi-limited medium contaminated with one of three commonly human used pharmaceuticals: fluoxetine, ibuprofen, and propranolol. Secondly, we tested to what extent first level consumers (Daphnia magna) were affected when fed with pharmaceutical-grown algae. Chronic exposure, covering 30 generations, led to (i) decreased cell numbers of A. obliquus in the presence of fluoxetine (under Pi-replete conditions) (ii) increased carotenoid to chlorophyll ratios in N. limnetica (under Pi-limited conditions), and (iii) increased photosynthetic yields in A. obliquus (in both Pi-conditions). In addition, ibuprofen affected both algae and their consumer: Feeding ibuprofen-contaminated algae to Pi-stressed D. magna improved their survival. We demonstrate, that even very low concentrations of pharmaceuticals present in freshwater ecosystems can significantly affect aquatic organisms when chronically exposed. Our study indicates that pharmaceutical effects can cross trophic levels and travel up the food chain.}, language = {en} } @article{SpijkermanBehrendFachetal.2018, author = {Spijkerman, Elly and Behrend, Hella and Fach, Bettina and Gaedke, Ursula}, title = {Decreased phosphorus incorporation explains the negative effect of high iron concentrations in the green microalga Chlamydomonas acidophila}, series = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, volume = {626}, journal = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0048-9697}, doi = {10.1016/j.scitotenv.2018.01.188}, pages = {1342 -- 1349}, year = {2018}, abstract = {The green microalga Chlamydomonas acidophila is an important primary producer in very acidic lakes (pH 2.0-3.5), characterized by high concentrations of ferric iron (up to 1 g total Fe L-1) and low rates of primary production. It was previously suggested that these high iron concentrations result in high iron accumulation and inhibit photosynthesis in C. acidophila. To test this, the alga was grown in sterilized lake water and in medium with varying total iron concentrations under limiting and sufficient inorganic phosphorus (Pi) supply, because Pi is an important growth limiting nutrient in acidic waters. Photosynthesis and growth of C. acidophila as measured over 5 days were largely unaffected by high total iron concentrations and only decreased if free ionic Fe3+ concentrations exceeded 100 mg Fe3+ L-1. Although C. acidophila was relatively rich in iron (up to 5 mmol Fe: mol C), we found no evidence of iron toxicity. In contrast, a concentration of 260 mg total Fe L-1 (i.e. 15 mg free ionic Fe3+ L-1), which is common in many acidic lakes, reduced Pi-incorporation by 50\% and will result in Pi-limited photosynthesis. The resulting Pi-limitation present at high iron and Pi concentrations was illustrated by elevated maximum Pi-uptake rates. No direct toxic effects of high iron were found, but unfavourable chemical Pi-speciation reduced growth of the acidophile alga.}, language = {en} } @misc{UhligGehreKammereretal.2018, author = {Uhlig, Katja and Gehre, Christian P. and Kammerer, Sarah and K{\"u}pper, Jan-Heiner and Coleman, Charles Dominic and P{\"u}schel, Gerhard Paul and Duschl, Claus}, title = {Real-time monitoring of oxygen consumption of hepatocytes in a microbioreactor}, series = {Toxicology letters}, volume = {295}, journal = {Toxicology letters}, publisher = {Elsevier}, address = {Clare}, issn = {0378-4274}, doi = {10.1016/j.toxlet.2018.06.652}, pages = {S115 -- S115}, year = {2018}, language = {en} } @phdthesis{Bibi2018, author = {Bibi, Faysal}, title = {Paleoecology and evolution in the Afro-Arabian neogene}, school = {Universit{\"a}t Potsdam}, year = {2018}, abstract = {This cumulative habilitation thesis presents new work on the systematics, paleoecology, and evolution of antelopes and other large mammals, focusing mainly on the late Miocene to Pleistocene terrestrial fossil record of Africa and Arabia. The studies included here range from descriptions of new species to broad-scale analyses of diversification and community evolution in large mammals over millions of years. A uniting theme is the evolution, across both temporal and spatial scales, of the environments and faunas that characterize modern African savannas today. One conclusion of this work is that macroevolutionary changes in large mammals are best characterized at regional (subcontinental to continental) and long-term temporal scales. General views of evolution developed on records that are too restricted in spatial and temporal extent are likely to ascribe too much influence to local or short-lived events. While this distinction in the scale of analysis and interpretation may seem trivial, it is challenging to implement given the geographically and temporally uneven nature of the fossil record, and the difficulties of synthesizing spatially and temporally dispersed datasets. This work attempts to do just that, bringing together primary fossil discoveries from eastern Africa to Arabia, from the Miocene to the Pleistocene, and across a wide range of (mainly large mammal) taxa. The end result is support for hypotheses stressing the impact of both climatic and biotic factors on long-term faunal change, and a more geographically integrated view of evolution in the African fossil record.}, language = {en} } @phdthesis{Lawas2018, author = {Lawas, Lovely Mae F.}, title = {Molecular characterization of rice exposed to heat and drought stress at flowering and early grain filling}, pages = {VII, 150}, year = {2018}, language = {en} } @phdthesis{Stoessel2018, author = {St{\"o}ßel, Daniel}, title = {Biomarker Discovery in Multiple Sclerosis and Parkinson's disease}, school = {Universit{\"a}t Potsdam}, pages = {135}, year = {2018}, abstract = {Neuroinflammatory and neurodegenerative diseases such as Parkinson's (PD) and multiple sclerosis (MS) often result in a severe impairment of the patient´s quality of life. Effective therapies for the treatment are currently not available, which results in a high socio-economic burden. Due to the heterogeneity of the disease subtypes, stratification is particularly difficult in the early phase of the disease and is mainly based on clinical parameters such as neurophysiological tests and central nervous imaging. Due to good accessibility and stability, blood and cerebrospinal fluid metabolite markers could serve as surrogates for neurodegenerative processes. This can lead to an improved mechanistic understanding of these diseases and further be used as "treatment response" biomarkers in preclinical and clinical development programs. Therefore, plasma and CSF metabolite profiles will be identified that allow differentiation of PD from healthy controls, association of PD with dementia (PDD) and differentiation of PD subtypes such as akinetic rigid and tremor dominant PD patients. In addition, plasma metabolites for the diagnosis of primary progressive MS (PPMS) should be investigated and tested for their specificity to relapsing-remitting MS (RRMS) and their development during PPMS progression. By applying untargeted high-resolution metabolomics of PD patient samples and in using random forest and partial least square machine learning algorithms, this study identified 20 plasma metabolites and 14 CSF metabolite biomarkers. These differentiate against healthy individuals with an AUC of 0.8 and 0.9 in PD, respectively. We also identify ten PDD specific serum metabolites, which differentiate against healthy individuals and PD patients without dementia with an AUC of 1.0, respectively. Furthermore, 23 akinetic-rigid specific plasma markers were identified, which differentiate against tremor-dominant PD patients with an AUC of 0.94 and against healthy individuals with an AUC of 0.98. These findings also suggest more severe disease pathology in the akinetic-rigid PD than in tremor dominant PD. In the analysis of MS patient samples a partial least square analysis yielded predictive models for the classification of PPMS and resulted in 20 PPMS specific metabolites. In another MS study unknown changes in human metabolism were identified after administration of the multiple sclerosis drug dimethylfumarate, which is used for the treatment of RRMS. These results allow to describe and understand the hitherto completely unknown mechanism of action of this new drug and to use these findings for the further development of new drugs and targets against RRMS. In conclusion, these results have the potential for improved diagnosis of these diseases and improvement of mechanistic understandings, as multiple deregulated pathways were identified. Moreover, novel Dimethylfumarate targets can be used to aid drug development and treatment efficiency. Overall, metabolite profiling in combination with machine learning identified as a promising approach for biomarker discovery and mode of action elucidation.}, language = {en} } @article{MalinovaMahtoBrandtetal.2018, author = {Malinova, Irina and Mahto, Harendra and Brandt, Felix and AL-Rawi, Shadha and Qasim, Hadeel and Brust, Henrike and Hejazi, Mahdi and Fettke, J{\"o}rg}, title = {EARLY STARVATION1 specifically affects the phosphorylation action of starch-related dikinases}, series = {The plant journal}, volume = {95}, journal = {The plant journal}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {0960-7412}, doi = {10.1111/tpj.13937}, pages = {126 -- 137}, year = {2018}, abstract = {Starch phosphorylation by starch-related dikinases glucan, water dikinase (GWD) and phosphoglucan, water dikinase (PWD) is a key step in starch degradation. Little information is known about the precise structure of the glucan substrate utilized by the dikinases and about the mechanisms by which these structures may be influenced. A 50-kDa starch-binding protein named EARLY STARVATION1 (ESV1) was analyzed regarding its impact on starch phosphorylation. In various invitro assays, the influences of the recombinant protein ESV1 on the actions of GWD and PWD on the surfaces of native starch granules were analyzed. In addition, we included starches from various sources as well as truncated forms of GWD. ESV1 preferentially binds to highly ordered, -glucans, such as starch and crystalline maltodextrins. Furthermore, ESV1 specifically influences the action of GWD and PWD at the starch granule surface. Starch phosphorylation by GWD is decreased in the presence of ESV1, whereas the action of PWD increases in the presence of ESV1. The unique alterations observed in starch phosphorylation by the two dikinases are discussed in regard to altered glucan structures at the starch granule surface.}, language = {en} } @article{LisowskaRoedelManetetal.2018, author = {Lisowska, Justyna and R{\"o}del, Claudia Jasmin and Manet, Sandra and Miroshnikova, Yekaterina A. and Boyault, Cyril and Planus, Emmanuelle and De Mets, Richard and Lee, Hsiao-Hui and Destaing, Olivier and Mertani, Hichem and Boulday, Gwenola and Tournier-Lasserve, Elisabeth and Balland, Martial and Abdelilah-Seyfried, Salim and Albiges-Rizo, Corinne and Faurobert, Eva}, title = {The CCM1-CCM2 complex controls complementary functions of ROCK1 and ROCK2 that are required for endothelial integrity}, series = {Journal of cell science}, volume = {131}, journal = {Journal of cell science}, number = {15}, publisher = {Company biologists LTD}, address = {Cambridge}, issn = {0021-9533}, doi = {10.1242/jcs.216093}, pages = {15}, year = {2018}, abstract = {Endothelial integrity relies on a mechanical crosstalk between intercellular and cell-matrix interactions. This crosstalk is compromised in hemorrhagic vascular lesions of patients carrying loss-of-function mutations in cerebral cavernous malformation (CCM) genes. RhoA/ROCK-dependent cytoskeletal remodeling is central to the disease, as it causes unbalanced cell adhesion towards increased cell-extracellular matrix adhesions and destabilized cell-cell junctions. This study reveals that CCM proteins directly orchestrate ROCK1 and ROCK2 complementary roles on the mechanics of the endothelium. CCM proteins act as a scaffold, promoting ROCK2 interactions with VE-cadherin and limiting ROCK1 kinase activity. Loss of CCM1 (also known as KRIT1) produces excessive ROCK1-dependent actin stress fibers and destabilizes intercellular junctions. Silencing of ROCK1 but not ROCK2 restores the adhesive and mechanical homeostasis of CCM1 and CCM2-depleted endothelial monolayers, and rescues the cardiovascular defects of ccm1 mutant zebrafish embryos. Conversely, knocking down Rock2 but not Rock1 in wild-type zebrafish embryos generates defects reminiscent of the ccm1 mutant phenotypes. Our study uncovers the role of the CCM1-CCM2 complex in controlling ROCK1 and ROCK2 to preserve endothelial integrity and drive heart morphogenesis. Moreover, it solely identifies the ROCK1 isoform as a potential therapeutic target for the CCM disease.}, language = {en} } @article{DonatLourencoPaolinietal.2018, author = {Donat, Stefan and Lourenco, Marta Sofia Rocha and Paolini, Alessio and Otten, Cecile and Renz, Marc and Abdelilah-Seyfried, Salim}, title = {Heg1 and Ccm1/2 proteins control endocardial mechanosensitivity during zebrafish valvulogenesis}, series = {eLife}, volume = {7}, journal = {eLife}, publisher = {eLife Sciences Publications}, address = {Cambridge}, issn = {2050-084X}, doi = {10.7554/eLife.28939}, pages = {22}, year = {2018}, abstract = {Endothelial cells respond to different levels of fluid shear stress through adaptations of their mechanosensitivity. Currently, we lack a good understanding of how this contributes to sculpting of the cardiovascular system. Cerebral cavernous malformation (CCM) is an inherited vascular disease that occurs when a second somatic mutation causes a loss of CCM1/KRIT1, CCM2, or CCM3 proteins. Here, we demonstrate that zebrafish Krit1 regulates the formation of cardiac valves. Expression of heg1, which encodes a binding partner of Krit1, is positively regulated by blood-flow. In turn, Heg1 stabilizes levels of Krit1 protein, and both Heg1 and Krit1 dampen expression levels of klf2a, a major mechanosensitive gene. Conversely, loss of Krit1 results in increased expression of klf2a and notch1b throughout the endocardium and prevents cardiac valve leaflet formation. Hence, the correct balance of blood-flow-dependent induction and Krit1 protein mediated repression of klf2a and notch1b ultimately shapes cardiac valve leaflet morphology.}, language = {en} } @article{OlmerEngelsUsmanetal.2018, author = {Olmer, Ruth and Engels, Lena and Usman, Abdulai and Menke, Sandra and Malik, Muhammad Nasir Hayat and Pessler, Frank and Goehring, Gudrun and Bornhorst, Dorothee and Bolten, Svenja and Abdelilah-Seyfried, Salim and Scheper, Thomas and Kempf, Henning and Zweigerdt, Robert and Martin, Ulrich}, title = {Differentiation of Human Pluripotent Stem Cells into Functional Endothelial Cells in Scalable Suspension Culture}, series = {Stem Cell Reports}, volume = {10}, journal = {Stem Cell Reports}, number = {5}, publisher = {Springer}, address = {New York}, issn = {2213-6711}, doi = {10.1016/j.stemcr.2018.03.017}, pages = {16}, year = {2018}, abstract = {Endothelial cells (ECs) are involved in a variety of cellular responses. As multifunctional components of vascular structures, endothelial (progenitor) cells have been utilized in cellular therapies and are required as an important cellular component of engineered tissue constructs and in vitro disease models. Although primary ECs from different sources are readily isolated and expanded, cell quantity and quality in terms of functionality and karyotype stability is limited. ECs derived from human induced pluripotent stem cells (hiPSCs) represent an alternative and potentially superior cell source, but traditional culture approaches and 2D differentiation protocols hardly allow for production of large cell numbers. Aiming at the production of ECs, we have developed a robust approach for efficient endothelial differentiation of hiPSCs in scalable suspension culture. The established protocol results in relevant numbers of ECs for regenerative approaches and industrial applications that show in vitro proliferation capacity and a high degree of chromosomal stability.}, language = {en} } @misc{PaoliniAbdelilahSeyfried2018, author = {Paolini, Alessio and Abdelilah-Seyfried, Salim}, title = {The mechanobiology of zebrafish cardiac valve leaflet formation}, series = {Current opinion in cell biology : review articles, recommended reading, bibliography of the world literature}, volume = {55}, journal = {Current opinion in cell biology : review articles, recommended reading, bibliography of the world literature}, publisher = {Elsevier}, address = {London}, issn = {0955-0674}, doi = {10.1016/j.ceb.2018.05.007}, pages = {52 -- 58}, year = {2018}, abstract = {Over a lifetime, rhythmic contractions of the heart provide a continuous flow of blood throughout the body. An essential morphogenetic process during cardiac development which ensures unidirectional blood flow is the formation of cardiac valves. These structures are largely composed of extracellular matrix and of endocardial cells, a specialized population of endothelial cells that line the interior of the heart and that are subjected to changing hemodynamic forces. Recent studies have significantly expanded our understanding of this morphogenetic process. They highlight the importance of the mechanobiology of cardiac valve formation and show how biophysical forces due to blood flow drive biochemical and electrical signaling required for the differentiation of cells to produce cardiac valves.}, language = {en} } @article{HilgersHartmannHofreiteretal.2018, author = {Hilgers, Leon and Hartmann, Stefanie and Hofreiter, Michael and von Rintelen, Thomas}, title = {Novel Genes, Ancient Genes, and Gene Co-Option Contributed o the Genetic Basis of the Radula, a Molluscan Innovation}, series = {Molecular biology and evolution}, volume = {35}, journal = {Molecular biology and evolution}, number = {7}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0737-4038}, doi = {10.1093/molbev/msy052}, pages = {1638 -- 1652}, year = {2018}, abstract = {The radula is the central foraging organ and apomorphy of the Mollusca. However, in contrast to other innovations, including the mollusk shell, genetic underpinnings of radula formation remain virtually unknown. Here, we present the first radula formative tissue transcriptome using the viviparous freshwater snail Tylomelania sarasinorum and compare it to foot tissue and the shell-building mantle of the same species. We combine differential expression, functional enrichment, and phylostratigraphic analyses to identify both specific and shared genetic underpinnings of the three tissues as well as their dominant functions and evolutionary origins. Gene expression of radula formative tissue is very distinct, but nevertheless more similar to mantle than to foot. Generally, the genetic bases of both radula and shell formation were shaped by novel orchestration of preexisting genes and continuous evolution of novel genes. A significantly increased proportion of radula-specific genes originated since the origin of stem-mollusks, indicating that novel genes were especially important for radula evolution. Genes with radula-specific expression in our study are frequently also expressed during the formation of other lophotrochozoan hard structures, like chaetae (hes1, arx), spicules (gbx), and shells of mollusks (gbx, heph) and brachiopods (heph), suggesting gene co-option for hard structure formation. Finally, a Lophotrochozoa-specific chitin synthase with a myosin motor domain (CS-MD), which is expressed during mollusk and brachiopod shell formation, had radula-specific expression in our study. CS-MD potentially facilitated the construction of complex chitinous structures and points at the potential of molecular novelties to promote the evolution of different morphological innovations.}, language = {en} } @article{PaijmansBarlowFoersteretal.2018, author = {Paijmans, Johanna L. A. and Barlow, Axel and F{\"o}rster, Daniel W. and Henneberger, Kirstin and Meyer, Matthias and Nickel, Birgit and Nagel, Doris and Wors{\o}e Havm{\o}ller, Rasmus and Baryshnikov, Gennady F. and Joger, Ulrich and Rosendahl, Wilfried and Hofreiter, Michael}, title = {Historical biogeography of the leopard (Panthera pardus) and its extinct Eurasian populations}, series = {BMC Evolutionary Biology}, volume = {18}, journal = {BMC Evolutionary Biology}, number = {156}, publisher = {BioMed Central und Springer}, address = {London, Berlin und Heidelberg}, issn = {1471-2148}, doi = {10.1186/s12862-018-1268-0}, pages = {12}, year = {2018}, abstract = {Background Resolving the historical biogeography of the leopard (Panthera pardus) is a complex issue, because patterns inferred from fossils and from molecular data lack congruence. Fossil evidence supports an African origin, and suggests that leopards were already present in Eurasia during the Early Pleistocene. Analysis of DNA sequences however, suggests a more recent, Middle Pleistocene shared ancestry of Asian and African leopards. These contrasting patterns led researchers to propose a two-stage hypothesis of leopard dispersal out of Africa: an initial Early Pleistocene colonisation of Asia and a subsequent replacement by a second colonisation wave during the Middle Pleistocene. The status of Late Pleistocene European leopards within this scenario is unclear: were these populations remnants of the first dispersal, or do the last surviving European leopards share more recent ancestry with their African counterparts? Results In this study, we generate and analyse mitogenome sequences from historical samples that span the entire modern leopard distribution, as well as from Late Pleistocene remains. We find a deep bifurcation between African and Eurasian mitochondrial lineages (~ 710 Ka), with the European ancient samples as sister to all Asian lineages (~ 483 Ka). The modern and historical mainland Asian lineages share a relatively recent common ancestor (~ 122 Ka), and we find one Javan sample nested within these. Conclusions The phylogenetic placement of the ancient European leopard as sister group to Asian leopards suggests that these populations originate from the same out-of-Africa dispersal which founded the Asian lineages. The coalescence time found for the mitochondrial lineages aligns well with the earliest undisputed fossils in Eurasia, and thus encourages a re-evaluation of the identification of the much older putative leopard fossils from the region. The relatively recent ancestry of all mainland Asian leopard lineages suggests that these populations underwent a severe population bottleneck during the Pleistocene. Finally, although only based on a single sample, the unexpected phylogenetic placement of the Javan leopard could be interpreted as evidence for exchange of mitochondrial lineages between Java and mainland Asia, calling for further investigation into the evolutionary history of this subspecies.}, language = {en} } @article{TaronLellBarlowetal.2018, author = {Taron, Ulrike H. and Lell, Moritz and Barlow, Axel and Paijmans, Johanna L. A.}, title = {Testing of Alignment Parameters for Ancient Samples}, series = {Genes}, volume = {9}, journal = {Genes}, number = {3}, publisher = {Molecular Diversity Preservation International}, address = {Basel}, issn = {2073-4425}, doi = {10.3390/genes9030157}, pages = {1 -- 12}, year = {2018}, abstract = {High-throughput sequence data retrieved from ancient or other degraded samples has led to unprecedented insights into the evolutionary history of many species, but the analysis of such sequences also poses specific computational challenges. The most commonly used approach involves mapping sequence reads to a reference genome. However, this process becomes increasingly challenging with an elevated genetic distance between target and reference or with the presence of contaminant sequences with high sequence similarity to the target species. The evaluation and testing of mapping efficiency and stringency are thus paramount for the reliable identification and analysis of ancient sequences. In this paper, we present 'TAPAS', (Testing of Alignment Parameters for Ancient Samples), a computational tool that enables the systematic testing of mapping tools for ancient data by simulating sequence data reflecting the properties of an ancient dataset and performing test runs using the mapping software and parameter settings of interest. We showcase TAPAS by using it to assess and improve mapping strategy for a degraded sample from a banded linsang (Prionodon linsang), for which no closely related reference is currently available. This enables a 1.8-fold increase of the number of mapped reads without sacrificing mapping specificity. The increase of mapped reads effectively reduces the need for additional sequencing, thus making more economical use of time, resources, and sample material.}, language = {en} } @article{TaronLellBarlowetal.2018, author = {Taron, Ulrike H. and Lell, Moritz and Barlow, Axel and Paijmans, Johanna L. A.}, title = {Testing of Alignment Parameters for Ancient Samples}, series = {Genese}, volume = {9}, journal = {Genese}, number = {3}, publisher = {MDPI}, address = {Basel}, issn = {2073-4425}, doi = {10.3390/genes9030157}, pages = {12}, year = {2018}, abstract = {High-throughput sequence data retrieved from ancient or other degraded samples has led to unprecedented insights into the evolutionary history of many species, but the analysis of such sequences also poses specific computational challenges. The most commonly used approach involves mapping sequence reads to a reference genome. However, this process becomes increasingly challenging with an elevated genetic distance between target and reference or with the presence of contaminant sequences with high sequence similarity to the target species. The evaluation and testing of mapping efficiency and stringency are thus paramount for the reliable identification and analysis of ancient sequences. In this paper, we present 'TAPAS', (Testing of Alignment Parameters for Ancient Samples), a computational tool that enables the systematic testing of mapping tools for ancient data by simulating sequence data reflecting the properties of an ancient dataset and performing test runs using the mapping software and parameter settings of interest. We showcase TAPAS by using it to assess and improve mapping strategy for a degraded sample from a banded linsang (Prionodon linsang), for which no closely related reference is currently available. This enables a 1.8-fold increase of the number of mapped reads without sacrificing mapping specificity. The increase of mapped reads effectively reduces the need for additional sequencing, thus making more economical use of time, resources, and sample material.}, language = {en} } @article{MartinCreuzburgMassierWacker2018, author = {Martin-Creuzburg, Dominik and Massier, Tamara and Wacker, Alexander}, title = {Sex-Specific differences in essential lipid requirements of Daphnia magna}, series = {Frontiers in Ecology and Evolution}, volume = {6}, journal = {Frontiers in Ecology and Evolution}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {2296-701X}, doi = {10.3389/fevo.2018.00089}, pages = {14}, year = {2018}, abstract = {Sex-specific differences in nutritional requirements may crucially influence the performances of the sexes, which may have implications for sexual reproduction and thus is of great ecological and evolutionary interest. In the freshwater model species Daphnia magna, essential lipid requirements have been extensively studied. Dietary deficiencies in sterols and polyunsaturated fatty acids (PUFA) have been shown to constrain somatic growth and parthenogenetic reproduction of female Daphnia. In contrast, nutrient requirements of male Daphnia have not been studied yet. Supplementation experiments were conducted to investigate differences in sterol (cholesterol) and PUFA (eicosapentaenoic acid, EPA) requirements between female and male D. magna. Thresholds for sterol-limited juvenile growth were higher in females than in males, suggesting that females are more susceptible to dietary sterol deficiencies than males. Sex-specific differences in maximum somatic growth rates were evident primarily in the presence of dietary EPA; females could not exploit their generally higher growth potential in the absence of dietary PUFA. However, the thresholds for EPA-limited growth did not differ between sexes, suggesting that both sexes have similar dietary EPA requirements during juvenile growth. During a life history experiment, the gain in body dry mass was higher in females than in males, irrespective of food treatment. In both sexes, the gain in body dry mass increased significantly upon EPA supplementation, indicating that both sexes benefited from dietary EPA supply also later in life. However, the positive effects of EPA supplementation were most pronounced for female reproduction-related traits (i.e., clutch sizes, egg dry masses, and total dry mass investment in reproduction). The high maternal investment in reproduction resulted in a depletion of nutrients in female somata. In contrast, the comparatively low paternal investment in reproduction allowed for the accumulation of nutrients in male somata. We conclude that males are generally less susceptible to dietary nutrient deficiencies than females, because they can rely more on internal body stores. Our data suggest that the performances of the sexes are differentially influenced by lipid-mediated food quality, which may have consequences for sexual reproduction and thus the production of resting eggs and the maintenance of Daphnia populations.}, language = {en} } @article{SchloerHolzloehnerListeketal.2018, author = {Schl{\"o}r, Anja and Holzl{\"o}hner, Pamela and Listek, Martin and Grieß, Cindy and Butze, Monique and Micheel, Burkhard and Hentschel, Christian and Sowa, Mandy and Roggenbuck, Dirk and Schierack, Peter and F{\"u}ner, Jonas and Schliebs, Erik and Goihl, Alexander and Reinhold, Dirk and Hanack, Katja}, title = {Generation and validation of murine monoclonal and camelid recombinant single domain antibodies specific for human pancreatic glycoprotein 2}, series = {New biotechnology}, volume = {45}, journal = {New biotechnology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1871-6784}, doi = {10.1016/j.nbt.2018.03.006}, pages = {60 -- 68}, year = {2018}, abstract = {Pancreatic secretory zymogen-granule membrane glycoprotein 2 (GP2) has been identified as a major autoantigenic target in Crohn's disease patients. It was reported recently that a long (GP2a) and a short (GP2b) isoform of GP2 exist and that in the outcome of inflammatory bowel diseases (IBD) GP2-specific autoantibodies probably appear as new serological markers for diagnosis and therapeutic monitoring. To investigate this further and in order to establish diagnostic tools for the discrimination of both GP2 isoforms, a set of different murine monoclonal and camelid recombinant single domain antibodies (camelid VHH) was generated and validated in various enzyme-linked immunosorbent assay (ELISA) formats, immunofluorescence on transgenic cell lines and immunohistochemistry on monkey pancreas tissue sections. Out of six binders identified, one was validated as highly specific for GP2a. This murine monoclonal antibody (mAb) was used as capture antibody in construction of a sandwich ELISA for the detection of GP2a. Camelid VHHs or a second murine mAb served as detection antibodies in this system. All antibodies were also able to stain GP2a or GP2b on transgenic cell lines as well as on pancreatic tissue in immunohistochemistry. The KD values measured for the camelid VHHs were between 7 nM and 23pM. This set of specific binders will enable the development of suitable diagnostic tools for GP2-related studies in IBD.}, language = {en} } @article{AutenriethHartmannLahetal.2018, author = {Autenrieth, Marijke and Hartmann, Stefanie and Lah, Ljerka and Roos, Anna and Dennis, Alice B. and Tiedemann, Ralph}, title = {High-quality whole-genome sequence of an abundant Holarctic odontocete, the harbour porpoise (Phocoena phocoena)}, series = {Molecular ecology resources}, volume = {18}, journal = {Molecular ecology resources}, number = {6}, publisher = {Wiley}, address = {Hoboken}, issn = {1755-098X}, doi = {10.1111/1755-0998.12932}, pages = {1469 -- 1481}, year = {2018}, abstract = {The harbour porpoise (Phocoena phocoena) is a highly mobile cetacean found across the Northern hemisphere. It occurs in coastal waters and inhabits basins that vary broadly in salinity, temperature and food availability. These diverse habitats could drive subtle differentiation among populations, but examination of this would be best conducted with a robust reference genome. Here, we report the first harbour porpoise genome, assembled de novo from an individual originating in the Kattegat Sea (Sweden). The genome is one of the most complete cetacean genomes currently available, with a total size of 2.39 Gb and 50\% of the total length found in just 34 scaffolds. Using 122 of the longest scaffolds, we were able to show high levels of synteny with the genome of the domestic cattle (Bos taurus). Our draft annotation comprises 22,154 predicted genes, which we further annotated through matches to the NCBI nucleotide database, GO categorization and motif prediction. Within the predicted genes, we have confirmed the presence of >20 genes or gene families that have been associated with adaptive evolution in other cetaceans. Overall, this genome assembly and draft annotation represent a crucial addition to the genomic resources currently available for the study of porpoises and Phocoenidae evolution, phylogeny and conservation.}, language = {en} } @article{MachatschekSchulzLendlein2018, author = {Machatschek, Rainhard Gabriel and Schulz, Burkhard and Lendlein, Andreas}, title = {The influence of pH on the molecular degradation mechanism of PLGA}, series = {MRS Advances}, volume = {3}, journal = {MRS Advances}, number = {63}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {2059-8521}, doi = {10.1557/adv.2018.602}, pages = {3883 -- 3889}, year = {2018}, abstract = {Poly[(rac-lactide)-co-glycolide] (PLGA) is used in medicine to provide mechanical support for healing tissue or as matrix for controlled drug release. The properties of this copolymer depend on the evolution of the molecular weight of the material during degradation. which is determined by the kinetics of the cleavage of hydrolysable bonds. The generally accepted description of the degradation of PLGA is a random fragmentation that is autocatalyzed by the accumulation of acidic fragments inside the bulk material. Since mechanistic studies with lactide oligomers have concluded a chain-end scission mechanism and monolayer degradation experiments with polylactide found no accelerated degradation at lower pH, we hypothesize that the impact of acidic fragments on the molecular degradation kinetics of PLGA is overestimated By means of the Langmuir monolayer degradation technique. the molecular degradation kinetics of PLGA at different pH could be determined. Protons did not catalyze the degradation of PLGA. The molecular mechanism at neutral pH and low pH is a combination of random and chainend-cut events, while the degradation under strongly alkaline conditions is determined by rapid chainend cuts. We suggest that the degradation of bulk PLGA is not catalyzed by the acidic degradation products. Instead. increased concentration of small fragments leads to accelerated mass loss via fast chain-end cut events. In the future, we aim to substantiate the proposed molecular degradation mechanism of PLGA with interfacial rheology.}, language = {en} } @article{YanFangNoecheletal.2018, author = {Yan, Wan and Fang, Liang and N{\"o}chel, Ulrich and Gould, Oliver E. C. and Behl, Marc and Kratz, Karl and Lendlein, Andreas}, title = {Investigating the roles of crystallizable and glassy switching segments within multiblock copolymer shape-memory materials}, series = {MRS Advances}, volume = {3}, journal = {MRS Advances}, number = {63}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {2059-8521}, doi = {10.1557/adv.2018.590}, pages = {3741 -- 3749}, year = {2018}, abstract = {The variation of the molecular architecture of multiblock copolymers has enabled the introduction of functional behaviour and the control of key mechanical properties. In the current study, we explore the synergistic relationship of two structural components in a shape-memory material formed of a multiblock copolymer with crystallizable poly(epsilon-caprolactone) and crystallizable polyfoligo(3S-iso-butylmorpholine-2,5-dione) segments (PCL-PIBMD). The thermal and structural properties of PCL-PIBMD films were compared with PCI.-PU and PMMD-PU investigated by means of DSC, SAXS and WARS measurements. The shape-memory properties were quantified by cyclic, thermomechanical tensile tests, where deformation strains up to 900\% were applied for programming PCL-PIBMD films at 50 degrees C. Toluene vapor treatment experiments demonstrated that the temporary shape was fixed mainly by glassy PIBMD domains at strains lower than 600\% with the PCL contribution to fixation increasing to 42 +/- 2\% at programming strains of 900\% This study into the shape-memory mechanism of PCL-PIBMD provides insight into the structure function relation in multiblock copolymers with both crystallizable and glassy switching segments.}, language = {en} } @article{WischkeBaehrRachevaetal.2018, author = {Wischke, Christian and Baehr, Elen and Racheva, Miroslava and Heuchel, Matthias and Weigel, Thomas and Lendlein, Andreas}, title = {Surface immobilization strategies for tyrosinase as biocatalyst applicable to polymer network synthesis}, series = {MRS Advances}, volume = {3}, journal = {MRS Advances}, number = {63}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {2059-8521}, doi = {10.1557/adv.2018.630}, pages = {3875 -- 3881}, year = {2018}, abstract = {Enzymes have recently attracted increasing attention in material research based on their capacity to catalyze the conversion of polymer-bound moieties for synthesizing polymer networks, particularly bulk hydrogels. hi this study. the surface immobilization of a relevant enzyme. mushroom tyrosinase, should be explored using glass as model surface. In a first step. the glass support was functionalized with silanes to introduce either amine or carboxyl groups, as confirmed e.g. by X-ray photoelectron spectroscopy. By applying glutaraldehyde and EDC/NHS chemistry, respectively, surfaces have been activated for subsequent successful coupling of tyrosinase. Via protein hydrolysis and amino acid characterization by HPLC, the quantity of bound tyrosinase was shown to correspond to a full surface coverage. Based on the visualized enzymatic conversion of a test substrate at the glass support. the functionalized surfaces may be explored for surface-associated material synthesis in the future.}, language = {en} } @article{KruegerGengeDietzeYanetal.2018, author = {Kr{\"u}ger-Genge, Anne and Dietze, Stefanie and Yan, Wan and Liu, Yue and Fang, Liang and Kratz, Karl and Lendlein, Andreas and Jung, Friedrich}, title = {Endothelial cell migration, adhesion and proliferation on different polymeric substrates}, series = {Clinical hemorheology and microcirculation : blood flow and vessels}, volume = {70}, journal = {Clinical hemorheology and microcirculation : blood flow and vessels}, number = {4}, publisher = {IOS Press}, address = {Amsterdam}, issn = {1386-0291}, doi = {10.3233/CH-189317}, pages = {511 -- 529}, year = {2018}, abstract = {BACKGROUND: The formation of a functionally-confluent endothelial cell (EC) monolayer affords proliferation of EC, which only happens in case of appropriate migratory activity. AIM OF THE STUDY: The migratory pathway of human umbilical endothelial cells (HUVEC) was investigated on different polymeric substrates. MATERIAL AND METHODS: Surface characterization of the polymers was performed by contact angle measurements and atomic force microscopy under wet conditions. 30,000 HUVEC per well were seeded on polytetrafluoroethylene (PTFE) (theta(adv) = 119 degrees +/- 2 degrees), on low-attachment plate LAP (theta(adv) = 28 degrees +/- 2 degrees) and on polystyrene based tissue culture plates (TCP, theta(adv) = 22 degrees +/- 1 degrees). HUVEC tracks (trajectories) were recorded by time lapse microscopy and the euclidean distance (straight line between starting and end point), the total distance and the velocities of HUVEC not leaving the vision field were determined. RESULTS: On PTFE, 42 HUVEC were in the vision field directly after seeding. The mean length of single migration steps (SML) was 6.1 +/- 5.2 mu m, the mean velocity (MV) 0.40 +/- 0.3 mu m.min(-1) and the complete length of the trajectory (LT) was 710 +/- 440 mu m. On TCP 82 HUVEC were in the vision field subsequent to seeding. The LT was 840 +/- 550 mu m, the SML 6.1 +/- 5.2 mu m and the MV 0.44 +/- 0.3 mu m.min(-1). The trajectories on LAP differed significantly in respect to SML (2.4 +/- 3.9 mu m, p <0.05), the MV (0.16 +/- 0.3 mu m.min(-1), p <0.05) and the LT (410 +/- 300 mu m, p <0.05), compared to PTFE and TCP. Solely on TCP a nearly confluent EC monolayer developed after three days. While on TCP diffuse signals of vinculin were found over the whole basal cell surface organizing the binding of the cells by focal adhesions, on PTFE vinculin was merely arranged at the cell rims, and on the hydrophilic material (LAP) no focal adhesions were found. CONCLUSION: The study revealed that the wettability of polymers affected not only the initial adherence but also the migration of EC, which is of importance for the proliferation and ultimately the endothelialization of polymer-based biomaterials.}, language = {en} } @article{HeEdlichMuthLindneretal.2018, author = {He, Hai and Edlich-Muth, Christian and Lindner, Steffen N. and Bar-Even, Arren}, title = {Ribulose Monophosphate Shunt Provides Nearly All Biomass and Energy Required for Growth of E. coli}, series = {ACS Synthetic Biology}, volume = {7}, journal = {ACS Synthetic Biology}, number = {6}, publisher = {ACS}, address = {Washington, DC}, issn = {2161-5063}, doi = {10.1021/acssynbio.8b00093}, pages = {1601 -- 1611}, year = {2018}, abstract = {The ribulose monophosphate (RuMP) cycle is a highly efficient route for the assimilation of reduced one-carbon compounds. Despite considerable research, the RuMP cycle has not been fully implemented in model biotechnological organisms such as Escherichia coli, mainly since the heterologous establishment of the pathway requires addressing multiple challenges: sufficient formaldehyde production, efficient formaldehyde assimilation, and sufficient regeneration of the formaldehyde acceptor, ribulose 5-phosphate. Here, by efficiently producing formaldehyde from sarcosine oxidation and ribulose 5-phosphate from exogenous xylose, we set aside two of these concerns, allowing us to focus on the particular challenge of establishing efficient formaldehyde assimilation via the RuMP shunt, the linear variant of the RuMP cycle. We have generated deletion strains whose growth depends, to different extents, on the activity of the RuMP shunt, thus incrementally increasing the selection pressure for the activity of the synthetic pathway. Our final strain depends on the activity of the RuMP shunt for providing the cell with almost all biomass and energy needs, presenting an absolute coupling between growth and activity of key RuMP cycle components. This study shows the value of a stepwise problem solving approach when establishing a difficult but promising pathway, and is a strong basis for future engineering, selection, and evolution of model organisms for growth via the RuMP cycle.}, language = {en} } @article{KerstingRauschBieretal.2018, author = {Kersting, Sebastian and Rausch, Valentina and Bier, Frank Fabian and von Nickisch-Rosenegk, Markus}, title = {A recombinase polymerase amplification assay for the diagnosis of atypical pneumonia}, series = {Analytical biochemistry : methods in the biological sciences}, volume = {550}, journal = {Analytical biochemistry : methods in the biological sciences}, publisher = {Elsevier}, address = {San Diego}, issn = {0003-2697}, doi = {10.1016/j.ab.2018.04.014}, pages = {54 -- 60}, year = {2018}, abstract = {Pneumonia is one of the most common and potentially lethal infectious conditions worldwide. Streptococcus pneumoniae is the pathogen most frequently associated with bacterial community-acquired pneumonia, while Legionella pneumophila is the major cause for local outbreaks of legionellosis. Both pathogens can be difficult to diagnose since signs and symptoms are nonspecific and do not differ from other causes of pneumonia. Therefore, a rapid diagnosis within a clinically relevant time is essential for a fast onset of the proper treatment. Although methods based on polymerase chain reaction significantly improved the identification of pathogens, they are difficult to conduct and need specialized equipment. We describe a rapid and sensitive test using isothermal recombinase polymerase amplification and detection on a disposable test strip. This method does not require any special instrumentation and can be performed in less than 20 min. The analytical sensitivity in the multiplex assay amplifying specific regions of S. pneumoniae and L. pneumophila simultaneously was 10 CFUs of genomic DNA per reaction. In cross detection studies with closely related strains and other bacterial agents the specificity of the RPA was confirmed. The presented method is applicable for near patient and field testing with a rather simple routine and the possibility for a read out with the naked eye.}, language = {en} } @misc{BarlowShengLaietal.2018, author = {Barlow, Axel and Sheng, Gui-Lian and Lai, Xu-Long and Hofreiter, Michael and Paijmans, Johanna L. A.}, title = {Once lost, twice found: Combined analysis of ancient giant panda sequences characterises extinct clade}, series = {Journal of biogeography}, volume = {46}, journal = {Journal of biogeography}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {0305-0270}, doi = {10.1111/jbi.13486}, pages = {251 -- 253}, year = {2018}, language = {en} } @article{AlbertiGonzalezPaijmansetal.2018, author = {Alberti, Federica and Gonzalez, Javier and Paijmans, Johanna L. A. and Basler, Nikolas and Preick, Michaela and Henneberger, Kirstin and Trinks, Alexandra and Rabeder, Gernot and Conard, Nicholas J. and Muenzel, Susanne C. and Joger, Ulrich and Fritsch, Guido and Hildebrandt, Thomas and Hofreiter, Michael and Barlow, Axel}, title = {Optimized DNA sampling of ancient bones using Computed Tomography scans}, series = {Molecular ecology resources}, volume = {18}, journal = {Molecular ecology resources}, number = {6}, publisher = {Wiley}, address = {Hoboken}, issn = {1755-098X}, doi = {10.1111/1755-0998.12911}, pages = {1196 -- 1208}, year = {2018}, abstract = {The prevalence of contaminant microbial DNA in ancient bone samples represents the principal limiting factor for palaeogenomic studies, as it may comprise more than 99\% of DNA molecules obtained. Efforts to exclude or reduce this contaminant fraction have been numerous but also variable in their success. Here, we present a simple but highly effective method to increase the relative proportion of endogenous molecules obtained from ancient bones. Using computed tomography (CT) scanning, we identify the densest region of a bone as optimal for sampling. This approach accurately identifies the densest internal regions of petrous bones, which are known to be a source of high-purity ancient DNA. For ancient long bones, CT scans reveal a high-density outermost layer, which has been routinely removed and discarded prior to DNA extraction. For almost all long bones investigated, we find that targeted sampling of this outermost layer provides an increase in endogenous DNA content over that obtained from softer, trabecular bone. This targeted sampling can produce as much as 50-fold increase in the proportion of endogenous DNA, providing a directly proportional reduction in sequencing costs for shotgun sequencing experiments. The observed increases in endogenous DNA proportion are not associated with any reduction in absolute endogenous molecule recovery. Although sampling the outermost layer can result in higher levels of human contamination, some bones were found to have more contamination associated with the internal bone structures. Our method is highly consistent, reproducible and applicable across a wide range of bone types, ages and species. We predict that this discovery will greatly extend the potential to study ancient populations and species in the genomics era.}, language = {en} } @article{ThorpeBarlowSurgetGrobaetal.2018, author = {Thorpe, Roger and Barlow, Axel and Surget-Groba, Yann and Malhotra, Anita}, title = {Multilocus phylogeny, species age and biogeography of the Lesser Antillean anoles}, series = {Molecular phylogenetics and evolution}, volume = {127}, journal = {Molecular phylogenetics and evolution}, publisher = {Elsevier}, address = {San Diego}, issn = {1055-7903}, doi = {10.1016/j.ympev.2018.06.014}, pages = {682 -- 695}, year = {2018}, abstract = {Lesser Antillean anoles provide classic examples of island radiations. A detailed knowledge of their phylogeny and biogeography, in particular how the age of species relate to the ages of their respective islands and the age of their radiation, is essential to elucidate the tempo and mechanisms of these radiations. We conduct a large-scale phylogenetic and phylogeographic investigation of the Lesser Antillean anoles using multiple genetic markers and comprehensive geographic sampling of most species. The multilocus phylogeny gives the first well-supported reconstruction of the interspecific relationships, and the densely sampled phylogeography reveals a highly dynamic system, driven by overseas dispersal, with several alternative post-dispersal colonisation trajectories. These radiations currently occupy both the outer-older (Eocene to Miocene), and the inner-younger (< 8mybp), Lesser Antillean arcs. The origin of these radiations corresponds with the age of the ancient outer arc. However, the ages of extant species (compatible with the age of other small terrestrial amniotes) are much younger, about the age of the emergence of the younger arc, or less. The difference between the age of the radiation and the age of the extant species suggests substantial species turnover on older arc islands, most likely through competitive replacement. Although extant anoles are extremely speciose, this may represent only a fraction of their biodiversity over time. While paraphyly enables us to infer several recent colonization events, the absence of the younger arc islands and extant species at the earlier and middle stages of the radiation, does not allow the earlier inter-island colonization to be reliably inferred. Reproductive isolation in allopatry takes a very considerable time (in excess of 8my) and sympatry appears to occur only late in the radiation. The resolved multilocus phylogeny, and relative species age, raise difficulties for some earlier hypotheses regarding size evolution, and provide no evidence for within-island speciation.}, language = {en} } @article{WusterChirioTrapeetal.2018, author = {Wuster, Wolfgang and Chirio, Laurent and Trape, Jean-Francois and Ineich, Ivan and Jackson, Kate and Greenbaum, Eli and Barron, Cesar and Kusamba, Chifundera and Nagy, Zoltan T. and Storey, Richard and Hall, Cara and Wuster, Catharine E. and Barlow, Axel and Broadley, Donald G.}, title = {Integration of nuclear and mitochondrial gene sequences and morphology reveals unexpected diversity in the forest cobra (Naja melanoleuca) species complex in Central and West Africa (Serpentes: Elapidae)}, series = {Zootaxa : an international journal of zootaxonomy ; a rapid international journal for animal taxonomists}, volume = {4455}, journal = {Zootaxa : an international journal of zootaxonomy ; a rapid international journal for animal taxonomists}, number = {1}, publisher = {Magnolia Press}, address = {Auckland}, issn = {1175-5326}, doi = {10.11646/zootaxa.4455.1.3}, pages = {68 -- 98}, year = {2018}, abstract = {Cobras are among the most widely known venomous snakes, and yet their taxonomy remains incompletely understood, particularly in Africa. Here, we use a combination of mitochondrial and nuclear gene sequences and morphological data to diagnose species limits within the African forest cobra, Naja (Boulengerina) melanoleuca. Mitochondrial DNA sequences reveal deep divergences within this taxon. Congruent patterns of variation in mtDNA, nuclear genes and morphology support the recognition of five separate species, confirming the species status of N. subfulva and N. peroescobari, and revealing two previously unnamed West African species, which are described as new: Naja (Boulengerina) guineensis sp. nov. Broadley, Trape, Chirio, Ineich \& Wuster, from the Upper Guinea forest of West Africa, and Naja (Boulengerina) savannula sp. nov. Broadley, Trape, Chirio \& Wuster, a banded form from the savanna-forest mosaic of the Guinea and Sudanian savannas of West Africa. The discovery of cryptic diversity in this iconic group highlights our limited understanding of tropical African biodiversity, hindering our ability to conserve it effectively.}, language = {en} } @article{BarlowCahillHartmannetal.2018, author = {Barlow, Axel and Cahill, James A. and Hartmann, Stefanie and Theunert, Christoph and Xenikoudakis, Georgios and Gonzalez-Fortes, Gloria M. and Paijmans, Johanna L. A. and Rabeder, Gernot and Frischauf, Christine and Garcia-Vazquez, Ana and Murtskhvaladze, Marine and Saarma, Urmas and Anijalg, Peeter and Skrbinsek, Tomaz and Bertorelle, Giorgio and Gasparian, Boris and Bar-Oz, Guy and Pinhasi, Ron and Slatkin, Montgomery and Dalen, Love and Shapiro, Beth and Hofreiter, Michael}, title = {Partial genomic survival of cave bears in living brown bears}, series = {Nature Ecology \& Evolution}, volume = {2}, journal = {Nature Ecology \& Evolution}, number = {10}, publisher = {Nature Publ. Group}, address = {London}, issn = {2397-334X}, doi = {10.1038/s41559-018-0654-8}, pages = {1563 -- 1570}, year = {2018}, abstract = {Although many large mammal species went extinct at the end of the Pleistocene epoch, their DNA may persist due to past episodes of interspecies admixture. However, direct empirical evidence of the persistence of ancient alleles remains scarce. Here, we present multifold coverage genomic data from four Late Pleistocene cave bears (Ursus spelaeus complex) and show that cave bears hybridized with brown bears (Ursus arctos) during the Pleistocene. We develop an approach to assess both the directionality and relative timing of gene flow. We find that segments of cave bear DNA still persist in the genomes of living brown bears, with cave bears contributing 0.9 to 2.4\% of the genomes of all brown bears investigated. Our results show that even though extinction is typically considered as absolute, following admixture, fragments of the gene pool of extinct species can survive for tens of thousands of years in the genomes of extant recipient species.}, language = {en} } @article{HolzloehnerButzeMaieretal.2018, author = {Holzl{\"o}hner, Pamela and Butze, Monique and Maier, Natalia and Hebel, Nicole and Schliebs, Erik and Micheel, Burkhard and Fuener, Jonas and Heidicke, Gabriele and Hanack, Katja}, title = {Generation of murine monoclonal antibodies with specificity against conventional camelid IgG1 and heavy-chain only IgG2/3}, series = {Veterinary Immunology and Immunopathology}, volume = {197}, journal = {Veterinary Immunology and Immunopathology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0165-2427}, doi = {10.1016/j.vetimm.2018.01.006}, pages = {1 -- 6}, year = {2018}, abstract = {Camelids possess antibodies with a conventional four-chain structure consisting of two heavy and two light chains (of subclass IgG1) but further they also generate heavy-chain only antibodies (of subclass IgG2 and 3) which are fully functional in antigen binding. In this study subclass-specific murine monoclonal antibodies specific to conventional camelid IgG1 and heavy-chain only IgG2/3 were generated and validated for the use as potent secondary detection reagents. The monoclonal antibodies are able to differentiate between all camelid IgGs, conventional four-chain camelid antibodies (of subclass IgG1) and exclusively heavy chain-only antibodies (of subclasses IgG2 and IgG3). Further these antibodies were used to detect specific immune responses after vaccination of Camelids against bovine corona- and rotavirus strains and different E.coli. and Clostridia - antigens and to identify Erysipelothrix rhusiopathiae infected animals within a herd. The described antibodies are suitable as new secondary agents for the detection of different camelid subclasses and the validation of camelid immune reactions.}, language = {en} } @article{vanVelzenGaedke2018, author = {van Velzen, Ellen and Gaedke, Ursula}, title = {Reversed predator}, series = {Ecology and Evolution}, journal = {Ecology and Evolution}, publisher = {Wiley}, address = {Hoboken}, issn = {2045-7758}, doi = {10.1002/ece3.4184}, pages = {1 -- 13}, year = {2018}, abstract = {Ecoevolutionary feedbacks in predator-prey systems have been shown to qualitatively alter predator-prey dynamics. As a striking example, defense-offense coevolution can reverse predator-prey cycles, so predator peaks precede prey peaks rather than vice versa. However, this has only rarely been shown in either model studies or empirical systems. Here, we investigate whether this rarity is a fundamental feature of reversed cycles by exploring under which conditions they should be found. For this, we first identify potential conditions and parameter ranges most likely to result in reversed cycles by developing a new measure, the effective prey biomass, which combines prey biomass with prey and predator traits, and represents the prey biomass as perceived by the predator. We show that predator dynamics always follow the dynamics of the effective prey biomass with a classic ¼-phase lag. From this key insight, it follows that in reversed cycles (i.e., ¾-lag), the dynamics of the actual and the effective prey biomass must be in antiphase with each other, that is, the effective prey biomass must be highest when actual prey biomass is lowest, and vice versa. Based on this, we predict that reversed cycles should be found mainly when oscillations in actual prey biomass are small and thus have limited impact on the dynamics of the effective prey biomass, which are mainly driven by trait changes. We then confirm this prediction using numerical simulations of a coevolutionary predator-prey system, varying the amplitude of the oscillations in prey biomass: Reversed cycles are consistently associated with regions of parameter space leading to small-amplitude prey oscillations, offering a specific and highly testable prediction for conditions under which reversed cycles should occur in natural systems.}, language = {en} } @phdthesis{AbdAllahSalem2018, author = {Abd Allah Salem, Mohamed}, title = {Comparative and systemic metabolomic analysis of the model plant Arabidopsis thaliana after perturbing the essential Target of Rapamycin (TOR) pathway}, school = {Universit{\"a}t Potsdam}, pages = {113}, year = {2018}, language = {en} } @phdthesis{AlFadel2018, author = {Al Fadel, Frdoos}, title = {Influence of sphingosine 1-phosphate and its receptor modulators on the development of liver fibrosis}, school = {Universit{\"a}t Potsdam}, pages = {156}, year = {2018}, language = {en} } @article{ReegHeineMihanetal.2018, author = {Reeg, Jette and Heine, Simon and Mihan, Christine and McGee, Sean and Preuss, Thomas G. and Jeltsch, Florian}, title = {Simulation of herbicide impacts on a plant community}, series = {Environmental Sciences Europe}, volume = {30}, journal = {Environmental Sciences Europe}, number = {44}, publisher = {Springer}, address = {Berlin und Heidelberg}, issn = {2190-4715}, doi = {10.1186/s12302-018-0174-9}, pages = {16}, year = {2018}, abstract = {Background Semi-natural plant communities such as field boundaries play an important ecological role in agricultural landscapes, e.g., provision of refuge for plant and other species, food web support or habitat connectivity. To prevent undesired effects of herbicide applications on these communities and their structure, the registration and application are regulated by risk assessment schemes in many industrialized countries. Standardized individual-level greenhouse experiments are conducted on a selection of crop and wild plant species to characterize the effects of herbicide loads potentially reaching off-field areas on non-target plants. Uncertainties regarding the protectiveness of such approaches to risk assessment might be addressed by assessment factors that are often under discussion. As an alternative approach, plant community models can be used to predict potential effects on plant communities of interest based on extrapolation of the individual-level effects measured in the standardized greenhouse experiments. In this study, we analyzed the reliability and adequacy of the plant community model IBC-grass (individual-based plant community model for grasslands) by comparing model predictions with empirically measured effects at the plant community level. Results We showed that the effects predicted by the model IBC-grass were in accordance with the empirical data. Based on the species-specific dose responses (calculated from empirical effects in monocultures measured 4 weeks after application), the model was able to realistically predict short-term herbicide impacts on communities when compared to empirical data. Conclusion The results presented in this study demonstrate an approach how the current standard greenhouse experiments—measuring herbicide impacts on individual-level—can be coupled with the model IBC-grass to estimate effects on plant community level. In this way, it can be used as a tool in ecological risk assessment.}, language = {en} } @phdthesis{Bolius2018, author = {Bolius, Sarah}, title = {Microbial invasions in aquatic systems - strain identity, genetic diversity and timing}, school = {Universit{\"a}t Potsdam}, pages = {154}, year = {2018}, abstract = {Biological invasions are the dispersal and following establishment of species outside their native habitat. Due to globalisation, connectivity of regions and climate changes the number of invasive species and their successful establishment is rising. The impact of these species is mostly negative, can induce community and habitat alterations, and is one main cause for biodiversity loss. This impact is particularly high and less researched in aquatic systems and microbial organisms and despite the high impact, the knowledge about overall mechanisms and specific factors affecting invasions are not fully understood. In general, the characteristics of the habitat, native community and invader determine the invasiveness. In this thesis, I aimed to provide a better understanding of aquatic invasions focusing on the invader and its traits and identity. This thesis used a set of 12 strains of the invasive cyanobacterium Cylindrospermopsis raciborskii to examine the effect and impact of the invaders' identity and genetic diversity. Further, the effect of timing on the invasion potential and success was determined, because aquatic systems in particular undergo seasonal fluctuations. Most studies revealed a higher invasion success with increasing genetic diversity. Here, the increase of the genetic diversity, by either strain richness or phylogenetic dissimilarity, is not firstly driving the invasion, but the strain-identity. The high variability among the strains in traits important for invasions led to the highly varying strain-specific invasion success. This success was most dependent on nitrogen uptake and efficient resource use. The lower invasion success into communities comprising further N-fixing species indicates C. raciborskii can use this advantage only without the presence of competitive species. The relief of grazing pressure, which is suggested to be more important in aquatic invasions, was only promoting the invasion when unselective and larger consumers were present. High abundances of unselective consumers hampered the invasion success. This indicates a more complex and temporal interplay of competitive and consumptive resistance mechanisms during the invasion process. Further, the fluctuation abundance and presence of competitors (= primary producers) and consumers (= zooplankton) in lakes can open certain 'invasion windows'. Remarkably, the composition of the resident community was also strain-specific affected and altered, independent of a high or low invasion success. Prior, this was only documented on the species level. Further, investigations on the population of invasive strains can reveal more about the invasion patterns and how multiple strain invasions change resident communities. The present dissertation emphasises the importance of invader-addition experiments with a community context and the importance of the strain-level for microbial invasions and in general, e.g. for community assemblies and the outcome of experiments. The strain-specific community changes, also after days, may explain some sudden changes in communities, which have not been explained yet. This and further knowledge may also facilitate earlier and less cost-intensive management to step in, because these species are rarely tracked until they reach a high abundance or bloom, because of their small size. Concluded for C. raciborskii, it shows that this species is no 'generalistic' invader and its invasion success depends more on the competitor presence than grazing pressure. This may explain its, still unknown, invasion pattern, as C. raciborskii is not found in all lakes of a region.}, language = {en} } @phdthesis{Buehning2018, author = {B{\"u}hning, Martin}, title = {Charakterisierung des Zusammenspiels von FeS-Cluster-Assemblierung, Molybd{\"a}nkofaktor-Biosynthese und tRNA-Thiolierung in Escherichia coli}, school = {Universit{\"a}t Potsdam}, pages = {167}, year = {2018}, language = {de} } @article{GrauHacklKoepflietal.2018, author = {Grau, Jos{\´e} Horacio and Hackl, Thomas and Koepfli, Klaus-Peter and Hofreiter, Michael}, title = {Improving draft genome contiguity with reference-derived in silico mate-pair libraries}, series = {GigaScience}, volume = {7}, journal = {GigaScience}, number = {5}, publisher = {Oxford University Press}, address = {Oxford}, issn = {2047-217X}, doi = {10.1093/gigascience/giy029}, pages = {1 -- 6}, year = {2018}, abstract = {Background Contiguous genome assemblies are a highly valued biological resource because of the higher number of completely annotated genes and genomic elements that are usable compared to fragmented draft genomes. Nonetheless, contiguity is difficult to obtain if only low coverage data and/or only distantly related reference genome assemblies are available. Findings In order to improve genome contiguity, we have developed Cross-Species Scaffolding—a new pipeline that imports long-range distance information directly into the de novo assembly process by constructing mate-pair libraries in silico. Conclusions We show how genome assembly metrics and gene prediction dramatically improve with our pipeline by assembling two primate genomes solely based on ∼30x coverage of shotgun sequencing data.}, language = {en} } @article{MalinovaQasimBrustetal.2018, author = {Malinova, Irina and Qasim, Hadeel M. and Brust, Henrike and Fettke, J{\"o}rg}, title = {Parameters of Starch Granule Genesis in Chloroplasts of Arabidopsis thaliana}, series = {Frontiers in Plant Science}, volume = {9}, journal = {Frontiers in Plant Science}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2018.00761}, pages = {1 -- 7}, year = {2018}, abstract = {Starch is the primary storage carbohydrate in most photosynthetic organisms and allows the accumulation of carbon and energy in form of an insoluble and semi-crystalline particle. In the last decades large progress, especially in the model plant Arabidopsis thaliana, was made in understanding the structure and metabolism of starch and its conjunction. The process underlying the initiation of starch granules remains obscure, although this is a fundamental process and seems to be strongly regulated, as in Arabidopsis leaves the starch granule number per chloroplast is fixed with 5-7. Several single, double, and triple mutants were reported in the last years that showed massively alterations in the starch granule number per chloroplast and allowed further insights in this important process. This mini review provides an overview of the current knowledge of processes involved in the initiation and formation of starch granules. We discuss the central role of starch synthase 4 and further proteins for starch genesis and affecting metabolic factors.}, language = {en} } @phdthesis{Schwarzer2018, author = {Schwarzer, Christian}, title = {Climate change, adaptive divergence and their effects on species interactions in European bog-plant communities}, school = {Universit{\"a}t Potsdam}, pages = {169}, year = {2018}, language = {en} } @article{EhrlichGaedke2018, author = {Ehrlich, Elias and Gaedke, Ursula}, title = {Not attackable or not crackable}, series = {Ecology and Evolution}, volume = {8}, journal = {Ecology and Evolution}, number = {13}, publisher = {Wiley}, issn = {2045-7758}, doi = {10.1002/ece3.4145}, pages = {6625 -- 6637}, year = {2018}, abstract = {It is well-known that prey species often face trade-offs between defense against predation and competitiveness, enabling predator-mediated coexistence. However, we lack an understanding of how the large variety of different defense traits with different competition costs affects coexistence and population dynamics. Our study focusses on two general defense mechanisms, that is, pre-attack (e.g., camouflage)and post-attack defenses (e.g., weaponry) that act at different phases of the predator—prey interaction. We consider a food web model with one predator, two prey types and one resource. One prey type is undefended, while the other one is pre-or post-attack defended paying costs either by a higher half-saturation constant for resource uptake or a lower maximum growth rate. We show that post-attack defenses promote prey coexistence and stabilize the population dynamics more strongly than pre-attack defenses by interfering with the predator's functional response: Because the predator spends time handling "noncrackable" prey, the undefended prey is indirectly facilitated. A high half-saturation constant as defense costs promotes coexistence more and stabilizes the dynamics less than a low maximum growth rate. The former imposes high costs at low resource concentrations but allows for temporally high growth rates at predator-induced resource peaks preventing the extinction of the defended prey. We evaluate the effects of the different defense mechanisms and costs on coexistence under different enrichment levels in order to vary the importance of bottom-up and top-down control of the prey community.}, language = {en} } @phdthesis{Kammel2018, author = {Kammel, Anne}, title = {Identifizierung fr{\"u}her epigenetischer Ver{\"a}nderungen, die zur Ausbildung einer Fettleber beitragen}, school = {Universit{\"a}t Potsdam}, pages = {130}, year = {2018}, language = {de} } @phdthesis{Weiss2018, author = {Weiß, Stefanie}, title = {Contribution of bacterially synthesized folate vitamers to folate status and impact on crohn's Disease}, school = {Universit{\"a}t Potsdam}, pages = {148}, year = {2018}, language = {en} } @phdthesis{Schwanhold2018, author = {Schwanhold, Nadine}, title = {Die Funktion und Spezifit{\"a}t der Molybd{\"a}n-Cofaktor-bindenden Chaperone f{\"u}r die Formiat-Dehydrogenasen aus Escherichia coli und Rhodobacter capsulatus}, school = {Universit{\"a}t Potsdam}, pages = {132}, year = {2018}, language = {de} } @article{SharmaDangSinghetal.2018, author = {Sharma, Niharika and Dang, Trang Minh and Singh, Namrata and Ruzicic, Slobodan and M{\"u}ller-R{\"o}ber, Bernd and Baumann, Ute and Heuer, Sigrid}, title = {Allelic variants of OsSUB1A cause differential expression of transcription factor genes in response to submergence in rice}, series = {Rice}, volume = {11}, journal = {Rice}, number = {2}, publisher = {Springer Open}, address = {London}, issn = {1939-8425}, doi = {10.1186/s12284-017-0192-z}, pages = {19}, year = {2018}, abstract = {Background: Flooding during seasonal monsoons affects millions of hectares of rice-cultivated areas across Asia. Submerged rice plants die within a week due to lack of oxygen, light and excessive elongation growth to escape the water. Submergence tolerance was first reported in an aus-type rice landrace, FR13A, and the ethylene-responsive transcription factor (TF) gene SUB1A-1 was identified as the major tolerance gene. Intolerant rice varieties generally lack the SUB1A gene but some intermediate tolerant varieties, such as IR64, carry the allelic variant SUB1A-2. Differential effects of the two alleles have so far not been addressed. As a first step, we have therefore quantified and compared the expression of nearly 2500 rice TF genes between IR64 and its derived tolerant near isogenic line IR64-Sub1, which carries the SUB1A-1 allele. Gene expression was studied in internodes, where the main difference in expression between the two alleles was previously shown. Results: Nineteen and twenty-six TF genes were identified that responded to submergence in IR64 and IR64-Sub1, respectively. Only one gene was found to be submergence-responsive in both, suggesting different regulatory pathways under submergence in the two genotypes. These differentially expressed genes (DEGs) mainly included MYB, NAC, TIFY and Zn-finger TFs, and most genes were downregulated upon submergence. In IR64, but not in IR64-Sub1, SUB1B and SUB1C, which are also present in the Sub1 locus, were identified as submergence responsive. Four TFs were not submergence responsive but exhibited constitutive, genotype-specific differential expression. Most of the identified submergence responsive DEGs are associated with regulatory hormonal pathways, i.e. gibberellins (GA), abscisic acid (ABA), and jasmonic acid (JA), apart from ethylene. An in-silico promoter analysis of the two genotypes revealed the presence of allele-specific single nucleotide polymorphisms, giving rise to ABRE, DRE/CRT, CARE and Site II cis-elements, which can partly explain the observed differential TF gene expression. Conclusion: This study identified new gene targets with the potential to further enhance submergence tolerance in rice and provides insights into novel aspects of SUB1A-mediated tolerance.}, language = {en} } @article{OmidbakhshfardFujikuraOlasetal.2018, author = {Omidbakhshfard, Mohammad Amin and Fujikura, Ushio and Olas, Justyna Jadwiga and Xue, Gang-Ping and Balazadeh, Salma and Mueller-Roeber, Bernd}, title = {GROWTH-REGULATING FACTOR 9 negatively regulates arabidopsis leaf growth by controlling ORG3 and restricting cell proliferation in leaf primordia}, series = {PLoS Genetics : a peer-reviewed, open-access journal}, volume = {14}, journal = {PLoS Genetics : a peer-reviewed, open-access journal}, number = {7}, publisher = {PLoS}, address = {San Fransisco}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1007484}, pages = {31}, year = {2018}, abstract = {Leaf growth is a complex process that involves the action of diverse transcription factors (TFs) and their downstream gene regulatory networks. In this study, we focus on the functional characterization of the Arabidopsis thaliana TF GROWTH-REGULATING FACTOR9 (GRF9) and demonstrate that it exerts its negative effect on leaf growth by activating expression of the bZIP TF OBP3-RESPONSIVE GENE 3 (ORG3). While grf9 knockout mutants produce bigger incipient leaf primordia at the shoot apex, rosette leaves and petals than the wild type, the sizes of those organs are reduced in plants overexpressing GRF9 (GRF9ox). Cell measurements demonstrate that changes in leaf size result from alterations in cell numbers rather than cell sizes. Kinematic analysis and 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay revealed that GRF9 restricts cell proliferation in the early developing leaf. Performing in vitro binding site selection, we identified the 6-base motif 5'-CTGACA-3' as the core binding site of GRF9. By global transcriptome profiling, electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) we identified ORG3 as a direct downstream, and positively regulated target of GRF9. Genetic analysis of grf9 org3 and GRF9ox org3 double mutants reveals that both transcription factors act in a regulatory cascade to control the final leaf dimensions by restricting cell number in the developing leaf.}, language = {en} }