@article{TomioloMetzBlackwoodetal.2017, author = {Tomiolo, Sara and Metz, Johannes and Blackwood, Christopher B. and Djendouci, Karin and Henneberg, Lorenz and Mueller, Caroline and Tielboerger, Katja}, title = {Short-term drought and long-term climate legacy affect production of chemical defenses among plant ecotypes}, series = {Environmental and Experimental Botany}, volume = {141}, journal = {Environmental and Experimental Botany}, publisher = {Elsevier}, address = {Oxford}, issn = {0098-8472}, doi = {10.1016/j.envexpbot.2017.07.009}, pages = {124 -- 131}, year = {2017}, abstract = {Long and short-term climatic variation affect the ability of plants to simultaneously cope with increasing abiotic stress and biotic interactions. Specifically, ecotypes adapted to different climatic conditions (i.e., long-term legacy) may have to adjust their allocation to chemical defenses against enemies under acute drought (i.e., short-term response). Although several studies have addressed drought effects on chemical defense production, little is known about their intraspecific variation along resource gradients. Studying intraspecific variation is important for understanding how different environments select for defense strategies and how these may be affected directly and indirectly by changing climatic conditions. We conducted greenhouse experiments with the annual Biscutella didyma (Brassicaceae) to test the effects of long-term climatic legacy versus short-term drought stress on the concentrations of defense compounds (glucosinolates). To this aim, four ecotypes originating from a steep aridity gradient were exposed to contrasting water treatments. Concentrations of chemical defenses were measured separately in leaves of young (8 weeks) and old (14 weeks) plants, respectively. For young plants, ecotypes from the wettest climate (long-term legacy) as well as plants receiving high water treatments (short-term response) were better defended. A marginally significant interaction suggested that wetter ecotypes experienced a larger shift in defense production across water treatments. Older plants contained much lower glucosinolate concentrations and showed no differences between ecotypes and water treatments. Our results indicate that younger plants invest more resources into chemical defenses, possibly due to higher vulnerability to tissue loss compared to older plants. We propose that the strong response of wet ecotypes to water availability may be explained by a less pronounced adaptation to drought.}, language = {en} } @article{WurzbacherFuchsAttermeyeretal.2017, author = {Wurzbacher, Christian and Fuchs, Andrea and Attermeyer, Katrin and Frindte, Katharina and Grossart, Hans-Peter and Hupfer, Michael and Casper, Peter and Monaghan, Michael T.}, title = {Shifts among Eukaryota, Bacteria, and Archaea define the vertical organization of a lake sediment}, series = {Microbiome}, volume = {5}, journal = {Microbiome}, publisher = {BioMed Central}, address = {London}, issn = {2049-2618}, doi = {10.1186/s40168-017-0255-9}, pages = {16}, year = {2017}, abstract = {Background: Lake sediments harbor diverse microbial communities that cycle carbon and nutrients while being constantly colonized and potentially buried by organic matter sinking from the water column. The interaction of activity and burial remained largely unexplored in aquatic sediments. We aimed to relate taxonomic composition to sediment biogeochemical parameters, test whether community turnover with depth resulted from taxonomic replacement or from richness effects, and to provide a basic model for the vertical community structure in sediments. Methods: We analyzed four replicate sediment cores taken from 30-m depth in oligo-mesotrophic Lake Stechlin in northern Germany. Each 30-cm core spanned ca. 170 years of sediment accumulation according to Cs-137 dating and was sectioned into layers 1-4 cm thick. We examined a full suite of biogeochemical parameters and used DNA metabarcoding to examine community composition of microbial Archaea, Bacteria, and Eukaryota. Results: Community beta-diversity indicated nearly complete turnover within the uppermost 30 cm. We observed a pronounced shift from Eukaryota- and Bacteria-dominated upper layers (<5 cm) to Bacteria-dominated intermediate layers (5-14 cm) and to deep layers (>14 cm) dominated by enigmatic Archaea that typically occur in deep-sea sediments. Taxonomic replacement was the prevalent mechanism in structuring the community composition and was linked to parameters indicative of microbial activity (e.g., CO2 and CH4 concentration, bacterial protein production). Richness loss played a lesser role but was linked to conservative parameters (e.g., C, N, P) indicative of past conditions. Conclusions: By including all three domains, we were able to directly link the exponential decay of eukaryotes with the active sediment microbial community. The dominance of Archaea in deeper layers confirms earlier findings from marine systems and establishes freshwater sediments as a potential low-energy environment, similar to deep sea sediments. We propose a general model of sediment structure and function based on microbial characteristics and burial processes. An upper "replacement horizon" is dominated by rapid taxonomic turnover with depth, high microbial activity, and biotic interactions. A lower "depauperate horizon" is characterized by low taxonomic richness, more stable "low-energy" conditions, and a dominance of enigmatic Archaea.}, language = {en} } @misc{LeimkuehlerBuehningBeilschmidt2017, author = {Leimk{\"u}hler, Silke and B{\"u}hning, Martin and Beilschmidt, Lena}, title = {Shared sulfur mobilization routes for tRNA thiolation and molybdenum cofactor biosynthesis in prokaryotes and eukaryotes}, series = {Biomolecules}, volume = {7}, journal = {Biomolecules}, number = {1}, publisher = {MDPI}, address = {Basel}, issn = {2218-273X}, doi = {10.3390/biom7010005}, pages = {20}, year = {2017}, abstract = {Modifications of transfer RNA (tRNA) have been shown to play critical roles in the biogenesis, metabolism, structural stability and function of RNA molecules, and the specific modifications of nucleobases with sulfur atoms in tRNA are present in pro- and eukaryotes. Here, especially the thiomodifications xm(5)s(2)U at the wobble position 34 in tRNAs for Lys, Gln and Glu, were suggested to have an important role during the translation process by ensuring accurate deciphering of the genetic code and by stabilization of the tRNA structure. The trafficking and delivery of sulfur nucleosides is a complex process carried out by sulfur relay systems involving numerous proteins, which not only deliver sulfur to the specific tRNAs but also to other sulfur-containing molecules including iron-sulfur clusters, thiamin, biotin, lipoic acid and molybdopterin (MPT). Among the biosynthesis of these sulfur-containing molecules, the biosynthesis of the molybdenum cofactor (Moco) and the synthesis of thio-modified tRNAs in particular show a surprising link by sharing protein components for sulfur mobilization in pro- and eukaryotes.}, language = {en} } @misc{KramerLenhard2017, author = {Kramer, Elena M. and Lenhard, Michael}, title = {Shape and form in plant development}, series = {Seminars in cell \& developmental biology}, volume = {79}, journal = {Seminars in cell \& developmental biology}, publisher = {Elsevier}, address = {London}, issn = {1084-9521}, doi = {10.1016/j.semcdb.2017.11.004}, pages = {1 -- 2}, year = {2017}, language = {en} } @article{ZimmermannRaschkeEppetal.2017, author = {Zimmermann, Heike Hildegard and Raschke, Elena and Epp, Laura Saskia and Stoof-Leichsenring, Kathleen Rosemarie and Schwamborn, Georg and Schirrmeister, Lutz and Overduin, Pier Paul and Herzschuh, Ulrike}, title = {Sedimentary ancient DNA and pollen reveal the composition of plant organic matter in Late Quaternary permafrost sediments of the Buor Khaya Peninsula (north-eastern Siberia)}, series = {Biogeosciences}, volume = {14}, journal = {Biogeosciences}, number = {3}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1726-4170}, doi = {10.5194/bg-14-575-2017}, pages = {575 -- 596}, year = {2017}, abstract = {Organic matter deposited in ancient, ice-rich permafrost sediments is vulnerable to climate change and may contribute to the future release of greenhouse gases; it is thus important to get a better characterization of the plant organic matter within such sediments. From a Late Quaternary permafrost sediment core from the Buor Khaya Peninsula, we analysed plant-derived sedimentary ancient DNA (sedaDNA) to identify the taxonomic composition of plant organic matter, and undertook palynological analysis to assess the environmental conditions during deposition. Using sedaDNA, we identified 154 taxa and from pollen and non-pollen palynomorphs we identified 83 taxa. In the deposits dated between 54 and 51 kyr BP, sedaDNA records a diverse low-centred polygon plant community including recurring aquatic pond vegetation while from the pollen record we infer terrestrial open-land vegetation with relatively dry environmental conditions at a regional scale. A fluctuating dominance of either terrestrial or swamp and aquatic taxa in both proxies allowed the local hydrological development of the polygon to be traced. In deposits dated between 11.4 and 9.7 kyr BP (13.4-11.1 cal kyr BP), sedaDNA shows a taxonomic turnover to moist shrub tundra and a lower taxonomic richness compared to the older samples. Pollen also records a shrub tundra community, mostly seen as changes in relative proportions of the most dominant taxa, while a decrease in taxonomic richness was less pronounced compared to sedaDNA. Our results show the advantages of using sedaDNA in combination with palynological analyses when macrofossils are rarely preserved. The high resolution of the sedaDNA record provides a detailed picture of the taxonomic composition of plant-derived organic matter throughout the core, and palynological analyses prove valuable by allowing for inferences of regional environmental conditions.}, language = {en} } @misc{Scheffler2017, author = {Scheffler, Tatjana}, title = {Root infinitives on Twitter}, series = {Snippets}, journal = {Snippets}, number = {31}, publisher = {Editioni Universit{\`a} di Lettere Economica Diritto}, address = {Milano}, issn = {1590-1807}, doi = {10.7358/snip-2017-031-sche}, pages = {24 -- 25}, year = {2017}, language = {en} } @misc{HasanHocher2017, author = {Hasan, Ahmed Abdallah Abdalrahman Mohamed and Hocher, Berthold}, title = {Role of soluble and membrane-bound dipeptidyl peptidase-4 in diabetic nephropathy}, series = {Journal of Molecular Endocrinology}, volume = {59}, journal = {Journal of Molecular Endocrinology}, publisher = {Bioscientifica LTD}, address = {Bristol}, issn = {0952-5041}, doi = {10.1530/JME-17-0005}, pages = {R1 -- R10}, year = {2017}, abstract = {Diabetic nephropathy is one of the most frequent, devastating and costly complications of diabetes. The available therapeutic approaches are limited. Dipeptidyl peptidase type 4 (DPP-4) inhibitors represent a new class of glucose-lowering drugs that might also have reno-protective properties. DPP-4 exists in two forms: a plasma membranebound form and a soluble form, and can exert many biological actions mainly through its peptidase activity and interaction with extracellular matrix components. The kidneys have the highest DPP-4 expression level in mammalians. DPP-4 expression and urinary activity are up-regulated in diabetic nephropathy, highlighting its role as a potential target to manage diabetic nephropathy. Preclinical animal studies and some clinical data suggest that DPP-4 inhibitors decrease the progression of diabetic nephropathy in a blood pressure-and glucose-independent manner. Many studies reported that these reno-protective effects could be due to increased half-life of DPP-4 substrates such as glucagon-like peptide-1 (GLP-1) and stromal derived factor-1 alpha (SDF-1a). However, the underlying mechanisms are far from being completely understood and clearly need further investigations.}, language = {en} } @article{EhmannZollerMinichmayretal.2017, author = {Ehmann, Lisa and Zoller, Michael and Minichmayr, Iris K. and Scharf, Christina and Maier, Barbara and Schmitt, Maximilian V. and Hartung, Niklas and Huisinga, Wilhelm and Vogeser, Michael and Frey, Lorenz and Zander, Johannes and Kloft, Charlotte}, title = {Role of renal function in risk assessment of target non-attainment after standard dosing of meropenem in critically ill patients}, series = {Critical care}, volume = {21}, journal = {Critical care}, publisher = {BioMed Central}, address = {London}, issn = {1466-609X}, doi = {10.1186/s13054-017-1829-4}, pages = {14}, year = {2017}, abstract = {Background: Severe bacterial infections remain a major challenge in intensive care units because of their high prevalence and mortality. Adequate antibiotic exposure has been associated with clinical success in critically ill patients. The objective of this study was to investigate the target attainment of standard meropenem dosing in a heterogeneous critically ill population, to quantify the impact of the full renal function spectrum on meropenem exposure and target attainment, and ultimately to translate the findings into a tool for practical application. Methods: A prospective observational single-centre study was performed with critically ill patients with severe infections receiving standard dosing of meropenem. Serial blood samples were drawn over 4 study days to determine meropenem serum concentrations. Renal function was assessed by creatinine clearance according to the Cockcroft and Gault equation (CLCRCG). Variability in meropenem serum concentrations was quantified at the middle and end of each monitored dosing interval. The attainment of two pharmacokinetic/pharmacodynamic targets (100\% T->MIC, 50\% T->4xMIC) was evaluated for minimum inhibitory concentration (MIC) values of 2 mg/L and 8 mg/L and standard meropenem dosing (1000 mg, 30-minute infusion, every 8 h). Furthermore, we assessed the impact of CLCRCG on meropenem concentrations and target attainment and developed a tool for risk assessment of target non-attainment. Results: Large inter-and intra-patient variability in meropenem concentrations was observed in the critically ill population (n = 48). Attainment of the target 100\% T->MIC was merely 48.4\% and 20.6\%, given MIC values of 2 mg/L and 8 mg/L, respectively, and similar for the target 50\% T->4xMIC. A hyperbolic relationship between CLCRCG (25-255 ml/minute) and meropenem serum concentrations at the end of the dosing interval (C-8h) was derived. For infections with pathogens of MIC 2 mg/L, mild renal impairment up to augmented renal function was identified as a risk factor for target non-attainment (for MIC 8 mg/L, additionally, moderate renal impairment). Conclusions: The investigated standard meropenem dosing regimen appeared to result in insufficient meropenem exposure in a considerable fraction of critically ill patients. An easy-and free-to-use tool (the MeroRisk Calculator) for assessing the risk of target non-attainment for a given renal function and MIC value was developed.}, language = {en} } @article{MunozManganoPazGonzalezGarciaetal.2017, author = {Mu{\~n}oz, Alfonso and Mangano, Silvina and Paz Gonzalez-Garcia, Mary and Contreras, Ramon and Sauer, Michael and De Rybel, Bert and Weijers, Dolf and Juan Sanchez-Serrano, Jose and Sanmartin, Maite and Rojo, Enrique}, title = {RIMA-Dependent Nuclear Accumulation of IYO Triggers Auxin-Irreversible Cell Differentiation in Arabidopsis}, series = {The plant cell}, volume = {29}, journal = {The plant cell}, number = {3}, publisher = {American Society of Plant Physiologists}, address = {Rockville}, issn = {1040-4651}, doi = {10.1105/tpc.16.00791}, pages = {575 -- 588}, year = {2017}, abstract = {The transcriptional regulator MINIYO (IYO) is essential and rate-limiting for initiating cell differentiation in Arabidopsis thaliana. Moreover, IYO moves from the cytosol into the nucleus in cells at the meristem periphery, possibly triggering their differentiation. However, the genetic mechanisms controlling IYO nuclear accumulation were unknown, and the evidence that increased nuclear IYO levels trigger differentiation remained correlative. Searching for IYO interactors, we identified RPAP2 IYO Mate (RIMA), a homolog of yeast and human proteins linked to nuclear import of selective cargo. Knockdown of RIMA causes delayed onset of cell differentiation, phenocopying the effects of IYO knockdown at the transcriptomic and developmental levels. Moreover, differentiation is completely blocked when IYO and RIMA activities are simultaneously reduced and is synergistically accelerated when IYO and RIMA are concurrently overexpressed, confirming their functional interaction. Indeed, RIMA knockdown reduces the nuclear levels of IYO and prevents its prodifferentiation activity, supporting the conclusion that RIMA-dependent nuclear IYO accumulation triggers cell differentiation in Arabidopsis. Importantly, by analyzing the effect of the IYO/RIMA pathway on xylem pole pericycle cells, we provide compelling evidence reinforcing the view that the capacity for de novo organogenesis and regeneration from mature plant tissues can reside in stem cell reservoirs.}, language = {en} } @misc{YangDarkoHuangetal.2017, author = {Yang, Xiaoping and Darko, Kwame Oteng and Huang, Yanjun and He, Caimei and Yang, Huansheng and He, Shanping and Li, Jianzhong and Li, Jian and Hocher, Berthold and Yin, Yulong}, title = {Resistant starch regulates gut microbiota}, series = {Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology}, volume = {42}, journal = {Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology}, number = {1}, publisher = {Karger}, address = {Basel}, issn = {1015-8987}, doi = {10.1159/000477386}, pages = {306 -- 318}, year = {2017}, abstract = {Starch is one of the most popular nutritional sources for both human and animals. Due to the variation of its nutritional traits and biochemical specificities, starch has been classified into rapidly digestible, slowly digestible and resistant starch. Resistant starch has its own unique chemical structure, and various forms of resistant starch are commercially available. It has been found being a multiple-functional regulator for treating metabolic dysfunction. Different functions of resistant starch such as modulation of the gut microbiota, gut peptides, circulating growth factors, circulating inflammatory mediators have been characterized by animal studies and clinical trials. In this mini-review, recent remarkable progress in resistant starch on gut microbiota, particularly the effect of structure, biochemistry and cell signaling on nutrition has been summarized, with highlights on its regulatory effect on gut microbiota.}, language = {en} } @article{SchwensowDeteringPedersonetal.2017, author = {Schwensow, Nina I. and Detering, Harald and Pederson, Stephen and Mazzoni, Camila and Sinclair, Ron and Peacock, David and Kovaliski, John and Cooke, Brian and Fickel, J{\"o}rns and Sommer, Simone}, title = {Resistance to RHD virus in wild Australian rabbits}, series = {Molecular ecology}, volume = {26}, journal = {Molecular ecology}, publisher = {Wiley}, address = {Hoboken}, issn = {0962-1083}, doi = {10.1111/mec.14228}, pages = {4551 -- 4561}, year = {2017}, abstract = {Deciphering the genes involved in disease resistance is essential if we are to understand host-pathogen coevolutionary processes. The rabbit haemorrhagic disease virus (RHDV) was imported into Australia in 1995 as a biocontrol agent to manage one of the most successful and devastating invasive species, the European rabbit (Oryctolagus cuniculus). During the first outbreaks of the disease, RHDV caused mortality rates of up to 97\%. Recently, however, increased genetic resistance to RHDV has been reported. Here, we have aimed to identify genomic differences between rabbits that survived a natural infection with RHDV and those that died in the field using a genomewide next-generation sequencing (NGS) approach. We detected 72 SNPs corresponding to 133 genes associated with survival of a RHD infection. Most of the identified genes have known functions in virus infections and replication, immune responses or apoptosis, or have previously been found to be regulated during RHD. Some of the genes identified in experimental studies, however, did not seem to play a role under natural selection regimes, highlighting the importance of field studies to complement the genomic background of wildlife diseases. Our study provides a set of candidate markers as a tool for the future scanning of wild rabbits for their resistance to RHDV. This is important both for wild rabbit populations in southern Europe where RHD is regarded as a serious problem decimating the prey of endangered predator species and for assessing the success of currently planned RHDV variant biocontrol releases in Australia.}, language = {en} } @phdthesis{Schraplau2017, author = {Schraplau, Anne}, title = {Regulation der Expression von Xenobiotika-metabolisierenden Enzymen und Deiodasen durch die Xenobiotika-abh{\"a}ngige wechselseitige Induktion von Xenosensor-Transkriptionsfaktoren und Prostaglandin E2}, school = {Universit{\"a}t Potsdam}, pages = {x, 241}, year = {2017}, language = {de} } @article{ValenteEtienneDavalos2017, author = {Valente, Luis and Etienne, Rampal S. and Davalos, Liliana M.}, title = {Recent extinctions disturb path to equilibrium diversity in Caribbean bats}, series = {Nature Ecology \& Evolution}, volume = {1}, journal = {Nature Ecology \& Evolution}, publisher = {Nature Publ. Group}, address = {London}, issn = {2397-334X}, doi = {10.1038/s41559-016-0026}, pages = {7}, year = {2017}, abstract = {Islands are ideal systems to model temporal changes in biodiversity and reveal the influence of humans on natural communities. Although theory predicts biodiversity on islands tends towards an equilibrium value, the recent extinction of large proportions of island biotas complicates testing this model. The well-preserved subfossil record of Caribbean bats-involving multiple insular radiations-provides a rare opportunity to model diversity dynamics in an insular community. Here, we reconstruct the diversity trajectory in noctilionoid bats of the Greater Antilles by applying a dynamic model of colonization, extinction and speciation to phylogenetic and palaeontological data including all known extinct and extant species. We show species richness asymptotes to an equilibrium value, a demonstration of natural equilibrium dynamics across an entire community. However, recent extinctions-many caused by humans-have wiped out nearly a third of island lineages, dragging diversity away from equilibrium. Using a metric to measure island biodiversity loss, we estimate it will take at least eight million years to regain pre-human diversity levels. Our integrative approach reveals how anthropogenic extinctions can drastically alter the natural trajectory of biological communities, resulting in evolutionary disequilibrium.}, language = {en} } @article{ReilRosenfeldImholtetal.2017, author = {Reil, Daniela and Rosenfeld, Ulrike and Imholt, Christian and Schmidt, Sabrina and Ulrich, Rainer G. and Eccard, Jana and Jacob, Jens}, title = {Puumala hantavirus infections in bank vole populations}, series = {BMC ecology}, volume = {17}, journal = {BMC ecology}, publisher = {BioMed Central}, address = {London}, issn = {1472-6785}, doi = {10.1186/s12898-017-0118-z}, pages = {13}, year = {2017}, abstract = {Background In Europe, bank voles (Myodes glareolus) are widely distributed and can transmit Puumala virus (PUUV) to humans, which causes a mild to moderate form of haemorrhagic fever with renal syndrome, called nephropathia epidemica. Uncovering the link between host and virus dynamics can help to prevent human PUUV infections in the future. Bank voles were live trapped three times a year in 2010-2013 in three woodland plots in each of four regions in Germany. Bank vole population density was estimated and blood samples collected to detect PUUV specific antibodies. Results We demonstrated that fluctuation of PUUV seroprevalence is dependent not only on multi-annual but also on seasonal dynamics of rodent host abundance. Moreover, PUUV infection might affect host fitness, because seropositive individuals survived better from spring to summer than uninfected bank voles. Individual space use was independent of PUUV infections. Conclusions Our study provides robust estimations of relevant patterns and processes of the dynamics of PUUV and its rodent host in Central Europe, which are highly important for the future development of predictive models for human hantavirus infection risk}, language = {en} } @article{ReschkeMebsSigfridssonClaussetal.2017, author = {Reschke, Stefan and Mebs, Stefan and Sigfridsson-Clauss, Kajsa G. V. and Kositzki, Ramona and Leimk{\"u}hler, Silke and Haumann, Michael}, title = {Protonation and Sulfido versus Oxo Ligation Changes at the Molybdenum Cofactor in Xanthine Dehydrogenase (XDH) Variants Studied by X-ray Absorption Spectroscopy}, series = {Inorganic chemistry}, volume = {56}, journal = {Inorganic chemistry}, number = {4}, publisher = {American Chemical Society}, address = {Washington}, issn = {0020-1669}, doi = {10.1021/acs.inorgchem.6b02846}, pages = {2165 -- 2176}, year = {2017}, abstract = {Enzymes of the xanthine oxidase family are among the best characterized mononuclear molybdenum enzymes. Open questions about their mechanism of transfer of an oxygen atom to the substrate remain. The enzymes share a molybdenum cofactor (Moco) with the metal ion binding a molybdopterin (MPT) molecule via its dithiolene function and terminal sulfur and oxygen groups. For xanthine dehydrogenase (XDH) from the bacterium Rhodobacter capsulatus, we used X-ray absorption spectroscopy to determine the Mo site structure, its changes in a pH range of 5-10, and the influence of amino acids (Glu730 and Gln179) close to Moco in wild-type (WT), Q179A, and E730A variants, complemented by enzyme kinetics and quantum chemical studies. Oxidized WT and Q179A revealed a similar Mo (VI) ion with each one MPT, Mo=O, Mo-O-, and Mo=S ligand, and a weak Mo-O(E730) bond at alkaline pH. Protonation of an oxo to a hydroxo (OH) ligand (pK similar to 6.8) causes inhibition of XDH at acidic pH, whereas deprotonated xanthine (pK similar to 8.8) is an inhibitor at alkaline pH. A similar acidic pK for the WT and Q179A. variants, as well as the metrical parameters of the Mo site and density functional theory calculations, suggested protonation at the equatorial oxo group. The sulfido was replaced with an oxo ligand in the inactive E730A variant, further showing another oxo and one Mo OH ligand at Mo, which are independent of pH. Our findings suggest a reaction mechanism for XDH in which an initial oxo rather than a hydroxo group and the sulfido ligand are essential for xanthine oxidation.}, language = {en} } @article{ShubchynskyyBonieckaSchweighoferetal.2017, author = {Shubchynskyy, Volodymyr and Boniecka, Justyna and Schweighofer, Alois and Simulis, Justinas and Kvederaviciute, Kotryna and Stumpe, Michael and Mauch, Felix and Balazadeh, Salma and M{\"u}ller-R{\"o}ber, Bernd and Boutrot, Freddy and Zipfel, Cyril and Meskiene, Irute}, title = {Protein phosphatase AP2C1 negatively regulates basal resistance and defense responses to Pseudomonas syringae}, series = {Journal of experimental botany}, volume = {68}, journal = {Journal of experimental botany}, number = {5}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0022-0957}, doi = {10.1093/jxb/erw485}, pages = {1169 -- 1183}, year = {2017}, abstract = {Mitogen-activated protein kinases (MAPKs) mediate plant immune responses to pathogenic bacteria. However, less is known about the cell autonomous negative regulatory mechanism controlling basal plant immunity. We report the biological role of Arabidopsis thaliana MAPK phosphatase AP2C1 as a negative regulator of plant basal resistance and defense responses to Pseudomonas syringae. AP2C2, a closely related MAPK phosphatase, also negatively controls plant resistance. Loss of AP2C1 leads to enhanced pathogen-induced MAPK activities, increased callose deposition in response to pathogen-associated molecular patterns or to P. syringae pv. tomato (Pto) DC3000, and enhanced resistance to bacterial infection with Pto. We also reveal the impact of AP2C1 on the global transcriptional reprogramming of transcription factors during Pto infection. Importantly, ap2c1 plants show salicylic acid-independent transcriptional reprogramming of several defense genes and enhanced ethylene production in response to Pto. This study pinpoints the specificity of MAPK regulation by the different MAPK phosphatases AP2C1 and MKP1, which control the same MAPK substrates, nevertheless leading to different downstream events. We suggest that precise and specific control of defined MAPKs by MAPK phosphatases during plant challenge with pathogenic bacteria can strongly influence plant resistance.}, language = {en} } @article{GietlerNykielOrzechowskietal.2017, author = {Gietler, Marta and Nykiel, Malgorzata and Orzechowski, Slawomir and Fettke, J{\"o}rg and Zagdanska, Barbara}, title = {Protein carbonylation linked to wheat seedling tolerance to water deficiency}, series = {Environmental and experimental botany}, volume = {137}, journal = {Environmental and experimental botany}, publisher = {Elsevier}, address = {Oxford}, issn = {0098-8472}, doi = {10.1016/j.envexpbot.2017.02.004}, pages = {84 -- 95}, year = {2017}, abstract = {The appearance of the first leaf from the coleoptile in wheat seedlings (Triticum aestivum L.) coincides with the development of seedling susceptibility to water deficiency on the fifth day following imbibition. In dehydrated wheat seedlings, an increase in the protein carbonyl group has been observed. The coincidence of higher protein carbonylation levels with development of dehydration intolerance drew our attention. To gain more insight into the molecular basis of wheat drought tolerance, the seedling profiles of carbonylated proteins were analysed and compared. Two-dimensional gel electrophoresis (2D-PAGE) and mass spectrometry (MALDI-TOF and LC-MS/MS) were used to indicate and identify differential carbonylated proteins. Among the protein spots with at least a two-fold change in protein abundance in dehydrated seedlings in relation to control (well-watered) plants during the tolerant phase of growth, 19 carbonylated proteins increased and 18 carbonylated proteins decreased in abundance. Among 26 differentially expressed carbonylated proteins in sensitive seedlings, the abundance of 10 protein spots increased while that of 16 proteins decreased upon dehydration. We have demonstrated a link between protein carbonylation and seedling sensitivity to dehydration. The analysis of carbonylated protein profiles clearly showed that proteins with a potential role in the maintenance of dehydration tolerance in wheat seedlings are mainly linked to energy production, anti-fungal and/or insecticidal activity, or to the regulation of both protein synthesis and degradation.}, language = {en} } @incollection{Schmidt2017, author = {Schmidt, Marco F.}, title = {Preface}, series = {Drug target miRNA}, volume = {1517}, booktitle = {Drug target miRNA}, editor = {Schmidt, Marco F.}, publisher = {Springer}, address = {New York}, isbn = {978-1-4939-6563-2}, issn = {1064-3745}, doi = {10.1007/978-1-4939-6563-2}, pages = {V -- V}, year = {2017}, language = {en} } @misc{KleineVehnSauer2017, author = {Kleine-Vehn, J{\"u}rgen and Sauer, Michael}, title = {Preface}, series = {Plant Hormones: Methods and Protocols}, volume = {1497}, journal = {Plant Hormones: Methods and Protocols}, editor = {Kleine-Vehn, J{\"u}rgen and Sauer, Michael}, edition = {3}, publisher = {Springer}, address = {New York}, isbn = {978-1-4939-6469-7}, issn = {1064-3745}, doi = {10.1007/978-1-4939-6469-7}, pages = {V -- V}, year = {2017}, language = {en} } @article{McGinnisFluryTangetal.2017, author = {McGinnis, Daniel F. and Flury, Sabine and Tang, Kam W. and Grossart, Hans-Peter}, title = {Porewater methane transport within the gas vesicles of diurnally migrating Chaoborus spp.}, series = {Scientific reports}, volume = {7}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/srep44478}, pages = {7}, year = {2017}, abstract = {Diurnally-migrating Chaoborus spp. reach populations of up to 130,000 individuals m-2 in lakes up to 70 meters deep on all continents except Antarctica. Linked to eutrophication, migrating Chaoborus spp. dwell in the anoxic sediment during daytime and feed in the oxic surface layer at night. Our experiments show that by burrowing into the sediment, Chaoborus spp. utilize the high dissolved gas partial pressure of sediment methane to inflate their tracheal sacs. This mechanism provides a significant energetic advantage that allows the larvae to migrate via passive buoyancy rather than more energy-costly swimming. The Chaoborus spp. larvae, in addition to potentially releasing sediment methane bubbles twice a day by entering and leaving the sediment, also transport porewater methane within their gas vesicles into the water column, resulting in a flux of 0.01-2 mol m-2 yr-1 depending on population density and water depth. Chaoborus spp. emerging annually as flies also result in 0.1-6 mol m-2 yr-1 of carbon export from the system. Finding the tipping point in lake eutrophication enabling this methane-powered migration mechanism is crucial for ultimately reconstructing the geographical expansion of Chaoborus spp., and the corresponding shifts in the lake's biogeochemistry, carbon cycling and food web structure.}, language = {en} } @article{LuHasanZengetal.2017, author = {Lu, Yong-Ping and Hasan, Ahmed A. and Zeng, Shufei and Hocher, Berthold}, title = {Plasma ET-1 concentrations are elevated in pregnant women with hypertension - meta-analysis of clinical studies}, series = {Kidney \& blood pressure research : official organ of the Gesellschaft f{\"u}r Nephrologie ; official organ of the Deutsche Liga zur Bek{\"a}mpfung des Hohen Blutdruckes e.V., Deutsche Hypertonie-Gesellschaft}, volume = {42}, journal = {Kidney \& blood pressure research : official organ of the Gesellschaft f{\"u}r Nephrologie ; official organ of the Deutsche Liga zur Bek{\"a}mpfung des Hohen Blutdruckes e.V., Deutsche Hypertonie-Gesellschaft}, number = {4}, publisher = {Karger}, address = {Basel}, issn = {1420-4096}, doi = {10.1159/000482004}, pages = {654 -- 663}, year = {2017}, abstract = {Background/Aims: The ET system might be involved in the pathogenesis of hypertensive disorders during pregnancy. The objective is to analyse the impact of ET-1 in hypertensive pregnant women by a strict meta-analysis of published human clinical studies. Methods: Based on the principle of Cochrane systematic reviews, Cohort studies in PubMed (Medline), Google Scholar and China Biological Medicine Database (CBM-disc) designed to identify the role of endothelin-1 (ET-1) in the pathophysiology of gestational hypertension and preeclampsia were screened. Review Manager Version 5.0 (Rev-Man 5.0) was applied for statistical analysis. Mean difference and 95\% confidence interval (CI) were shown in inverse variance (IV) fixed-effects model or IV random-effects model. Results: Sixteen published cohort studies including 1739 hypertensive cases and 409 controls were used in the meta-analysis. ET-1 plasma concentrations were higher in hypertensive pregnant women as compared to the controls (mean difference between groups: 19.02 [15.60~22.44], P < 0.00001,). These finding were driven by severity of hypertension and/or degree of proteinuria. Conclusion: Plasma ET-1 concentrations are elevated in hypertensive disorders during human pregnancy. In particular women with preeclampsia (hypertensive pregnant women with proteinuria) have substantially elevated plasma ET-1 concentration as compared to pregnant women with normal blood pressure.}, language = {en} } @article{HeinzeJoshi2017, author = {Heinze, Johannes and Joshi, Jasmin Radha}, title = {Plant-soil feedback effects can be masked by aboveground herbivory under natural field conditions}, series = {Oecologia}, volume = {186}, journal = {Oecologia}, number = {1}, publisher = {Springer}, address = {New York}, issn = {0029-8549}, doi = {10.1007/s00442-017-3997-y}, pages = {235 -- 246}, year = {2017}, abstract = {For plants, herbivory and interactions with their surrounding soil ecosystem are crucial factors influencing individual performance and plant-community composition. Until now, research has mostly focused on individual effects of herbivory or plant-soil feedbacks (PSFs) on plant growth and community composition, but few studies have explicitly investigated herbivory in the context of PSFs. These few studies, however, were performed under greenhouse conditions even though PSFs and herbivory may differ between greenhouse and field conditions. Therefore, we performed a field experiment in a grassland, testing the growth responses of three grass species that consistently differ in local abundance, on soils previously conditioned by these species. We tested these PSF effects for the three species both in the presence and in the absence of aboveground herbivores. Without herbivores, the two subdominant species suffered from negative PSF effects. However, in the presence of herbivores and on heterospecific soils, the same two species experienced a significant loss of shoot biomass, whereas, in contrast, enhanced root growth was observed on conspecific soils, resulting in overall neutral PSF effects. The dominant species was not damaged by herbivores and showed overall neutral PSF effects in the field with and without herbivores. Our study provides empirical evidence that negative PSF effects that exist under natural field conditions in grasslands can be overwhelmed by aboveground herbivory. Hence, potential PSF effects might not be detected in the field, because other abiotic and biotic interactions such as aboveground herbivory have stronger effects on plant performance and might therefore mask or override these PSF effects.}, language = {en} } @article{OPUS4-56760, title = {Plant Hormones}, series = {Methods in Molecular Biology}, journal = {Methods in Molecular Biology}, number = {1497}, editor = {Kleine-Vehn, J{\"u}rgen and Sauer, Michael}, publisher = {Springer}, address = {New York}, isbn = {978-1-4939-6467-3}, issn = {1064-3745}, doi = {10.1007/978-1-4939-6469-7}, pages = {XI, 288}, year = {2017}, abstract = {This volume aims to present a representative cross-section of modern experimental approaches relevant to Plant Hormone Biology, ranging from relatively simple physiological to highly sophisticated methods. Chapters describe physiological, developmental, microscopy-based techniques, measure hormone contents, and heterologous systems. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls.}, language = {en} } @article{GallUebelEbensenetal.2017, author = {Gall, Andrea and Uebel, Udo and Ebensen, Uwe and Hillebrand, Helmut and Meier, Sandra and Singer, Gabriel and Wacker, Alexander and Striebel, Maren}, title = {Planktotrons}, series = {Limnology and oceanography-methods}, volume = {15}, journal = {Limnology and oceanography-methods}, publisher = {Wiley}, address = {Hoboken}, issn = {1541-5856}, doi = {10.1002/lom3.10196}, pages = {663 -- 677}, year = {2017}, abstract = {We established a new indoor mesocosm facility, 12 fully controlled Planktotrons, designed to conduct marine and freshwater experiments for biodiversity and food web approaches using natural or artificial, benthic or planktonic communities. The Planktotrons are a unique and custom-tailored facility allowing long-term experiments. Wall growth can be inhibited by a rotating gate paddle with silicone lips. Additionally, temperature and light intensity are individually controllable for each Planktotron and the large volume (600 L) enables high-frequency or volume-intense measurements. In a pilot freshwater experiment various trophic levels of a pelagic food web were maintained for up to 90 d. First, an artificially assembled phytoplankton community of 11 species was inoculated in all Planktotrons. After 22 d, two ciliates were added to all, and three Daphnia species were added to six Planktotrons. After 72 d, dissolved organic matter (DOM, an alkaline soil extract) was added as an external disturbance to six of the 12 Planktotrons, involving three Planktotrons stocked with Daphnia and three without, respectively. We demonstrate the suitability of the Planktotrons for food web and biodiversity research. Variation among replicated Planktotrons (n=3 minimum) did not differ from other laboratory systems and field experiments. We investigated population dynamics and interactions among the different trophic levels, and found them affected by the sequence of ciliate and Daphnia addition and the disturbance caused by addition of DOM.}, language = {en} } @article{MartinsFickelMinhLeetal.2017, author = {Martins, Renata F. and Fickel, J{\"o}rns and Minh Le, and Thanh Van Nguyen, and Nguyen, Ha M. and Timmins, Robert and Gan, Han Ming and Rovie-Ryan, Jeffrine J. and Lenz, Dorina and F{\"o}rster, Daniel W. and Wilting, Andreas}, title = {Phylogeography of red muntjacs reveals three distinct mitochondrial lineages}, series = {BMC evolutionary biology}, volume = {17}, journal = {BMC evolutionary biology}, number = {34}, publisher = {BioMed Central}, address = {London}, issn = {1471-2148}, doi = {10.1186/s12862-017-0888-0}, pages = {12}, year = {2017}, abstract = {Background: The members of the genus Muntiacus are of particular interest to evolutionary biologists due to their extreme chromosomal rearrangements and the ongoing discussions about the number of living species. Red muntjacs have the largest distribution of all muntjacs and were formerly considered as one species. Karyotype differences led to the provisional split between the Southern Red Muntjac (Muntiacus muntjak) and the Northern Red Muntjac (M. vaginalis), but uncertainties remain as, so far, no phylogenetic study has been conducted. Here, we analysed whole mitochondrial genomes of 59 archival and 16 contemporaneous samples to resolve uncertainties about their taxonomy and used red muntjacs as model for understanding the evolutionary history of other species in Southeast Asia. Results: We found three distinct matrilineal groups of red muntjacs: Sri Lankan red muntjacs (including the Western Ghats) diverged first from other muntjacs about 1.5 Mya; later northern red muntjacs (including North India and Indochina) and southern red muntjacs (Sundaland) split around 1.12 Mya. The diversification of red muntjacs into these three main lineages was likely promoted by two Pleistocene barriers: one through the Indian subcontinent and one separating the Indochinese and Sundaic red muntjacs. Interestingly, we found a high level of gene flow within the populations of northern and southern red muntjacs, indicating gene flow between populations in Indochina and dispersal of red muntjacs over the exposed Sunda Shelf during the Last Glacial Maximum. Conclusions: Our results provide new insights into the evolution of species in South and Southeast Asia as we found clear genetic differentiation in a widespread and generalist species, corresponding to two known biogeographical barriers: The Isthmus of Kra and the central Indian dry zone. In addition, our molecular data support either the delineation of three monotypic species or three subspecies, but more importantly these data highlight the conservation importance of the Sri Lankan/South Indian red muntjac.}, language = {en} } @phdthesis{Kubsch2017, author = {Kubsch, Bastian}, title = {Phase-specific fusion between biomembranes using SNARE mimetics}, school = {Universit{\"a}t Potsdam}, pages = {95}, year = {2017}, language = {en} } @article{KolkNaafWulf2017, author = {Kolk, Jens and Naaf, Tobias and Wulf, Monika}, title = {Paying the colonization credit}, series = {Biodiversity and conservation}, volume = {26}, journal = {Biodiversity and conservation}, publisher = {Springer}, address = {Dordrecht}, issn = {0960-3115}, doi = {10.1007/s10531-016-1271-y}, pages = {735 -- 755}, year = {2017}, abstract = {Massive historical land cover changes in the Central European lowlands have resulted in a forest distribution that now comprises small remnants of ancient forests and more recently established post-agricultural forests. Here, land-use history is considered a key driver of recent herb-layer community changes, where an extinction debt in ancient forest remnants and/or a colonization credit in post-agricultural forests are being paid over time. On a regional scale, these payments should in theory lead toward a convergence in species richness between ancient and post-agricultural forests over time. In this study, we tested this assumption with a resurvey of 117 semi-permanent plots in the well-studied deciduous forests of the Prignitz region (Brandenburg, NE Germany), where we knew that the plant communities of post-agricultural stands exhibit a colonization credit while the extinction debt in ancient stands has largely been paid. We compared changes in the species richness of all herb layer species, forest specialists and ancient forest indicator species between ancient and post-agricultural stands with linear mixed effect models and determined the influence of patch connectivity on the magnitude of species richness changes. Species richness increased overall, but the richness of forest specialists increased significantly more in post-agricultural stands and was positively influenced by higher patch connectivity, indicating a convergence in species richness between the ancient and postagricultural stands. Furthermore, the richness of ancient forest indicator species only increased significantly in post-agricultural stands. For the first time, we were able to verify a gradual payment of the colonization credit in post-agricultural forest stands using a comparison of actual changes in temporal species richness.}, language = {en} } @article{TaubeGanzertGrossartetal.2017, author = {Taube, Robert and Ganzert, Lars and Grossart, Hans-Peter and Gleixner, Gerd and Premke, Katrin}, title = {Organic matter quality structures benthic fatty acid patterns and the abundance of fungi and bacteria in temperate lakes}, series = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, volume = {610}, journal = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0048-9697}, doi = {10.1016/j.scitotenv.2017.07.256}, pages = {469 -- 481}, year = {2017}, abstract = {Benthic microbial communities (BMCs) play important roles in the carbon cycle of lakes, and benthic littoral zones in particular have been previously highlighted as biogeochemical hotspots. Dissolved organic matter (DOM) presents the major carbon pool in lakes, and although the effect of DOM composition on the pelagic microbial community composition is widely accepted, little is known about its effect on BMCs, particularly aquatic fungi. Therefore, we investigated the composition of benthic littoral microbial communities in twenty highly diverse lakes in northeast Germany. DOM quality was analyzed via size exclusion chromatography (SEC), fluorescence parallel factor analyses (PRAFACs) and UV-Vis spectroscopy. We determined the BMC composition and biomass using phospholipid-derived fatty acids (PLFA) and extended the interpretation to the analysis of fungi by applying a Bayesian mixed model. We present evidence that the quality of DOM structures the BMCs, which are dominated by heterotrophic bacteria and show low fungal biomass. The fungal biomass increases when the DOM pool is processed by microorganisms of allochthonous origin, whereas the opposite is true for bacteria.}, language = {en} } @article{HornickBachCrawfurdetal.2017, author = {Hornick, Thomas and Bach, Lennart T. and Crawfurd, Katharine J. and Spilling, Kristian and Achterberg, Eric P. and Woodhouse, Jason Nicholas and Schulz, Kai G. and Brussaard, Corina P. D. and Riebesell, Ulf and Grossart, Hans-Peter}, title = {Ocean acidification impacts bacteria-phytoplankton coupling at low-nutrient conditions}, series = {Biogeosciences}, volume = {14}, journal = {Biogeosciences}, number = {1}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1726-4170}, doi = {10.5194/bg-14-1-2017}, pages = {1 -- 15}, year = {2017}, abstract = {The oceans absorb about a quarter of the annually produced anthropogenic atmospheric carbon dioxide (CO2), resulting in a decrease in surface water pH, a process termed ocean acidification (OA). Surprisingly little is known about how OA affects the physiology of heterotrophic bacteria or the coupling of heterotrophic bacteria to phytoplankton when nutrients are limited. Previous experiments were, for the most part, undertaken during productive phases or following nutrient additions designed to stimulate algal blooms. Therefore, we performed an in situ large-volume mesocosm (similar to 55 m(3)) experiment in the Baltic Sea by simulating different fugacities of CO2 (fCO(2)) extending from present to future conditions. The study was conducted in July-August after the nominal spring bloom, in order to maintain low-nutrient conditions throughout the experiment. This resulted in phytoplankton communities dominated by small-sized functional groups (picophytoplankton). There was no consistent fCO(2)-induced effect on bacterial protein production (BPP), cell-specific BPP (csBPP) or biovolumes (BVs) of either free-living (FL) or particle-associated (PA) heterotrophic bacteria, when considered as individual components (univariate analyses). Permutational Multivariate Analysis of Variance (PERMANOVA) revealed a significant effect of the fCO(2) treatment on entire assemblages of dissolved and particulate nutrients, metabolic parameters and the bacteria-phytoplankton community. However, distance-based linear modelling only identified fCO(2) as a factor explaining the variability observed amongst the microbial community composition, but not for explaining variability within the metabolic parameters. This suggests that fCO(2) impacts on microbial metabolic parameters occurred indirectly through varying physicochemical parameters and microbial species composition. Cluster analyses examining the co-occurrence of different functional groups of bacteria and phytoplankton further revealed a separation of the four fCO(2)-treated mesocosms from both control mesocosms, indicating that complex trophic interactions might be altered in a future acidified ocean. Possible consequences for nutrient cycling and carbon export are still largely unknown, in particular in a nutrient-limited ocean.}, language = {en} } @article{BuschKlausPenoneetal.2017, author = {Busch, Verena and Klaus, Valentin H. and Penone, Caterina and Sch{\"a}fer, Deborah and Boch, Steffen and Prati, Daniel and M{\"u}ller, J{\"o}rg and Socher, Stephanie A. and Niinemets, {\"U}lo and Penuelas, Josep and H{\"o}lzel, Norbert and Fischer, Markus and Kleinebecker, Till}, title = {Nutrient stoichiometry and land use rather than species richness determine plant functional diversity}, series = {Ecology and evolution}, volume = {8}, journal = {Ecology and evolution}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {2045-7758}, doi = {10.1002/ece3.3609}, pages = {601 -- 616}, year = {2017}, abstract = {Plant functional traits reflect individual and community ecological strategies. They allow the detection of directional changes in community dynamics and ecosystemic processes, being an additional tool to assess biodiversity than species richness. Analysis of functional patterns in plant communities provides mechanistic insight into biodiversity alterations due to anthropogenic activity. Although studies have consi-dered of either anthropogenic management or nutrient availability on functional traits in temperate grasslands, studies combining effects of both drivers are scarce. Here, we assessed the impacts of management intensity (fertilization, mowing, grazing), nutrient stoichiometry (C, N, P, K), and vegetation composition on community-weighted means (CWMs) and functional diversity (Rao's Q) from seven plant traits in 150 grasslands in three regions in Germany, using data of 6 years. Land use and nutrient stoichiometry accounted for larger proportions of model variance of CWM and Rao's Q than species richness and productivity. Grazing affected all analyzed trait groups; fertilization and mowing only impacted generative traits. Grazing was clearly associated with nutrient retention strategies, that is, investing in durable structures and production of fewer, less variable seed. Phenological variability was increased. Fertilization and mowing decreased seed number/mass variability, indicating competition-related effects. Impacts of nutrient stoichiometry on trait syndromes varied. Nutrient limitation (large N:P, C:N ratios) promoted species with conservative strategies, that is, investment in durable plant structures rather than fast growth, fewer seed, and delayed flowering onset. In contrast to seed mass, leaf-economics variability was reduced under P shortage. Species diversity was positively associated with the variability of generative traits. Synthesis. Here, land use, nutrient availability, species richness, and plant functional strategies have been shown to interact complexly, driving community composition, and vegetation responses to management intensity. We suggest that deeper understanding of underlying mechanisms shaping community assembly and biodiversity will require analyzing all these parameters.}, language = {en} } @article{SchwiebsThomasKleuseretal.2017, author = {Schwiebs, Anja and Thomas, Dominique Jeanette and Kleuser, Burkhard and Pfeilschifter, Josef and Radeke, Heinfried H.}, title = {Nuclear translocation of SGPP-1 and decrease of SGPL-1 activity contribute to sphingolipid rheostat regulation of inflammatory dendritic cells}, series = {Mediators of inflammation}, journal = {Mediators of inflammation}, publisher = {Hindawi Publishing Corp.}, address = {London}, issn = {0962-9351}, doi = {10.1155/2017/5187368}, pages = {10}, year = {2017}, abstract = {A balanced sphingolipid rheostat is indispensable for dendritic cell function and survival and thus initiation of an immune response. Sphingolipid levels are dynamically maintained by the action of sphingolipid enzymes of which sphingosine kinases, S1P phosphatases (SGPP-1/2) and S1P lyase (SGPL-1), are pivotal in the balance of S1P and sphingosine levels. In this study, we present that SGPP-1 and SGPL-1 are regulated in inflammatory dendritic cells and contribute to S1P fate. TLR-dependent activation caused SGPL-1 protein downregulation with subsequent decrease of enzymatic activity by two-thirds. In parallel, confocal fluorescence microscopy revealed that endogenous SGPP-1 was expressed in nuclei of naive dendritic cells and was translocated into the cytoplasmatic compartment upon inflammatory stimulation resulting in dephosphorylation of S1P. Mass spectrometric determination showed that a part of the resulting sphingosine was released from the cell, increasing extracellular levels. Another route of diminishing intracellular S1P was possibly taken by its export via ATP-binding cassette transporter C1 which was upregulated in array analysis, while the S1P transporter, spinster homolog 2, was not relevant in dendritic cells. These investigations newly describe the sequential expression and localization of the endogenous S1P regulators SGPP-1 and SGPL-1 and highlight their contribution to the sphingolipid rheostat in inflammation.}, language = {en} } @article{PospisilCzernitzkiScheffler2017, author = {Pospisil, Christina and Czernitzki, Anna-Franziska and Scheffler, Christiane}, title = {No association between nutrition and body height in German kindergarten children}, series = {Journal of biological and clinical anthropology : Anthropologischer Anzeiger; Mitteilungsorgan der Gesellschaft f{\"u}r Anthropologie}, volume = {74}, journal = {Journal of biological and clinical anthropology : Anthropologischer Anzeiger; Mitteilungsorgan der Gesellschaft f{\"u}r Anthropologie}, number = {3}, publisher = {Schweizerbart}, address = {Stuttgart}, issn = {0003-5548}, doi = {10.1127/anthranz/2017/0704}, pages = {199 -- 202}, year = {2017}, abstract = {Anthropologists all over the world are discussing influences on individual height including quantity and quality of nutrition. To examine whether a relationship between nutritional components and height can be found this pilot study has been developed. The research samples consisted of 44 children (age 3-6 years) attending two different kindergartens in Germany. Height measurements were taken for each child. Furthermore the parents had to fill out a 24-hour questionnaire to document their children's eating habits during the weekend. In order to standardize the measured height values z-scores were calculated with reference to the average height of the overall cohort. The results of correlation analysis indicate that height is not significantly related to any of the main nutritional components as protein (r = -0.148), carbohydrates (r = 0.126), fat (r = 0.107), fibre (r = -0.289), vitamin (r = 0.050), calcium (r = 0.110), potassium (r = 0.189) and overall calorie intake (r = 0.302). In conclusion, it can be stated that the quality of nutrition may not have a strong influence on individual height. However, due to the small sample size further research should be provided with a larger cohort of children to verify the present results.}, language = {en} } @article{BernacchioniGhiniCencettietal.2017, author = {Bernacchioni, Caterina and Ghini, Veronica and Cencetti, Francesca and Japtok, Lukasz and Donati, Chiara and Bruni, Paola and Turano, Paola}, title = {NMR metabolomics highlights sphingosine kinase-1 as a new molecular switch in the orchestration of aberrant metabolic phenotype in cancer cells}, series = {Molecular oncology / Federation of European Biochemical Societies}, volume = {11}, journal = {Molecular oncology / Federation of European Biochemical Societies}, publisher = {Wiley}, address = {Hoboken}, issn = {1878-0261}, doi = {10.1002/1878-0261.12048}, pages = {517 -- 533}, year = {2017}, abstract = {Strong experimental evidence in animal and cellular models supports a pivotal role of sphingosine kinase-1 (SK1) in oncogenesis. In many human cancers, SK1 levels are upregulated and these increases are linked to poor prognosis in patients. Here, by employing untargeted NMR- based metabolomic profiling combined with functional validations, we report the crucial role of SK1 in the metabolic shift known as the Warburg effect in A2780 ovarian cancer cells. Indeed, expression of SK1 induced a high glycolytic rate, characterized by increased levels of lactate along with increased expression of the proton/monocarboxylate symporter MCT1, and decreased oxidative metabolism, associated with the accumulation of intermediates of the tricarboxylic acid cycle and reduction in CO2 production. Additionally, SK1-expressing cells displayed a significant increase in glucose uptake paralleled by GLUT3 transporter upregulation. The role of SK1 is not limited to the induction of aerobic glycolysis, affecting metabolic pathways that appear to support the biosynthesis of macromolecules. These findings highlight the role of SK1 signaling axis in cancer metabolic reprogramming, pointing out innovative strategies for cancer therapies.}, language = {en} } @article{EndesfelderWeicheltStraussetal.2017, author = {Endesfelder, Stefanie and Weichelt, Ulrike and Strauß, Evelyn and Schl{\"o}r, Anja and Sifringer, Marco and Scheuer, Till and B{\"u}hrer, Christoph and Schmitz, Thomas}, title = {Neuroprotection by caffeine in hyperoxia-induced neonatal brain injury}, series = {International journal of molecular sciences}, volume = {18}, journal = {International journal of molecular sciences}, publisher = {Molecular Diversity Preservation International}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms18010187}, pages = {24}, year = {2017}, abstract = {Sequelae of prematurity triggered by oxidative stress and free radical-mediated tissue damage have coined the term "oxygen radical disease of prematurity". Caffeine, a potent free radical scavenger and adenosine receptor antagonist, reduces rates of brain damage in preterm infants. In the present study, we investigated the effects of caffeine on oxidative stress markers, anti-oxidative response, inflammation, redox-sensitive transcription factors, apoptosis, and extracellular matrix following the induction of hyperoxia in neonatal rats. The brain of a rat pups at postnatal Day 6 (P6) corresponds to that of a human fetal brain at 28-32 weeks gestation and the neonatal rat is an ideal model in which to investigate effects of oxidative stress and neuroprotection of caffeine on the developing brain. Six-day-old Wistar rats were pre-treated with caffeine and exposed to 80\% oxygen for 24 and 48 h. Caffeine reduced oxidative stress marker (heme oxygenase-1, lipid peroxidation, hydrogen peroxide, and glutamate-cysteine ligase catalytic subunit (GCLC)), promoted anti-oxidative response (superoxide dismutase, peroxiredoxin 1, and sulfiredoxin 1), down-regulated pro-inflammatory cytokines, modulated redox-sensitive transcription factor expression (Nrf2/Keap1, and NFκB), reduced pro-apoptotic effectors (poly (ADP-ribose) polymerase-1 (PARP-1), apoptosis inducing factor (AIF), and caspase-3), and diminished extracellular matrix degeneration (matrix metalloproteinases (MMP) 2, and inhibitor of metalloproteinase (TIMP) 1/2). Our study affirms that caffeine is a pleiotropic neuroprotective drug in the developing brain due to its anti-oxidant, anti-inflammatory, and anti-apoptotic properties.}, language = {en} } @article{PyšekPerglEssletal.2017, author = {Pyšek, Petr and Pergl, Jan and Essl, Franz and Lenzner, Bernd and Dawson, Wayne and Kreft, Holger and Weigelt, Patrick and Winter, Marten and Kartesz, John and Nishino, Misako and Antonova, Liubov A. and Barcelona, Julie F. and Cabezas, Francisco Jos{\´e} and C{\´a}rdenas L{\´o}pez, Dairon and C{\´a}rdenas-Toro, Juliana and Castańo, Nicol{\´a}s and Chac{\´o}n, Eduardo and Chatelain, Cyrille and Dullinger, Stefan and Ebel, Aleksandr L. and Figueiredo, Estrela and Fuentes, Nicol and Genovesi, Piero and Groom, Quentin J. and Henderson, Lesley and Inderjit, and Kupriyanov, Andrey and Masciadri, Silvana and Maurel, No{\"e}lie and Meerman, Jan and Morozova, Olʹga V. and Moser, Dietmar and Nickrent, Daniel and Nowak, Pauline M. and Pagad, Shyama and Patzelt, Annette and Pelser, Pieter B. and Seebens, Hanno and Shu, Wen-sheng and Thomas, Jacob and Velayos, Mauricio and Weber, Ewald and Wieringa, Jan J. and Baptiste, Maria P. and Kleunen, Mark van}, title = {Naturalized alien flora of the world}, series = {Preslia : the journal of the Czech Botanical Society}, volume = {89}, journal = {Preslia : the journal of the Czech Botanical Society}, number = {3}, publisher = {Czech Botanical Soc.}, address = {Praha}, issn = {0032-7786}, doi = {10.23855/preslia.2017.203}, pages = {203 -- 274}, year = {2017}, abstract = {Using the recently built Global Naturalized Alien Flora (GloNAF) database, containing data on the distribution of naturalized alien plants in 483 mainland and 361 island regions of the world, we describe patterns in diversity and geographic distribution of naturalized and invasive plant species, taxonomic, phylogenetic and life-history structure of the global naturalized flora as well as levels of naturalization and their determinants. The mainland regions with the highest numbers of naturalized aliens are some Australian states (with New South Wales being the richest on this continent) and several North American regions (of which California with 1753 naturalized plant species represents the world’s richest region in terms of naturalized alien vascular plants). England, Japan, New Zealand and the Hawaiian archipelago harbour most naturalized plants among islands or island groups. These regions also form the main hotspots of the regional levels of naturalization, measured as the percentage of naturalized aliens in the total flora of the region. Such hotspots of relative naturalized species richness appear on both the western and eastern coasts of North America, in north-western Europe, South Africa, south-eastern Australia, New Zealand, and India. High levels of island invasions by naturalized plants are concentrated in the Pacific, but also occur on individual islands across all oceans. The numbers of naturalized species are closely correlated with those of native species, with a stronger correlation and steeper increase for islands than mainland regions, indicating a greater vulnerability of islands to invasion by species that become successfully naturalized. South Africa, India, California, Cuba, Florida, Queensland and Japan have the highest numbers of invasive species. Regions in temperate and tropical zonobiomes harbour in total 9036 and 6774 naturalized species, respectively, followed by 3280 species naturalized in the Mediterranean zonobiome, 3057 in the subtropical zonobiome and 321 in the Arctic. The New World is richer in naturalized alien plants, with 9905 species compared to 7923 recorded in the Old World. While isolation is the key factor driving the level of naturalization on islands, zonobiomes differing in climatic regimes, and socioeconomy represented by per capita GDP, are central for mainland regions. The 11 most widely distributed species each occur in regions covering about one third of the globe or more in terms of the number of regions where they are naturalized and at least 35\% of the Earth’s land surface in terms of those regions’ areas, with the most widely distributed species Sonchus oleraceus occuring in 48\% of the regions that cover 42\% of the world area. Other widely distributed species are Ricinus communis, Oxalis corniculata, Portulaca oleracea, Eleusine indica, Chenopodium album, Capsella bursa-pastoris, Stellaria media, Bidens pilosa, Datura stramonium and Echinochloa crus-galli. Using the occurrence as invasive rather than only naturalized yields a different ranking, with Lantana camara (120 regions out of 349 for which data on invasive status are known), Calotropis procera (118), Eichhornia crassipes (113), Sonchus oleraceus (108) and Leucaena leucocephala (103) on top. As to the life-history spectra, islands harbour more naturalized woody species (34.4\%) thanmainland regions (29.5\%), and fewer annual herbs (18.7\% compared to 22.3\%). Ranking families by their absolute numbers of naturalized species reveals that Compositae (1343 species), Poaceae (1267) and Leguminosae (1189) contribute most to the global naturalized alien flora. Some families are disproportionally represented by naturalized aliens on islands (Arecaceae, Araceae, Acanthaceae, Amaryllidaceae, Asparagaceae, Convolvulaceae, Rubiaceae, Malvaceae), and much fewer so on mainland (e.g. Brassicaceae, Caryophyllaceae, Boraginaceae). Relating the numbers of naturalized species in a family to its total global richness shows that some of the large species-rich families are over-represented among naturalized aliens (e.g. Poaceae, Leguminosae, Rosaceae, Amaranthaceae, Pinaceae), some under-represented (e.g. Euphorbiaceae, Rubiaceae), whereas the one richest in naturalized species, Compositae, reaches a value expected from its global species richness. Significant phylogenetic signal indicates that families with an increased potential of their species to naturalize are not distributed randomly on the evolutionary tree. Solanum (112 species), Euphorbia (108) and Carex (106) are the genera richest in terms of naturalized species; over-represented on islands are Cotoneaster, Juncus, Eucalyptus, Salix, Hypericum, Geranium and Persicaria, while those relatively richer in naturalized species on the mainland are Atriplex, Opuntia, Oenothera, Artemisia, Vicia, Galium and Rosa. The data presented in this paper also point to where information is lacking and set priorities for future data collection. The GloNAF database has potential for designing concerted action to fill such data gaps, and provide a basis for allocating resources most efficiently towards better understanding and management of plant invasions worldwide.}, language = {en} } @phdthesis{Zeng2017, author = {Zeng, Ting}, title = {Nanoparticles promoted biocatalysis}, school = {Universit{\"a}t Potsdam}, pages = {99}, year = {2017}, language = {en} } @phdthesis{Peng2017, author = {Peng, Xingzhou}, title = {Multiphase polymers based on polydepsipeptides as a multifunctional materials platform}, school = {Universit{\"a}t Potsdam}, pages = {xv, 99}, year = {2017}, language = {en} } @article{MaddockChilderstoneFryetal.2017, author = {Maddock, Simon T. and Childerstone, Aaron and Fry, Bryan Grieg and Williams, David J. and Barlow, Axel and Wuester, Wolfgang}, title = {Multi-locus phylogeny and species delimitation of Australo-Papuan blacksnakes (Pseudechis Wagler, 1830: Elapidae: Serpentes)}, series = {Molecular phylogenetics and evolution}, volume = {107}, journal = {Molecular phylogenetics and evolution}, publisher = {Elsevier}, address = {San Diego}, issn = {1055-7903}, doi = {10.1016/j.ympev.2016.09.005}, pages = {48 -- 55}, year = {2017}, abstract = {Genetic analyses of Australasian organisms have resulted in the identification of extensive cryptic diversity across the continent. The venomous elapid snakes are among the best-studied organismal groups in this region, but many knowledge gaps persist: for instance, despite their iconic status, the species-level diversity among Australo-Papuan blacksnakes (Pseudechis) has remained poorly understood due to the existence of a group of cryptic species within the P. australis species complex, collectively termed "pygmy mulga snakes". Using two mitochondrial and three nuclear loci we assess species boundaries within the genus using Bayesian species delimitation methods and reconstruct their phylogenetic history using multispecies coalescent approaches. Our analyses support the recognition of 10 species, including all of the currently described pygmy mulga snakes and one undescribed species from the Northern Territory of Australia. Phylogenetic relationships within the genus are broadly consistent with previous work, with the recognition of three major groups, the viviparous red-bellied black snake P. porphyriacus forming the sister species to two clades consisting of ovoviviparous species.}, language = {en} } @article{KloseRolkeBaumann2017, author = {Klose, Sascha Peter and Rolke, Daniel and Baumann, Otto}, title = {Morphogenesis of honeybee hypopharyngeal gland during pupal development}, series = {Frontiers in zoology}, volume = {14}, journal = {Frontiers in zoology}, publisher = {BioMed Central}, address = {London}, issn = {1742-9994}, doi = {10.1186/s12983-017-0207-z}, year = {2017}, abstract = {Background The hypopharyngeal gland of worker bees contributes to the production of the royal jelly fed to queens and larvae. The gland consists of thousands of two-cell units that are composed of a secretory cell and a duct cell and that are arranged in sets of about 12 around a long collecting duct. Results By fluorescent staining, we have examined the morphogenesis of the hypopharyngeal gland during pupal life, from a saccule lined by a pseudostratified epithelium to the elaborate organ of adult worker bees. The hypopharyngeal gland develops as follows. (1) Cell proliferation occurs during the first day of pupal life in the hypopharyngeal gland primordium. (2) Subsequently, the epithelium becomes organized into rosette-like units of three cells. Two of these will become the secretory cell and the duct cell of the adult secretory units; the third cell contributes only temporarily to the development of the secretory units and is eliminated by apoptosis in the second half of pupal life. (3) The three-cell units of flask-shaped cells undergo complex changes in cell morphology. Thus, by mid-pupal stage, the gland is structurally similar to the adult hypopharyngeal gland. (4) Concomitantly, the prospective secretory cell attains its characteristic subcellular organization by the invagination of a small patch of apical membrane domain, its extension to a tube of about 100 μm in length (termed a canaliculus), and the expansion of the tube to a diameter of about 3 μm. (6) Finally, the canaliculus-associated F-actin system becomes reorganized into rings of bundled actin filaments that are positioned at regular distances along the membrane tube. Conclusions The morphogenesis of the secretory units in the hypopharyngeal gland of the worker bee seems to be based on a developmental program that is conserved, with slight modification, among insects for the production of dermal glands. Elaboration of the secretory cell as a unicellular seamless epithelial tube occurs by invagination of the apical membrane, its extension likely by targeted exocytosis and its expansion, and finally the reorganisation of the membrane-associated F-actin system. Our work is fundamental for future studies of environmental effects on hypopharyngeal gland morphology and development.}, language = {en} } @article{LeimkuehlerMendel2017, author = {Leimk{\"u}hler, Silke and Mendel, Ralf-Rainer}, title = {Molybdenum Cofactor Biosynthesis}, series = {Molybdenum and tungsten enzymes: biochemistry}, volume = {5}, journal = {Molybdenum and tungsten enzymes: biochemistry}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, isbn = {978-1-78262-391-5}, doi = {10.1039/9781782623915}, pages = {100 -- 116}, year = {2017}, abstract = {The biosynthesis of the molybdenum cofactor (Moco) is highly conserved among all kingdoms of life. In all molybdoenzymes with the exception of nitrogenase, the molybdenum atom is coordinated to a dithiolene group present in the pterin-based 6-alkyl side chain of molybdopterin (MPT). In general, the biosynthesis of Moco can be divided into three steps in eukaryotes, and four steps in bacteria and archaea: (i) the starting point is the formation of the cyclic pyranopterin monophosphate (cPMP) from 5′GTP, (ii) in the second step the two sulfur molecules are inserted into cPMP leading to the formation of MPT, (iii) in the third step the molybdenum atom is inserted into molybdopterin to form Moco and (iv) additional modification of Moco occurs in bacteria and archaea with the attachment of a nucleotide (CMP or GMP) to the phosphate group of MPT, forming the dinucleotide variants of Moco. This review will focus on the biosynthesis of Moco in bacteria, humans and plants.}, language = {en} } @article{LiXuWangetal.2017, author = {Li, Zhengdong and Xu, Xun and Wang, Weiwei and Kratz, Karl and Sun, Xianlei and Zou, Jie and Deng, Zijun and Jung, Friedrich Wilhelm and Gossen, Manfred and Ma, Nan and Lendlein, Andreas}, title = {Modulation of the mesenchymal stem cell migration capacity via preconditioning with topographic microstructure}, series = {Clinical hemorheology and microcirculation : blood flow and vessels}, volume = {67}, journal = {Clinical hemorheology and microcirculation : blood flow and vessels}, publisher = {IOS Press}, address = {Amsterdam}, issn = {1386-0291}, doi = {10.3233/CH-179208}, pages = {267 -- 278}, year = {2017}, abstract = {Controlling mesenchymal stem cells (MSCs) behavior is necessary to fully exploit their therapeutic potential. Various approaches are employed to effectively influence the migration capacity of MSCs. Here, topographic microstructures with different microscale roughness were created on polystyrene (PS) culture vessel surfaces as a feasible physical preconditioning strategy to modulate MSC migration. By analyzing trajectories of cells migrating after reseeding, we demonstrated that the mobilization velocity of human adipose derived mesenchymal stem cells (hADSCs) could be promoted by and persisted after brief preconditioning with the appropriate microtopography. Moreover, the elevated activation levels of focal adhesion kinase (FAK) and mitogen-activated protein kinase (MAPK) in hADSCs were also observed during and after the preconditioning process. These findings underline the potential enhancement of in vivo therapeutic efficacy in regenerative medicine via transplantation of topographic microstructure preconditioned stem cells.}, language = {en} } @article{ReegSchadPreussetal.2017, author = {Reeg, Jette and Schad, Thorsten and Preuss, Thomas G. and Solga, Andreas and K{\"o}rner, Katrin and Mihan, Christine and Jeltsch, Florian}, title = {Modelling direct and indirect effects of herbicides on non-target grassland communities}, series = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, volume = {348}, journal = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-3800}, doi = {10.1016/j.ecolmodel.2017.01.010}, pages = {44 -- 55}, year = {2017}, abstract = {Natural grassland communities are threatened by a variety of factors, such as climate change and increasing land use by mankind. The use of plant protection products (synthetic or organic) is mandatory in agricultural food production. To avoid adverse effects on natural grasslands within agricultural areas, synthetic plant protection products are strictly regulated in Europe. However, effects of herbicides on non-target terrestrial plants are primarily studied on the level of individual plants neglecting interactions between species. In our study, we aim to extrapolate individual-level effects to the population and community level by adapting an existing spatio-temporal, individual-based plant community model (IBC-grass). We analyse the effects of herbicide exposure for three different grassland communities: 1) representative field boundary community, 2) Calthion grassland community, and 3) Arrhenatheretalia grassland community. Our simulations show that herbicide depositions can have effects on non-target plant communities resulting from direct and indirect effects on population level. The effect extent depends not only on the distance to the field, but also on the specific plant community, its disturbance regime (cutting frequency, trampling and grazing intensity) and resource level. Mechanistic modelling approaches such as IBC-grass present a promising novel approach in transferring and extrapolating standardized pot experiments to community level and thereby bridging the gap between ecotoxicological testing (e.g. in the greenhouse) and protection goals referring to real world conditions.}, language = {en} } @phdthesis{Knecht2017, author = {Knecht, Volker}, title = {Modeling Biomolecular Association}, school = {Universit{\"a}t Potsdam}, pages = {297}, year = {2017}, language = {en} } @article{Groth2017, author = {Groth, Detlef}, title = {Modeling a secular trend by Monte Carlo simulation of height biased migration in a spatial network}, series = {Anthropologischer Anzeiger : journal of biological and clinical anthropology ; Mitteilungsorgan der Gesellschaft f{\"u}r Anthropologie}, volume = {74}, journal = {Anthropologischer Anzeiger : journal of biological and clinical anthropology ; Mitteilungsorgan der Gesellschaft f{\"u}r Anthropologie}, number = {1}, publisher = {Schweizerbart}, address = {Stuttgart}, issn = {0003-5548}, doi = {10.1127/anthranz/2017/0703}, pages = {81 -- 88}, year = {2017}, abstract = {Background: In a recent Monte Carlo simulation, the clustering of body height of Swiss military conscripts within a spatial network with characteristic features of the natural Swiss geography was investigated. In this study I examined the effect of migration of tall individuals into network hubs on the dynamics of body height within the whole spatial network. The aim of this study was to simulate height trends. Material and methods: Three networks were used for modeling, a regular rectangular fishing net like network, a real world example based on the geographic map of Switzerland, and a random network. All networks contained between 144 and 148 districts and between 265-307 road connections. Around 100,000 agents were initially released with average height of 170 cm, and height standard deviation of 6.5 cm. The simulation was started with the a priori assumption that height variation within a district is limited and also depends on height of neighboring districts (community effect on height). In addition to a neighborhood influence factor, which simulates a community effect, body height dependent migration of conscripts between adjacent districts in each Monte Carlo simulation was used to re-calculate next generation body heights. In order to determine the direction of migration for taller individuals, various centrality measures for the evaluation of district importance within the spatial network were applied. Taller individuals were favored to migrate more into network hubs, backward migration using the same number of individuals was random, not biased towards body height. Network hubs were defined by the importance of a district within the spatial network. The importance of a district was evaluated by various centrality measures. In the null model there were no road connections, height information could not be delivered between the districts. Results: Due to the favored migration of tall individuals into network hubs, average body height of the hubs, and later, of the whole network increased by up to 0.1 cm per iteration depending on the network model. The general increase in height within the network depended on connectedness and on the amount of height information that was exchanged between neighboring districts. If higher amounts of neighborhood height information were exchanged, the general increase in height within the network was large (strong secular trend). The trend in the homogeneous fishnet like network was lowest, the trend in the random network was highest. Yet, some network properties, such as the heteroscedasticity and autocorrelations of the migration simulation models differed greatly from the natural features observed in Swiss military conscript networks. Autocorrelations of district heights for instance, were much higher in the migration models. Conclusion: This study confirmed that secular height trends can be modeled by preferred migration of tall individuals into network hubs. However, basic network properties of the migration simulation models differed greatly from the natural features observed in Swiss military conscripts. Similar network-based data from other countries should be explored to better investigate height trends with Monte Carlo migration approach.}, language = {en} } @article{Schmidt2017, author = {Schmidt, Marco F.}, title = {miRNA Targeting Drugs}, series = {Drug Target miRNA: Methods and Protocols}, volume = {1517}, journal = {Drug Target miRNA: Methods and Protocols}, publisher = {Springer}, address = {New York}, isbn = {978-1-4939-6563-2}, issn = {1064-3745}, doi = {10.1007/978-1-4939-6563-2_1}, pages = {3 -- 22}, year = {2017}, abstract = {Only 20 years after the discovery of small non-coding, single-stranded ribonucleic acids, so-called microRNAs (miRNAs), as post-transcriptional gene regulators, the first miRNA-targeting drug Miravirsen for the treatment of hepatitis C has been successfully tested in clinical Phase II trials. Addressing miRNAs as drug targets may enable the cure, or at least the treatment of diseases, which presently seems impossible. However, due to miRNAs' chemical structure, generation of potential drug molecules with necessary pharmacokinetic properties is still challenging and requires a re-thinking of the drug discovery process. Therefore, this chapter highlights the potential of miRNAs as drug targets, discusses the challenges, and tries to give a complete overview of recent strategies in miRNA drug discovery.}, language = {en} } @article{EckertDiCesareKettneretal.2017, author = {Eckert, Ester M. and Di Cesare, Andrea and Kettner, Marie Therese and Arias-Andres, Maria and Fontaneto, Diego and Grossart, Hans-Peter and Corno, Gianluca}, title = {Microplastics increase impact of treated wastewater on freshwater microbial community}, series = {Environmental pollution}, volume = {234}, journal = {Environmental pollution}, publisher = {Elsevier}, address = {Oxford}, issn = {0269-7491}, doi = {10.1016/j.envpol.2017.11.070}, pages = {495 -- 502}, year = {2017}, abstract = {Plastic pollution is a major global concern with several million microplastic particles entering every day freshwater ecosystems via wastewater discharge. Microplastic particles stimulate biofilm formation (plastisphere) throughout the water column and have the potential to affect microbial community structure if they accumulate in pelagic waters, especially enhancing the proliferation of biohazardous bacteria. To test this scenario, we simulated the inflow of treated wastewater into a temperate lake using a continuous culture system with a gradient of concentration of microplastic particles. We followed the effect of microplastics on the microbial community structure and on the occurrence of integrase 1 (intl), a marker associated with mobile genetic elements known as a proxy for anthropogenic effects on the spread of antimicrobial resistance genes. The abundance of intl increased in the plastisphere with increasing microplastic particle concentration, but not in the water surrounding the microplastic particles. Likewise, the microbial community on microplastic was more similar to the original wastewater community with increasing microplastic concentrations. Our results show that microplastic particles indeed promote persistence of typical indicators of microbial anthropogenic pollution in natural waters, and substantiate that their removal from treated wastewater should be prioritised. (C) 2017 Elsevier Ltd. All rights reserved.}, language = {en} } @article{RaatzWeikl2017, author = {Raatz, Michael and Weikl, Thomas R.}, title = {Membrane Tubulation by Elongated and Patchy Nanoparticles}, series = {Advanced materials interfaces}, volume = {4}, journal = {Advanced materials interfaces}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {2196-7350}, doi = {10.1002/admi.201600325}, pages = {8}, year = {2017}, abstract = {Advances in nanotechnology lead to an increasing interest in how nanoparticles interact with biomembranes. Nanoparticles are wrapped spontaneously by biomembranes if the adhesive interactions between the particles and membranes compensate for the cost of membrane bending. In the last years, the cooperative wrapping of spherical nanoparticles in membrane tubules has been observed in experiments and simulations. For spherical nanoparticles, the stability of the particle-filled membrane tubules strongly depends on the range of the adhesive particle-membrane interactions. In this article, it is shown via modeling and energy minimization that elongated and patchy particles are wrapped cooperatively in membrane tubules that are highly stable for all ranges of the particle-membrane interactions, compared to individual wrapping of the particles. The cooperative wrapping of linear chains of elongated or patchy particles in membrane tubules may thus provide an efficient route to induce membrane tubulation, or to store such particles in membranes.}, language = {en} } @misc{CabralValenteHartig2017, author = {Cabral, Juliano Sarmento and Valente, Luis and Hartig, Florian}, title = {Mechanistic simulation models in macroecology and biogeography}, series = {Ecography : pattern and diversity in ecology}, volume = {40}, journal = {Ecography : pattern and diversity in ecology}, number = {2}, publisher = {Wiley}, address = {Hoboken}, issn = {0906-7590}, doi = {10.1111/ecog.02480}, pages = {267 -- 280}, year = {2017}, abstract = {Macroecology and biogeography are concerned with understanding biodiversity patterns across space and time. In the past, the two disciplines have addressed this question mainly with correlative approaches, despite frequent calls for more mechanistic explanations. Recent advances in computational power, theoretical understanding, and statistical tools are, however, currently facilitating the development of more system-oriented, mechanistic models. We review these models, identify different model types and theoretical frameworks, compare their processes and properties, and summarize emergent findings. We show that ecological (physiology, demographics, dispersal, biotic interactions) and evolutionary processes, as well as environmental and human-induced drivers, are increasingly modelled mechanistically; and that new insights into biodiversity dynamics emerge from these models. Yet, substantial challenges still lie ahead for this young research field. Among these, we identify scaling, calibration, validation, and balancing complexity as pressing issues. Moreover, particular process combinations are still understudied, and so far models tend to be developed for specific applications. Future work should aim at developing more flexible and modular models that not only allow different ecological theories to be expressed and contrasted, but which are also built for tight integration with all macroecological data sources. Moving the field towards such a 'systems macroecology' will test and improve our understanding of the causal pathways through which eco-evolutionary processes create diversity patterns across spatial and temporal scales.}, language = {en} } @article{BhatMilicicThieulinPardoetal.2017, author = {Bhat, Javaid Y. and Milicic, Goran and Thieulin-Pardo, Gabriel and Bracher, Andreas and Maxwell, Andrew and Ciniawsky, Susanne and M{\"u}ller-Cajar, Oliver and Engen, John R. and Hartl, F. Ulrich and Wendler, Petra and Hayer-Hartl, Manajit}, title = {Mechanism of Enzyme Repair by the AAA(+) Chaperone Rubisco Activase}, series = {Molecular cell}, volume = {67}, journal = {Molecular cell}, publisher = {Cell Press}, address = {Cambridge}, issn = {1097-2765}, doi = {10.1016/j.molcel.2017.07.004}, pages = {744 -- 756}, year = {2017}, abstract = {How AAA(+) chaperones conformationally remodel specific target proteins in an ATP-dependent manner is not well understood. Here, we investigated the mechanism of the AAA(+) protein Rubisco activase (Rca) in metabolic repair of the photosynthetic enzyme Rubisco, a complex of eight large (RbcL) and eight small (RbcS) subunits containing eight catalytic sites. Rubisco is prone to inhibition by tight-binding sugar phosphates, whose removal is catalyzed by Rca. We engineered a stable Rca hexamer ring and analyzed its functional interaction with Rubisco. Hydrogen/deuterium exchange and chemical crosslinking showed that Rca structurally destabilizes elements of the Rubisco active site with remarkable selectivity. Cryo-electron microscopy revealed that Rca docks onto Rubisco over one active site at a time, positioning the C-terminal strand of RbcL, which stabilizes the catalytic center, for access to the Rca hexamer pore. The pulling force of Rca is fine-tuned to avoid global destabilization and allow for precise enzyme repair.}, language = {en} } @phdthesis{Swart2017, author = {Swart, Corn{\´e}}, title = {Managing protein activity in A. thaliana}, school = {Universit{\"a}t Potsdam}, pages = {160}, year = {2017}, language = {en} } @article{FayyazJaptokSchumacheretal.2017, author = {Fayyaz, Susann and Japtok, Lukasz and Schumacher, Fabian and Wigger, Dominik and Schulz, Tim Julius and Haubold, Kathrin and Gulbins, Erich and V{\"o}ller, Heinz and Kleuser, Burkhard}, title = {Lysophosphatidic acid inhibits insulin signaling in primary rat hepatocytes via the LPA(3) receptor subtype and is increased in obesity}, series = {Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology}, volume = {43}, journal = {Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology}, publisher = {Karger}, address = {Basel}, issn = {1015-8987}, doi = {10.1159/000480470}, pages = {445 -- 456}, year = {2017}, abstract = {Background/Aims: Obesity is a main risk factor for the development of hepatic insulin resistance and it is accompanied by adipocyte hypertrophy and an elevated expression of different adipokines such as autotaxin (ATX). ATX converts lysophosphatidylcholine to lysophosphatidic acid (LPA) and acts as the main producer of extracellular LPA. This bioactive lipid regulates a broad range of physiological and pathological responses by activation of LPA receptors (LPA1-6). Methods: The activation of phosphatidylinositide 3-kinases (PI3K) signaling (Akt and GSK-3ß) was analyzed via western blotting in primary rat hepatocytes. Incorporation of glucose into glycogen was measured by using radio labeled glucose. Real-time PCR analysis and pharmacological modulation of LPA receptors were performed. Human plasma LPA levels of obese (BMI > 30, n = 18) and normal weight individuals (BMI 18.5-25, n = 14) were analyzed by liquid chromatography tandem-mass spectrometry (LC-MS/MS). Results: Pretreatment of primary hepatocytes with LPA resulted in an inhibition of insulin-mediated Gck expression, PI3K activation and glycogen synthesis. Pharmacological approaches revealed that the LPA3-receptor subtype is responsible for the inhibitory effect of LPA on insulin signaling. Moreover, human plasma LPA concentrations (16: 0 LPA) of obese participants (BMI > 30) are significantly elevated in comparison to normal weight individuals (BMI 18.5-25). Conclusion: LPA is able to interrupt insulin signaling in primary rat hepatocytes via the LPA3 receptor subtype. Moreover, the bioactive lipid LPA (16: 0) is increased in obesity.}, language = {en} } @article{GisderSchuelerHorchleretal.2017, author = {Gisder, Sebastian and Sch{\"u}ler, Vivian and Horchler, Lennart L. and Groth, Detlef and Genersch, Elke}, title = {Long-Term Temporal Trends of Nosema spp. Infection Prevalence in Northeast Germany}, series = {Frontiers in cellular and infection microbiology}, volume = {7}, journal = {Frontiers in cellular and infection microbiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {2235-2988}, doi = {10.3389/fcimb.2017.00301}, pages = {14}, year = {2017}, abstract = {The Western honey bee (Apis mellifera) is widely used as commercial pollinator in worldwide agriculture and, therefore, plays an important role in global food security. Among the parasites and pathogens threatening health and survival of honey bees are two species of microsporidia, Nosema apis and Nosema ceranae. Nosema ceranae is considered an emerging pathogen of the Western honey bee. Reports on the spread of N. ceranae suggested that this presumably highly virulent species is replacing its more benign congener N. apis in the global A. mellifera population. We here present a 12 year longitudinal cohort study on the prevalence of N. apis and N. ceranae in Northeast Germany. Between 2005 and 2016, a cohort of about 230 honey bee colonies originating from 23 apiaries was sampled twice a year (spring and autumn) resulting in a total of 5,600 bee samples which were subjected to microscopic and molecular analysis for determining the presence of infections with N. apis or/and N. ceranae. Throughout the entire study period, both N. apis- and N. ceranae-infections could be diagnosed within the cohort. Logistic regression analysis of the prevalence data demonstrated a significant increase of N. ceranae-infections over the last 12 years, both in autumn (reflecting the development during the summer) and in spring (reflecting the development over winter) samples. Cell culture experiments confirmed that N. ceranae has a higher proliferative potential than N. apis at 27. and 33 degrees C potentially explaining the increase in N. ceranae prevalence during summer. In autumn, characterized by generally low infection prevalence, this increase was accompanied by a significant decrease in N. apis- infection prevalence. In contrast, in spring, the season with a higher prevalence of infection, no significant decrease of N. apis infections despite a significant increase in N. ceranae infections could be observed. Therefore, our data do not support a general advantage of N. ceranae over N. apis and an overall replacement of N. apis by N. ceranae in the studied honey bee population.}, language = {en} } @phdthesis{Kruse2017, author = {Kruse, Stefan}, title = {Larix treeline dynamics in northern Siberia inferred from population genetics and individual-based modelling}, school = {Universit{\"a}t Potsdam}, pages = {181}, year = {2017}, language = {en} } @phdthesis{Kersting2017, author = {Kersting, Sebastian}, title = {Isothermal nucleic acid amplification for the detection of infectious pathogens}, pages = {215}, year = {2017}, language = {en} } @phdthesis{Janowski2017, author = {Janowski, Marcin Andrzej}, title = {Investigating role of the essential GTPase - AtRsgA in the assembly of the small ribosomal subunit in Arabidopsis thaliana chloroplast}, school = {Universit{\"a}t Potsdam}, pages = {114}, year = {2017}, language = {en} } @phdthesis{Janowski2017, author = {Janowski, Marcin Andrzej}, title = {Investigating role of the essential GTPase - AtRsgA in the assembly of the small ribosomal subunit in Arabidopsis thaliana chloroplast}, school = {Universit{\"a}t Potsdam}, pages = {X, 114}, year = {2017}, abstract = {Plastid protein biosynthesis occurs on bacterial-type 70S ribosomes consisting of a large (50S) and a small (30S) subunit. However, since many steps of ribosome biogenesis are not thermodynamically favorable at biological conditions, it requires many assembly factors. One group of assembly factors, circularly permuted GTPases, was implicated in 30S subunit maturation in E. coli, by a protein RsgA. RsgA orthologues are present in bacteria and plastid-containing species and in silico analysis revealed presence of a RsgA-like protein in Arabidopsis thaliana. To functionally characterize the Arabidopsis orthologue, two AtRsgA T-DNA insertion lines were analyzed in this study. The exon line (rsgA-e) led to embryo lethality, while the intron line (rsgA-i) caused severe dwarf, pale green phenotype. Further investigation of rsgA-i mutant line revealed defects in chloroplast biogenesis which led to increased number of chloroplasts, decreased chloroplast size, decreased air space between mesophyll cells and smaller shoot apical meristems, which showed unusual proplastid accumulation. Moreover, rsgA-i plants showed reduction in chlorophyll A and B content, decreased electron transport rate and photosynthetic efficiency. Further analyses revealed that the protein is involved in chloroplast 30S subunit maturation. Interestingly, we observed that while chloroplast-targeted and chloroplast-encoded proteins are generally downregulated in the mutant, a contrasting upregulation of the corresponding transcripts is observed, indicating an elaborate compensatory mechanism. To conclude, the study presented here reveals a ribosome assembly factor and a compensatory mechanism activated during impaired chloroplast function.}, language = {en} } @article{FolkessonVorkapicGulbinsetal.2017, author = {Folkesson, Maggie and Vorkapic, Emina and Gulbins, Erich and Japtok, Lukasz and Kleuser, Burkhard and Welander, Martin and L{\"a}nne, Toste and W{\aa}gs{\"a}ter, Dick}, title = {Inflammatory cells, ceramides, and expression of proteases in perivascular adipose tissue adjacent to human abdominal aortic aneurysms}, series = {Journal of vascular surgery}, volume = {65}, journal = {Journal of vascular surgery}, number = {4}, publisher = {Elsevier}, address = {New York}, issn = {0741-5214}, doi = {10.1016/j.jvs.2015.12.056}, pages = {1171 -- 1179}, year = {2017}, abstract = {Background: Abdominal aortic aneurysm (AAA) is a deadly irreversible weakening and distension of the abdominal aortic wall. The pathogenesis of AAA remains poorly understood. Investigation into the physical and molecular characteristics of perivascular adipose tissue (PVAT) adjacent to AAA has not been done before and is the purpose of this study. Methods and Results: Human aortae, periaortic PVAT, and fat surrounding peripheral arteries were collected from patients undergoing elective surgical repair of AAA. Control aortas were obtained from recently deceased healthy organ donors with no known arterial disease. Aorta and PVAT was found in AAA to larger extent compared with control aortas. Immunohistochemistry revealed neutrophils, macrophages, mast cells, and T-cells surrounding necrotic adipocytes. Gene expression analysis showed that neutrophils, mast cells, and T-cells were found to be increased in PVAT compared with AAA as well as cathepsin K and S. The concentration of ceramides in PVAT was determined using mass spectrometry and correlated with content of T-cells in the PVAT. Conclusions: Our results suggest a role for abnormal necrotic, inflamed, proteolytic adipose tissue to the adjacent aneurysmal aortic wall in ongoing vascular damage.}, language = {en} } @article{HenkelColemanSchraplauetal.2017, author = {Henkel, Janin and Coleman, Charles Dominic and Schraplau, Anne and J{\"o}hrens, Korinna and Weber, Daniela and Castro, Jose Pedro and Hugo, Martin and Schulz, Tim Julius and Kr{\"a}mer, Stephanie and Sch{\"u}rmann, Annette and P{\"u}schel, Gerhard Paul}, title = {Induction of Steatohepatitis (NASH) with Insulin Resistance in Wild-type B6 Mice by a Western-type Diet Containing Soybean Oil and Cholesterol}, series = {Molecular medicine}, volume = {23}, journal = {Molecular medicine}, publisher = {Feinstein Inst. for Medical Research}, address = {Manhasset}, issn = {1076-1551}, doi = {10.2119/molmed.2016.00203}, pages = {70 -- 82}, year = {2017}, abstract = {Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are hepatic manifestations of the metabolic syndrome. Many currently used animal models of NAFLD/NASH lack clinical features of either NASH or metabolic syndrome such as hepatic inflammation and fibrosis (e.g., high-fat diets) or overweight and insulin resistance (e.g., methionine-choline-deficient diets), or they are based on monogenetic defects (e.g., ob/ob mice). In the current study, a Western-type diet containing soybean oil with high n-6-PUFA and 0.75\% cholesterol (SOD + Cho) induced steatosis, inflammation and fibrosis accompanied by hepatic lipid peroxidation and oxidative stress in livers of C57BL/6-mice, which in addition showed increased weight gain and insulin resistance, thus displaying a phenotype closely resembling all clinical features of NASH in patients with metabolic syndrome. In striking contrast, a soybean oil-containing Western-type diet without cholesterol (SOD) induced only mild steatosis but not hepatic inflammation, fibrosis, weight gain or insulin resistance. Another high-fat diet, mainly consisting of lard and supplemented with fructose in drinking water (LAD + Fru), resulted in more prominent weight gain, insulin resistance and hepatic steatosis than SOD + Cho, but livers were devoid of inflammation and fibrosis. Although both LAD + Fru-and SOD + Cho-fed animals had high plasma cholesterol, liver cholesterol was elevated only in SOD + Cho animals. Cholesterol induced expression of chemotactic and inflammatory cytokines in cultured Kupffer cells and rendered hepatocytes more susceptible to apoptosis. In summary, dietary cholesterol in the SOD + Cho diet may trigger hepatic inflammation and fibrosis. SOD + Cho-fed animals may be a useful disease model displaying many clinical features of patients with the metabolic syndrome and NASH.}, language = {en} } @article{HeimTrenseSokolovaetal.2017, author = {Heim, Wieland and Trense, Daronja and Sokolova, Galina V. and Kitagawa, Tamaki}, title = {Increased populations of endangered cranes after Amur River flood}, series = {Waterbirds}, volume = {40}, journal = {Waterbirds}, publisher = {Waterbirds SOC}, address = {Washington}, issn = {1524-4695}, doi = {10.1675/063.040.0309}, pages = {282 -- 288}, year = {2017}, abstract = {Dam construction on the Zeya River, which is an important tributary of the Amur River in Far East Russia, has caused significant declines in water levels and frequency of floods in the adjacent floodplains since 1980. However, an extreme flood event occurred in 2013. Populations of six crane species were monitored before and after these drastic water level changes at Muraviovka Park in Far East Russia, an important breeding and stop-over site. Individuals were counted by territory mapping during the breeding season (2000-2015) and by roosting site counts during autumn migration (2006-2015). The objective of this study was to evaluate whether changes in water levels had a significant impact on local and migratory crane populations. We found a positive effect of flooding on numbers of breeding Red-crowned Cranes (Grus japonensis) and White-naped Cranes (Antigone vipio), as well as on numbers of roosting Hooded Cranes (Grus monacha) in autumn. Siberian Cranes (Leucogeranus leucogeranus) were only observed after the wetlands were flooded. The results of this study highlight the importance of elevated Amur River water levels for crane populations of global importance.}, language = {en} } @article{HaaseKrostSauteretal.2017, author = {Haase, Tobias and Krost, Annalena and Sauter, Tilman and Kratz, Karl and Peter, Jan and Kamann, Stefanie and Jung, Friedrich and Lendlein, Andreas and Zohlnh{\"o}fer, Dietlind and R{\"u}der, Constantin}, title = {In vivo biocompatibility assessment of poly (ether imide) electrospun scaffolds}, series = {Journal of Tissue Engineering and Regenerative Medicine}, volume = {11}, journal = {Journal of Tissue Engineering and Regenerative Medicine}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {1932-6254}, doi = {10.1002/term.2002}, pages = {1034 -- 1044}, year = {2017}, abstract = {Poly(ether imide) (PEI), which can be chemically functionalized with biologically active ligands, has emerged as a potential biomaterial for medical implants. Electrospun PEI scaffolds have shown advantageous properties, such as enhanced endothelial cell adherence, proliferation and low platelet adhesion in in vitro experiments. In this study, the in vivo behaviour of electrospun PEI scaffolds and PEI films was examined in a murine subcutaneous implantation model. Electrospun PEI scaffolds and films were surgically implanted subcutaneously in the dorsae of mice. The surrounding subcutaneous tissue response was examined via histopathological examination at 7 and 28days after implantation. No serious adverse events were observed for both types of PEI implants. The presence of macrophages or foreign body giant cells in the vicinity of the implants and the formation of a fibrous capsule indicated a normal foreign body reaction towards PEI films and scaffolds. Capsule thickness and inflammatory infiltration cells significantly decreased for PEI scaffolds during days 7-28 while remaining unchanged for PEI films. The infiltration of cells into the implant was observed for PEI scaffolds 7days after implantation and remained stable until 28days of implantation. Additionally some, but not all, PEI scaffold implants induced the formation of functional blood vessels in the vicinity of the implants. Conclusively, this study demonstrates the in vivo biocompatibility of PEI implants, with favourable properties of electrospun PEI scaffolds regarding tissue integration and wound healing.}, language = {en} } @article{TritschMartensSunetal.2017, author = {Tritsch, Christian and Martens, Jochen and Sun, Yue-Hua and Heim, Wieland and Strutzenberger, Patrick and P{\"a}ckert, Martin}, title = {Improved sampling at the subspecies level solves a taxonomic dilemma}, series = {Molecular phylogenetics and evolution}, volume = {107}, journal = {Molecular phylogenetics and evolution}, publisher = {Elsevier}, address = {San Diego}, issn = {1055-7903}, doi = {10.1016/j.ympev.2016.12.014}, pages = {538 -- 550}, year = {2017}, abstract = {A recent full species-level phylogeny of tits, titmice and chickadees (Paridae) has placed the Chinese endemic black-bibbed tit (Poecile hypermelaenus) as the sister to the Palearctic willow tit (P. montanus). Because this sister-group relationship is in striking disagreement with the traditional affiliation of P. hypermelaenus close to the marsh tit (P. palustris) we tested this phylogenetic hypothesis in a multi locus analysis with an extended taxon sampling including sixteen subspecies of willow tits and marsh tits. As a taxonomic reference we included type specimens in our analysis. The molecular genetic study was complemented with an analysis of biometric data obtained from museum specimens. Our phylogenetic reconstructions, including a comparison of all GenBank data available for our target species, clearly show that the genetic lineage previously identified as P. hypermelaenus actually refers to P. weigoldicus because sequences were identical to that of a syntype of this taxon. The close relationship of P. weigoldicus and P. montanus - despite large genetic distances between the two taxa - is in accordance with current taxonomy and systematics. In disagreement with the previous phylogenetic hypothesis but in accordance with most taxonomic authorities, all our P. hypermelaenus specimens fell in the sister Glade of all western and eastern Palearctic P. palustris. Though shared haplotypes among the Chinese populations of the two latter species might indicate mitochondrial introgression in this part of the breeding range, further research is needed here due to the limitations of our own sampling.}, language = {en} } @article{MusalekKokstejnPapezetal.2017, author = {Musalek, Martin and Kokstejn, Jakub and Papez, Pavel and Scheffler, Christiane and Mumm, Rebekka and Czernitzki, Anna-Franziska and Koziel, Slawomir}, title = {Impact of normal weight obesity on fundamental motor skills in pre-school children aged 3 to 6 years}, series = {Journal of biological and clinical anthropology : Anthropologischer Anzeiger ; Mitteilungsorgan der Gesellschaft f{\"u}r Anthropologie}, volume = {74}, journal = {Journal of biological and clinical anthropology : Anthropologischer Anzeiger ; Mitteilungsorgan der Gesellschaft f{\"u}r Anthropologie}, publisher = {Schweizerbart}, address = {Stuttgart}, issn = {0003-5548}, doi = {10.1127/anthranz/2017/0752}, pages = {203 -- 212}, year = {2017}, abstract = {Normal weight obesity is defined as having excessive body fat, but normal BMI. Even though previous research revealed that excessive body fat in children inhibited their physical activity and decreased motor performance, there has been only little evidence about motor performance of normal weight obese children. This study aims to establish whether normal weight obese pre-school children aged 3-6 years will have a significantly worse level of fundamental motor skills compared to normal weight non-obese counterparts. The research sample consisted of 152 pre-schoolers selected from a specific district of Prague, the Czech Republic. According to values from four skinfolds: triceps, subscapula, suprailiaca, calf, and BMI three categories of children aged 3-6 years were determined: A) normal weight obese n = 51; B) normal weight non-obese n = 52; C) overweight and obese n = 49. The Movement Assessment Battery for Children (MABC-2) was used for the assessment of fundamental motor skills. Normal weight obese children had significantly higher amount of adipose tissue p < 0.001 than normal weight non-obese children but the same average BMI. Moreover, normal weight obese children did not have significantly less amount of subcutaneous fat on triceps and calf compared to their overweight and obese peers. In majority of MABC-2 tests, normal weight obese pre-schoolers showed the poorest performance. Moreover, normal weight obese children had significantly worse total standard score = 38.82 compared to normal weight non-obese peers = 52.27; p < 0.05. In addition, normal weight obese children had a more than three times higher frequency OR = 3.69 CI95\% (1.10; 12.35) of severe motor deficit performance <= 5th centile of the MABC-2 norm. These findings are strongly alarming since indices like BMI are not able to identify normal weight obese individual. We recommend verifying real portion of normal weight obese children as they are probably in higher risk of health and motor problems than overweight and obese population due to their low lean mass.}, language = {en} } @article{ReinickeReesEspeeletal.2017, author = {Reinicke, Stefan and Rees, Huw C. and Espeel, Pieter and Vanparijs, Nane and Bisterfeld, Carolin and Dick, Markus and Rosencrantz, Ruben R. and Brezesinski, Gerald and de Geest, Bruno G. and Du Prez, Filip E. and Pietruszka, J{\"o}rg and B{\"o}ker, Alexander}, title = {Immobilization of 2-Deoxy-D-ribose-5-phosphate Aldolase in Polymeric Thin Films via the Langmuir-Schaefer Technique}, series = {ACS applied materials \& interfaces}, volume = {9}, journal = {ACS applied materials \& interfaces}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/acsami.6b13632}, pages = {8317 -- 8326}, year = {2017}, abstract = {A synthetic protocol for the fabrication of ultrathin polymeric films containing the enzyme 2-deoxy-D-ribose-5-phosphate aldolase from Escherichia coli (DERA(EC)) is presented. Ultrathin enzymatically active films are useful for applications in which only small quantities of active material are needed and at the same time quick response and contact times without diffusion limitation are wanted. We show how DERA as an exemplary enzyme can be immobilized in a thin polymer layer at the air-water interface and transferred to a suitable support by the Langmuir-Schaefer technique under full conservation of enzymatic activity. The polymer in use is a poly(N-isopropylacrylamide-co-N-2-thiolactone acrylamide) (P(NIPAAm-co-TlaAm)) statistical copolymer in which the thiolactone units serve a multitude of purposes including hydrophobization of the polymer, covalent binding of the enzyme and the support and finally cross-linking of the polymer matrix. The application of this type of polymer keeps the whole approach simple as additional cocomponents such as cross-linkers are avoided.}, language = {en} } @phdthesis{Barbirz2017, author = {Barbirz, Stefanie}, title = {Highly specific binders for bacterial polysaccharides}, school = {Universit{\"a}t Potsdam}, pages = {167}, year = {2017}, language = {en} } @article{BoginSchefflerHermanussen2017, author = {Bogin, Barry and Scheffler, Christiane and Hermanussen, Michael}, title = {Global effects of income and income inequality on adult height and sexual dimorphism in height}, series = {American journal of human biology : the official journal of the Human Biology Council}, volume = {29}, journal = {American journal of human biology : the official journal of the Human Biology Council}, number = {2}, publisher = {Wiley}, address = {Hoboken}, issn = {1042-0533}, doi = {10.1002/ajhb.22980}, pages = {11}, year = {2017}, abstract = {Objectives: Average adult height of a population is considered a biomarker of the quality of the health environment and economic conditions. The causal relationships between height and income inequality are not well understood. We analyze data from 169 countries for national average heights of men and women and national-level economic factors to test two hypotheses: (1) income inequality has a greater association with average adult height than does absolute income; and (2) neither income nor income inequality has an effect on sexual dimorphism in height. Methods: Average height data come from the NCD-RisC health risk factor collaboration. Economic indicators are derived from the World Bank data archive and include gross domestic product (GDP), Gross National Income per capita adjusted for personal purchasing power (GNI_ PPP), and income equality assessed by the Gini coefficient calculated by the Wagstaff method. Results: Hypothesis 1 is supported. Greater income equality is most predictive of average height for both sexes. GNI_ PPP explains a significant, but smaller, amount of the variation. National GDP has no association with height. Hypothesis 2 is rejected. With greater average adult height there is greater sexual dimorphism. Conclusions: Findings support a growing literature on the pernicious effects of inequality on growth in height and, by extension, on health. Gradients in height reflect gradients in social disadvantage. Inequality should be considered a pollutant that disempowers people from the resources needed for their own healthy growth and development and for the health and good growth of their children.}, language = {en} } @article{PatelWutkeLenzetal.2017, author = {Patel, Riddhi P. and Wutke, Saskia and Lenz, Dorina and Mukherjee, Shomita and Ramakrishnan, Uma and Veron, Geraldine and Fickel, J{\"o}rns and Wilting, Andreas and F{\"o}rster, Daniel W.}, title = {Genetic Structure and Phylogeography of the Leopard Cat (Prionailurus bengalensis) Inferred from Mitochondrial Genomes}, series = {Journal of Heredity}, volume = {108}, journal = {Journal of Heredity}, number = {4}, publisher = {Oxford Univ. Press}, address = {Cary}, issn = {0022-1503}, doi = {10.1093/jhered/esx017}, pages = {349 -- 360}, year = {2017}, abstract = {The Leopard cat Prionailurus bengalensis is a habitat generalist that is widely distributed across Southeast Asia. Based on morphological traits, this species has been subdivided into 12 subspecies. Thus far, there have been few molecular studies investigating intraspecific variation, and those had been limited in geographic scope. For this reason, we aimed to study the genetic structure and evolutionary history of this species across its very large distribution range in Asia. We employed both PCR-based (short mtDNA fragments, 94 samples) and high throughput sequencing based methods (whole mitochondrial genomes, 52 samples) on archival, noninvasively collected and fresh samples to investigate the distribution of intraspecific genetic variation. Our comprehensive sampling coupled with the improved resolution of a mitochondrial genome analyses provided strong support for a deep split between Mainland and Sundaic Leopard cats. Although we identified multiple haplogroups within the species' distribution, we found no matrilineal evidence for the distinction of 12 subspecies. In the context of Leopard cat biogeography, we cautiously recommend a revision of the Prionailurus bengalensis subspecific taxonomy: namely, a reduction to 4 subspecies (2 mainland and 2 Sundaic forms).}, language = {en} } @phdthesis{Nagel2017, author = {Nagel, Rebecca}, title = {Genetic and behavioral investigations into African weakly electric fish (Osteoglossomorpha: Mormyridae) speciation}, school = {Universit{\"a}t Potsdam}, pages = {121}, year = {2017}, language = {en} } @article{HolzloehnerHanack2017, author = {Holzl{\"o}hner, Pamela and Hanack, Katja}, title = {Generation of murine monoclonal antibodies by hybridoma technology}, series = {JoVE : Video journal}, journal = {JoVE : Video journal}, number = {119}, publisher = {JoVE}, address = {Cambridge}, issn = {1940-087X}, doi = {10.3791/54832}, pages = {7}, year = {2017}, abstract = {Monoclonal antibodies are universal binding molecules and are widely used in biomedicine and research. Nevertheless, the generation of these binding molecules is time-consuming and laborious due to the complicated handling and lack of alternatives. The aim of this protocol is to provide one standard method for the generation of monoclonal antibodies using hybridoma technology. This technology combines two steps. Step 1 is an appropriate immunization of the animal and step 2 is the fusion of B lymphocytes with immortal myeloma cells in order to generate hybrids possessing both parental functions, such as the production of antibody molecules and immortality. The generated hybridoma cells were then recloned and diluted to obtain stable monoclonal cell cultures secreting the desired monoclonal antibody in the culture supernatant. The supernatants were tested in enzyme-linked immunosorbent assays (ELISA) for antigen specificity. After the selection of appropriate cell clones, the cells were transferred to mass cultivation in order to produce the desired antibody molecule in large amounts. The purification of the antibodies is routinely performed by affinity chromatography. After purification, the antibody molecule can be characterized and validated for the final test application. The whole process takes 8 to 12 months of development, and there is a high risk that the antibody will not work in the desired test system.}, language = {en} } @misc{DuncanRosa2017, author = {Duncan, Susan and Rosa, Stefanie Nunes}, title = {Gaining insight into plant gene transcription using smFISH}, series = {Transcription}, volume = {9}, journal = {Transcription}, number = {3}, publisher = {Taylor \& Francis Group}, address = {Philadelphia}, issn = {2154-1264}, doi = {10.1080/21541264.2017.1372043}, pages = {166 -- 170}, year = {2017}, abstract = {Single molecule RNA fluorescent in situ hybridization (smFISH) enables gene transcription to be assessed at the cellular level. In this point of view article, we describe our recent smFISH research in the model plant Arabidopsis thaliana and discuss how this technique could further knowledge of plant gene transcription in the future.}, language = {en} } @phdthesis{Castellanos2017, author = {Castellanos, Reynel Urrea}, title = {Functional characterization of FGT2, a positive regulator of heat stress memory}, school = {Universit{\"a}t Potsdam}, pages = {151}, year = {2017}, language = {en} } @phdthesis{deSouza2017, author = {de Souza, Leonardo Perez}, title = {Functional characterization of biosynthesis and regulation of plant secondary metabolism}, school = {Universit{\"a}t Potsdam}, pages = {102}, year = {2017}, language = {en} } @article{BremerWolffThalhammeretal.2017, author = {Bremer, Anne and Wolff, Martin and Thalhammer, Anja and Hincha, Dirk K.}, title = {Folding of intrinsically disordered plant LEA proteins is driven by glycerol-induced crowding and the presence of membranes}, series = {The FEBS journal}, volume = {284}, journal = {The FEBS journal}, publisher = {Wiley}, address = {Hoboken}, issn = {1742-464X}, doi = {10.1111/febs.14023}, pages = {919 -- 936}, year = {2017}, abstract = {Late embryogenesis abundant (LEA) proteins are related to cellular dehydration tolerance. Most LEA proteins are predicted to have no stable secondary structure in solution, i.e., to be intrinsically disordered proteins (IDPs), but they may acquire alpha-helical structure upon drying. In the model plant Arabidopsis thaliana, the LEA proteins COR15A and COR15B are highly induced upon cold treatment and are necessary for the plants to attain full freezing tolerance. Freezing leads to increased intracellular crowding due to dehydration by extracellular ice crystals. In vitro, crowding by high glycerol concentrations induced partial folding of COR15 proteins. Here, we have extended these investigations to two related proteins, LEA11 and LEA25. LEA25 is much longer than LEA11 and COR15A, but shares a conserved central sequence domain with the other two proteins. We have created two truncated versions of LEA25 (2H and 4H) to elucidate the structural and functional significance of this domain. Light scattering and CD spectroscopy showed that all five proteins were largely unstructured and monomeric in dilute solution. They folded in the presence of increasing concentrations of trifluoroethanol and glycerol. Additional folding was observed in the presence of glycerol and membranes. Fourier transform infra red spectroscopy revealed an interaction of the LEA proteins with membranes in the dry state leading to a depression in the gel to liquid-crystalline phase transition temperature. Liposome stability assays revealed a cryoprotective function of the proteins. The C- and N-terminal extensions of LEA25 were important in cryoprotection, as the central domain itself (2H, 4H) only provided a low level of protection.}, language = {en} } @article{SanderEccardHeim2017, author = {Sander, Martha Maria and Eccard, Jana and Heim, Wieland}, title = {Flight range estimation of migrant yellow-browed warblers phylloscopus inornatus on the East Asian flyway}, series = {Bird study : the journal of the British Trust for Ornithology}, volume = {64}, journal = {Bird study : the journal of the British Trust for Ornithology}, publisher = {Taylor \& Francis}, address = {Abingdon}, issn = {0006-3657}, doi = {10.1080/00063657.2017.1409696}, pages = {569 -- 572}, year = {2017}, abstract = {Fat loads were quantified for 2125 Yellow-browed Warblers Phylloscopus inornatus trapped at a stop-over site in Far East Russia during autumn migration. Flight ranges of 660-820km were estimated for the fattest individuals, suggesting that they would need to stop for refuelling at least six times to reach their wintering areas in South East Asia.}, language = {en} } @article{FruscalzoFrommerLonderoetal.2017, author = {Fruscalzo, Arrigo and Frommer, Julia-Marie and Londero, Ambrogio P. and Henze, Andrea and Schweigert, Florian J. and Nofer, Jerzy-Roch and Steinhard, Johannes and Klockenbusch, Walter and Schmitz, Ralf and Raila, Jens}, title = {First trimester TTR-RBP4-ROH complex and angiogenic factors in the prediction of small for gestational age infant's outcome}, series = {Archives of gynecology and obstetrics}, volume = {295}, journal = {Archives of gynecology and obstetrics}, publisher = {Springer}, address = {Heidelberg}, issn = {0932-0067}, doi = {10.1007/s00404-017-4338-4}, pages = {1157 -- 1165}, year = {2017}, abstract = {To study the role of the TTR-RBP4-ROH complex components (transthyretin, serum retinol binding protein, retinol) and of angiogenic factors PlGF (placental growth factor) and sFlt-1 (soluble fms-like tyrosine kinase-1) in pregnancies complicated by small for gestational age infants (SGA). Case control study conducted on maternal serum collected between 11 + 0 to 13 + 6 weeks of gestation. TTR, RBP4, ROH, PlGF and sFlt-1 were measured in SGA patients (birth weight < 10\%) who delivered at term (n = 37) and before 37 weeks of gestation (n = 17) and in a matched control group with uneventful pregnancies (n = 37). We found decreased RBP4 in SGA patients that delivered fetuses < 3\% and in fetuses delivered after the 37 weeks of gestation compared to controls [1.50 (95\% CI 1.40-1.75) vs 1.62 (95\% CI 1.47-1.98), p < 0.05]. Further, we found lower PlGF and sFlt-1 concentrations in SGA that delivered before 37 weeks of gestation compared to controls (respectively, PIGF and sFlt-1: 39.7 pg/ml (95\% CI 32.3-66.3) vs 62.9 pg/ml (95\% CI 45.2-78.4) and 906 pg/ml (95\% CI 727-1626) vs 1610 pg/ml (95\% CI 1088-212), p < 0.05). First trimester maternal serum RBP4 and angiogenic factors PlGF and sFlt-1 can differently predict the timing of delivery of pregnancies complicated by SGA fetuses.}, language = {en} } @phdthesis{Wu2017, author = {Wu, Si}, title = {Exploring the Arabidopsis metabolic landscape by genetic mapping integrated with network analysis}, school = {Universit{\"a}t Potsdam}, pages = {121}, year = {2017}, language = {en} } @phdthesis{deAbreueLima2017, author = {de Abreu e Lima, Francisco Anastacio}, title = {Experimental validation of hybrid performance predictive models in Zea mays L.}, school = {Universit{\"a}t Potsdam}, pages = {127}, year = {2017}, language = {en} } @phdthesis{Gorka2017, author = {G{\´o}rka, Michal Jakub}, title = {Establishing a pipeline for identification of protein- protein interactions using different native fractionation methods}, school = {Universit{\"a}t Potsdam}, pages = {109}, year = {2017}, language = {en} } @article{NishinoOkamotoLeimkuehler2017, author = {Nishino, Takeshi and Okamoto, Ken and Leimk{\"u}hler, Silke}, title = {Enzymes of the Xanthine Oxidase Family}, series = {Molybdenum and tungsten enzymes : biochemistry}, volume = {5}, journal = {Molybdenum and tungsten enzymes : biochemistry}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, isbn = {978-1-78262-391-5}, doi = {10.1039/9781782623915-00192}, pages = {192 -- 239}, year = {2017}, abstract = {Enzymes from the xanthine oxidase (XO) family of molybdenum enzymes are generally, with some exceptions, molybdenum iron-sulfur flavin hydroxylases. Mammalian xanthine oxidoreductase and aldehyde oxidase were among the first enzymes to be studied in detail more than 100 years ago and, surprisingly, they continue to be thoroughly studied in molecular detail with many open and unresolved questions remaining. Enzymes of the XO family are characterized by a molybdenum cofactor (Moco) active site with a MoVIOS(OH) ligand sphere where substrate hydroxylation of either aromatic or aliphatic carbon centers is catalyzed. During the reaction, electrons are transferred to the oxidizing substrate, most commonly O2 or NAD+, which react at the FAD site.}, language = {en} } @article{BergholzMayGiladietal.2017, author = {Bergholz, Kolja and May, Felix and Giladi, Itamar and Ristow, Michael and Ziv, Yaron and Jeltsch, Florian}, title = {Environmental heterogeneity drives fine-scale species assembly and functional diversity of annual plants in a semi-arid environment}, series = {Perspectives in plant ecology, evolution and systematics}, volume = {24}, journal = {Perspectives in plant ecology, evolution and systematics}, publisher = {Elsevier}, address = {Jena}, issn = {1433-8319}, doi = {10.1016/j.ppees.2017.01.001}, pages = {138 -- 146}, year = {2017}, abstract = {Spatial environmental heterogeneity is considered a fundamental factor for the maintenance of plant species richness. However, it still remains unclear whether heterogeneity may also facilitate coexistence at fine grain sizes or whether other processes, like mass effects and source sink dynamics due to dispersal, control species composition and diversity at these scales. In this study, we used two complimentary analyses to identify the role of heterogeneity within 15 m x 15 m plots for the coexistence of species-rich annual communities in a semi-arid environment along a steep precipitation gradient. Specifically, we: (a) analyzed the effect of environmental heterogeneity on species, functional and phylogenetic diversity within microsites (alpha diversity, 0.06 m(2) and 1 m(2)), across microsites (beta diversity), and diversity at the entire plot (gamma diversity); (b) further we used two null models to detect non-random trait and phylogenetic patterns in order to infer assembly processes, i.e. whether co-occurring species tend to share similar traits (trait convergence) or dissimilar traits (trait divergence). In general, our results showed that heterogeneity had a positive effect on community diversity. Specifically, for alpha diversity, the effect was significant for functional diversity, and not significant for either species or phylogenetic diversities. For beta diversity, all three measures of community diversity (species, functional, and phylogenetic) increased significantly, as they also did for gamma diversity, where functional measures were again stronger than for species or phylogenetic measures. In addition, the null model approach consistently detected trait convergence, indicating that species with similar traits tended to co-occur and had high abundances in a given microsite. While null model analysis across the phylogeny partly supported these trait findings, showing phylogenetic underdispersion at the 1m(2) grain size, surprisingly when species abundances in microsites were analyzed they were more evenly distributed across the phylogenetic tress than expected (phylogenetic overdispersion). In conclusion, our results provide compelling support that environmental heterogeneity at a relatively fine scale is an important factor for species co-existence as it positively affects diversity as well as influences species assembly. Our study underlines the need for trait-based approaches conducted at fine grain sizes in order to better understand species coexistence and community assembly. (C) 2017 Elsevier GmbH. All rights reserved.}, language = {en} } @article{HansenMeyerFerrarietal.2017, author = {Hansen, Bjoern Oest and Meyer, Etienne H. and Ferrari, Camilla and Vaid, Neha and Movahedi, Sara and Vandepoele, Klaas and Nikoloski, Zoran and Mutwil, Marek}, title = {Ensemble gene function prediction database reveals genes important for complex I formation in Arabidopsis thaliana}, series = {New phytologist : international journal of plant science}, volume = {217}, journal = {New phytologist : international journal of plant science}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {0028-646X}, doi = {10.1111/nph.14921}, pages = {1521 -- 1534}, year = {2017}, abstract = {Recent advances in gene function prediction rely on ensemble approaches that integrate results from multiple inference methods to produce superior predictions. Yet, these developments remain largely unexplored in plants. We have explored and compared two methods to integrate 10 gene co-function networks for Arabidopsis thaliana and demonstrate how the integration of these networks produces more accurate gene function predictions for a larger fraction of genes with unknown function. These predictions were used to identify genes involved in mitochondrial complex I formation, and for five of them, we confirmed the predictions experimentally. The ensemble predictions are provided as a user-friendly online database, EnsembleNet. The methods presented here demonstrate that ensemble gene function prediction is a powerful method to boost prediction performance, whereas the EnsembleNet database provides a cutting-edge community tool to guide experimentalists.}, language = {en} } @article{WiegmannRutschmannWillemsen2017, author = {Wiegmann, Alex and Rutschmann, Ronja and Willemsen, Pascale}, title = {Empirically investigating the concept of lying}, series = {Journal of Indian Council of Philosophical Research}, volume = {34}, journal = {Journal of Indian Council of Philosophical Research}, publisher = {Springer}, address = {New Dehli}, issn = {0970-7794}, doi = {10.1007/s40961-017-0112-z}, pages = {591 -- 609}, year = {2017}, abstract = {Lying is an everyday moral phenomenon about which philosophers have written a lot. Not only the moral status of lying has been intensively discussed but also what it means to lie in the first place. Perhaps the most important criterion for an adequate definition of lying is that it fits with people's understanding and use of this concept. In this light, it comes as a surprise that researchers only recently started to empirically investigate the folk concept of lying. In this paper, we describe three experimental studies which address the following questions: Does a statement need to be objectively false in order to constitute lying? Does lying necessarily include the intention to deceive? Can one lie by omitting relevant facts?}, language = {en} } @article{NagelKirschbaumTiedemann2017, author = {Nagel, Rebecca and Kirschbaum, Frank and Tiedemann, Ralph}, title = {Electric organ discharge diversification in mormyrid weakly electric fish is associated with differential expression of voltage-gated ion channel genes}, series = {Journal of comparative physiology : A, Neuroethology, sensory, neural, and behavioral physiology}, volume = {203}, journal = {Journal of comparative physiology : A, Neuroethology, sensory, neural, and behavioral physiology}, publisher = {Springer}, address = {New York}, issn = {0340-7594}, doi = {10.1007/s00359-017-1151-2}, pages = {183 -- 195}, year = {2017}, abstract = {In mormyrid weakly electric fish, the electric organ discharge (EOD) is used for species recognition, orientation and prey localization. Produced in the muscle-derived adult electric organ, the EOD exhibits a wide diversity across species in both waveform and duration. While certain defining EOD characteristics can be linked to anatomical features of the electric organ, many factors underlying EOD differentiation are yet unknown. Here, we report the differential expression of 13 Kv1 voltage-gated potassium channel genes, two inwardly rectifying potassium channel genes, two previously studied sodium channel genes and an ATPase pump in two sympatric species of the genus Campylomormyrus in both the adult electric organ and skeletal muscle. Campylomormyrus compressirostris displays a basal EOD, largely unchanged during development, while C. tshokwe has an elongated, putatively derived discharge. We report an upregulation in all Kv1 genes in the electric organ of Campylomormyrus tshokwe when compared to both skeletal muscle and C. compressirostris electric organ. This pattern of upregulation in a species with a derived EOD form suggests that voltage-gated potassium channels are potentially involved in the diversification of the EOD signal among mormyrid weakly electric fish.}, language = {en} } @article{MuellerHadzicMugeleetal.2017, author = {M{\"u}ller, Juliane and Hadzic, Miralem and Mugele, Hendrik and Stoll, Josefine and M{\"u}ller, Steffen and Mayer, Frank}, title = {Effect of high-intensity perturbations during core-specific sensorimotor exercises on trunk muscle activation}, series = {Journal of biomechanics}, volume = {70}, journal = {Journal of biomechanics}, publisher = {Elsevier}, address = {Oxford}, issn = {0021-9290}, doi = {10.1016/j.jbiomech.2017.12.013}, pages = {212 -- 218}, year = {2017}, abstract = {Core-specific sensorimotor exercises are proven to enhance neuromuscular activity of the trunk. However, the influence of high-intensity perturbations on training efficiency is unclear within this context. Sixteen participants (29 +/- 2 yrs; 175 +/- 8 cm; 69 +/- 13 kg) were prepared with a 12-lead bilateral trunk EMG. Warm-up on a dynamometer was followed by maximum voluntary isometric trunk (flex/ext) contraction (MVC). Next, participants performed four conditions for a one-legged stance with hip abduction on a stable surface (HA) repeated randomly on an unstable surface (HAP), on a stable surface with perturbation (HA + P), and on an unstable surface with perturbation (HAP + P). Afterwards, bird dog (BD) was performed under the same conditions (BD, BDP, BD + P, BDP + P). A foam pad under the foot (HA) or the knee (BD) was used as an unstable surface. Exercises were conducted on a moveable platform. Perturbations (ACC 50 m/sec(2);100 ms duration;10rep.) were randomly applied in the anterior-posterior direction. The root mean square (RMS) normalized to MVC (\%) was calculated (whole movement cycle). Muscles were grouped into ventral right and left (VR;VL), and dorsal right and left (DR;DL). Ventral Dorsal and right-left ratios were calculated (two way repeated-measures ANOVA;alpha = 0,05). Amplitudes of all muscle groups in bird dog were higher compared to hip abduction (p <= 0.0001; Range: BD: 14 +/- 3\% (BD;VR) to 53 +/- 4\%; HA: 7 +/- 2\% (HA;DR) to 16 +/- 4\% (HA;DR)). EMG-RMS showed significant differences (p < 0.001) between conditions and muscle groups per exercise. Interaction effects were only significant for HA (p = 0.02). No significant differences were present in EMG ratios (p > 0.05). Additional high-intensity perturbations during core-specific sensorimotor exercises lead to increased neuromuscular activity and therefore higher exercise intensities. However, the beneficial effects on trunk function remain unclear. Nevertheless, BD is more suitable to address trunk muscles.}, language = {en} } @phdthesis{Lachmann2017, author = {Lachmann, Sabrina C.}, title = {Ecophysiology matters: Inorganic carbon acquisition in green microalgae related to different nutrient conditions}, school = {Universit{\"a}t Potsdam}, pages = {178}, year = {2017}, language = {en} } @article{SpijkermanLukasWacker2017, author = {Spijkerman, Elly and Lukas, Marcus and Wacker, Alexander}, title = {Ecophysiological strategies for growth under varying light and organic carbon supply in two species of green microalgae differing in their motility}, series = {Phytochemistry : an international journal of plant biochemistry}, volume = {144}, journal = {Phytochemistry : an international journal of plant biochemistry}, publisher = {Elsevier}, address = {Oxford}, issn = {0031-9422}, doi = {10.1016/j.phytochem.2017.08.018}, pages = {43 -- 51}, year = {2017}, abstract = {Mixing events in stratified lakes result in microalgae being exposed to varying conditions in light and organic carbon concentrations. Stratified lakes consist of an upper illuminated strata and a lower, darker strata where organic carbon accumulates. Therefore, in this contribution we explore the importance of dissolved organic carbon for growth under various light intensities by measuring some ecophysiological adaptations in two green microalgae. We compared the non-motile Chlorella vulgaris with the flagellated Chlamydomonas acidophila under auto-, mixo-, and heterotrophic growth conditions. In both algae the maximum photosynthetic and growth rates were highest under mixotrophy, and both algae appeared inhibited in their phosphorus acquisition under heterotrophy. Heterotrophic conditions provoked the largest differences as C. vulgaris produced chlorophyll a in darkness and grew as well as in autotrophic conditions, whereas Chl. acidophila bleached and could not grow heterotrophically. Although the fatty acid composition of both phytoplankton species differed, both species reacted in a similar way to changes in their growth conditions, mainly by a decrease of C18:3n-3 and an increase of C18:1n-9 from auto- to heterotrophic conditions. The two contrasting responses within the group of green microalgae suggest that dissolved organic carbon has a high deterministic potential to explain the survival and behaviour of green algae in the deeper strata of lakes.}, language = {en} } @article{ParagasHumphreysMinetal.2017, author = {Paragas, Erickson M. and Humphreys, Sara C. and Min, Joshua and Joswig-Jones, Carolyn A. and Leimk{\"u}hler, Silke and Jones, Jeffrey P.}, title = {ecoAO}, series = {ACS OMEGA}, volume = {2}, journal = {ACS OMEGA}, publisher = {American Chemical Society}, address = {Washington}, issn = {2470-1343}, doi = {10.1021/acsomega.7b01054}, pages = {4820 -- 4827}, year = {2017}, abstract = {Although aldehyde oxidase (AO) is an important hepatic drug-metabolizing enzyme, it remains understudied and is consequently often overlooked in preclinical studies, an oversight that has resulted in the failure of multiple clinical trials. AO's preclusion to investigation stems from the following: (1) difficulties synthesizing metabolic standards due to the chemospecificity and regiospecificity of the enzyme and (2) significant inherent variability across existing in vitro systems including liver cytosol, S9 fractions, and primary hepatocytes, which lack specificity and generate discordant expression and activity profiles. Here, we describe a practical bacterial biotransformation system, ecoAO, addressing both issues simultaneously. ecoAO is a cell paste of MoCo-producing Escherichia coli strain TP1017 expressing human AO. It exhibits specific activity toward known substrates, zoniporide, 4-trans-(N,N-dimethylamino)cinnamaldehyde, O6-benzylguanine, and zaleplon; it also has utility as a biocatalyst, yielding milligram quantities of synthetically challenging metabolite standards such as 2-oxo-zoniporide. Moreover, ecoAO enables routine determination of kcat and V/K, which are essential parameters for accurate in vivo clearance predictions. Furthermore, ecoAO has potential as a preclinical in vitro screening tool for AO activity, as demonstrated by its metabolism of 3-aminoquinoline, a previously uncharacterized substrate. ecoAO promises to provide easy access to metabolites with the potential to improve pharmacokinetic clearance predictions and guide drug development.}, language = {en} } @article{StillfriedFickelBoerneretal.2017, author = {Stillfried, Milena and Fickel, J{\"o}rns and B{\"o}rner, Konstantin and Wittstatt, Ulrich and Heddergott, Mike and Ortmann, Sylvia and Kramer-Schadt, Stephanie and Frantz, Alain C.}, title = {Do cities represent sources, sinks or isolated islands for urban wild boar population structure?}, series = {Journal of applied ecology : an official journal of the British Ecological Society}, volume = {54}, journal = {Journal of applied ecology : an official journal of the British Ecological Society}, number = {1}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0021-8901}, doi = {10.1111/1365-2664.12756}, pages = {272 -- 281}, year = {2017}, language = {en} } @article{GuerreroRamirezCravenReichetal.2017, author = {Guerrero-Ramirez, Nathaly Rokssana and Craven, Dylan and Reich, Peter B. and Ewel, John J. and Isbell, Forest and Koricheva, Julia and Parrotta, John A. and Auge, Harald and Erickson, Heather E. and Forrester, David I. and Hector, Andy and Joshi, Jasmin Radha and Montagnini, Florencia and Palmborg, Cecilia and Piotto, Daniel and Potvin, Catherine and Roscher, Christiane and van Ruijven, Jasper and Tilman, David and Wilsey, Brian and Eisenhauer, Nico}, title = {Diversity-dependent temporal divergence of ecosystem functioning in experimental ecosystems}, series = {Nature ecology \& evolution}, volume = {1}, journal = {Nature ecology \& evolution}, number = {11}, publisher = {Nature Publ. Group}, address = {London}, issn = {2397-334X}, doi = {10.1038/s41559-017-0325-1}, pages = {1639 -- 1642}, year = {2017}, abstract = {The effects of biodiversity on ecosystem functioning generally increase over time, but the underlying processes remain unclear. Using 26 long-term grassland and forest experimental ecosystems, we demonstrate that biodiversity-ecosystem functioning relationships strengthen mainly by greater increases in functioning in high-diversity communities in grasslands and forests. In grasslands, biodiversity effects also strengthen due to decreases in functioning in low-diversity communities. Contrasting trends across grasslands are associated with differences in soil characteristics.}, language = {en} } @article{FerreraSarmentoPriscuetal.2017, author = {Ferrera, Isabel and Sarmento, Hugo and Priscu, John C. and Chiuchiolo, Amy and Gonzalez, Jose M. and Grossart, Hans-Peter}, title = {Diversity and Distribution of Freshwater Aerobic Anoxygenic Phototrophic Bacteria across a Wide Latitudinal Gradient}, series = {Frontiers in microbiology}, volume = {8}, journal = {Frontiers in microbiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-302X}, doi = {10.3389/fmicb.2017.00175}, pages = {12}, year = {2017}, abstract = {Aerobic anoxygenic phototrophs (AAPs) have been shown to exist in numerous marine and brackish environments where they are hypothesized to play important ecological roles. Despite their potential significance, the study of freshwater AAPs is in its infancy and limited to local investigations. Here, we explore the occurrence, diversity and distribution of AAPs in lakes covering a wide latitudinal gradient: Mongolian and German lakes located in temperate regions of Eurasia, tropical Great East African lakes, and polar permanently ice-covered Antarctic lakes. Our results show a widespread distribution of AAPs in lakes with contrasting environmental conditions and confirm that this group is composed of different members of the Alpha- and Betaproteobacteria. While latitude does not seem to strongly influence AAP abundance, clear patterns of community structure and composition along geographic regions were observed as indicated by a strong macro-geographical signal in the taxonomical composition of AAPs. Overall, our results suggest that the distribution patterns of freshwater AAPs are likely driven by a combination of small-scale environmental conditions (specific of each lake and region) and large-scale geographic factors (climatic regions across a latitudinal gradient).}, language = {en} } @article{LecourieuxKappelPierietal.2017, author = {Lecourieux, Fatma and Kappel, Christian and Pieri, Philippe and Charon, Justine and Pillet, Jeremy and Hilbert, Ghislaine and Renaud, Christel and Gomes, Eric and Delrot, Serge and Lecourieux, David}, title = {Dissecting the Biochemical and Transcriptomic Effects of a Locally Applied Heat Treatment on Developing Cabernet Sauvignon Grape Berries}, series = {Frontiers in plant science}, volume = {8}, journal = {Frontiers in plant science}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2017.00053}, pages = {23}, year = {2017}, abstract = {Reproductive development of grapevine and berry composition are both strongly influenced by temperature. To date, the molecular mechanisms involved in grapevine berries response to high temperatures are poorly understood. Unlike recent data that addressed the effects on berry development of elevated temperatures applied at the whole plant level, the present work particularly focuses on the fruit responses triggered by direct exposure to heat treatment (HT). In the context of climate change, this work focusing on temperature effect at the microclimate level is of particular interest as it can help to better understand the consequences of leaf removal (a common viticultural practice) on berry development. HT (+8 degrees C) was locally applied to clusters from Cabernet Sauvignon fruiting cuttings at three different developmental stages (middle green, veraison and middle ripening). Samples were collected 1, 7, and 14 days after treatment and used for metabolic and transcriptomic analyses. The results showed dramatic and specific biochemical and transcriptomic changes in heat exposed berries, depending on the developmental stage and the stress duration. When applied at the herbaceous stage, HT delayed the onset of veraison. Heating also strongly altered the berry concentration of amino acids and organic acids (e.g., phenylalanine, raminobutyric acid and malate) and decreased the anthocyanin content at maturity. These physiological alterations could be partly explained by the deep remodeling of transcriptome in heated berries. More than 7000 genes were deregulated in at least one of the nine experimental conditions. The most affected processes belong to the categories "stress responses," protein metabolism" and "secondary metabolism," highlighting the intrinsic capacity of grape berries to perceive HT and to build adaptive responses. Additionally, important changes in processes related to "transport," "hormone" and "cell wall" might contribute to the postponing of veraison. Finally, opposite effects depending on heating duration were observed for genes encoding enzymes of the general phenylpropanoid pathway, suggesting that the HI induced decrease in anthocyanin content may result from a combination of transcript abundance and product degradation.}, language = {en} } @article{BerryRosaHowardetal.2017, author = {Berry, Scott and Rosa, Stefanie and Howard, Martin and Buhler, Marc and Dean, Caroline}, title = {Disruption of an RNA-binding hinge region abolishes LHP1-mediated epigenetic repression}, series = {Genes \& Development}, volume = {31}, journal = {Genes \& Development}, publisher = {Cold Spring Harbor Laboratory Press}, address = {Cold Spring Harbor, NY}, issn = {0890-9369}, doi = {10.1101/gad.305227.117}, pages = {2115 -- 2120}, year = {2017}, abstract = {Epigenetic maintenance of gene repression is essential for development. Polycomb complexes are central to this memory, but many aspects of the underlying mechanism remain unclear. LIKE HETEROCHROMATIN PROTEIN 1 (LHP1) binds Polycomb-deposited H3K27me3 and is required for repression of many Polycomb target genes in Arabidopsis. Here we show that LHP1 binds RNA in vitro through the intrinsically disordered hinge region. By independently perturbing the RNA-binding hinge region and H3K27me3 (trimethylation of histone H3 at Lys27) recognition, we found that both facilitate LHP1 localization and H3K27me3 maintenance. Disruption of the RNAbinding hinge region also prevented formation of subnuclear foci, structures potentially important for epigenetic repression.}, language = {en} } @phdthesis{Dippong2017, author = {Dippong, Martin}, title = {Direkte und indirekte Hapten-selektive Immunfluoreszenzmarkierung von Hybridomzellen zur Generierung monoklonaler Antik{\"o}rper}, school = {Universit{\"a}t Potsdam}, pages = {VII, 103}, year = {2017}, abstract = {Die Hybridomtechnik zur Produktion von monoklonalen Antik{\"o}rpern erm{\"o}glichte einen großen Schritt in der Entwicklung von Immunoassays f{\"u}r die biochemische Forschung und klinische Diagnostik. Auch die Produktion von Antik{\"o}rpern gegen niedermolekulare Analyten, Haptene, typische Targets in der Lebensmittel- und Umweltanalytik, erlangte in den letzten Jahren eine immer gr{\"o}ßere Bedeutung. Im Zuge der Durchf{\"u}hrung der Hybridomtechnik werden tausende Antik{\"o}rper-sezernierende und nicht-sezernierende Zellen generiert. Die Selektion der wenigen antigenselektiven Hybridomzellen z{\"a}hlt dabei zu den herausforderndsten Schritten f{\"u}r die Antik{\"o}rpergewinnung. Bisherige Selektionsverfahren, wie die Limiting-Dilution-Klonierung in Verbindung mit Enzyme-linked Immunosorbent Assays (ELISAs), garantieren keine Monoklonalit{\"a}t und erlauben nur das Screening von einigen wenigen Zellklonen. Hingegen erm{\"o}glichen Hochdurchsatz-Selektionsmethoden, wie die Fluoreszenz-aktivierte Zellsortierung (FACS), einen sehr hohen Probendurchsatz. Eine Einzelzellablage garantiert hierbei Monoklonalit{\"a}t. Jedoch sind die daf{\"u}r erforderlichen Zellmarkierungen oftmals zellsch{\"a}digend oder aufwendig zu generieren. Auch ist bisher noch keine Markierungsmethode bekannt, die es erm{\"o}glicht, Hapten-selektive Hybridomzellen durchflusszytometrisch zu analysieren und eine FACS-Selektion durchzuf{\"u}hren. Aus diesem Grund wurden in dieser Arbeit zwei Zellmarkierungsmethoden entwickelt, die dies erm{\"o}glichen sollten. Die membranst{\"a}ndigen Antik{\"o}rper von Hybridomzellen sollten entweder direkt oder indirekt immunfluoreszenz-markiert und dadurch f{\"u}r die Durchflusszytometrie und FACS-Selektion zug{\"a}nglich gemacht werden. Die direkte Markierung wurde mittels eines Hapten-Fluorophor-Konjugats durchgef{\"u}hrt. Sie erm{\"o}glichte erstmalig den Anteil an Haptenselektiven Hybridomzellen in einer Hybridomzelllinie zu {\"u}berpr{\"u}fen. Dies konnte f{\"u}r zwei Hapten-selektive Hybridomzelllinien, die Antik{\"o}rper gegen das Hormon 17β-Estradiol und das Cardenolid Digoxigenin bilden, gezeigt werden. Durchflusszytometrie und ELISAs lieferten vergleichbare Ergebnisse. Zellen, die Hapten-selektiv markiert werden konnten, sezernierten ebenfalls Hapten-selektive Antik{\"o}rper. Des Weiteren konnte die direkte Markierung dazu genutzt werden, zwei Mykotoxin-selektive Hybridomzelllinien, welche Antik{\"o}rper gegen Aflatoxin und Zearalenon bilden, auf Monoklonalit{\"a}t zu testen. Dies ist mittels ELISA nicht m{\"o}glich. Die Markierungsmethode eignete sich jedoch nur f{\"u}r fixierte Hybridomzellen. Eine Markierung von lebenden Zellen konnte weder durchflusszytometrisch noch mittels konfokaler Laser-Scanning-Mikroskopie gezeigt werden. Dies gelang erst mit einer neu entwickelten indirekten Immunfluoreszenzmarkierung. Dabei wurden die Zellen zun{\"a}chst mit einem Hapten-Peroxidase-Konjugat inkubiert, gefolgt von einem Fluorophor-markierten anti-HRP-Antik{\"o}rper-Konjugat. Dies wurde f{\"u}r zwei Analyten, das Hormon Estron und das Antiepileptikum Carbamazepin, gezeigt. Die indirekte Markierung wurde erfolgreich dazu verwendet, Carbamazepin-selektive Hybridomzellen aus einem Fusionsansatz f{\"u}r die monoklonale Antik{\"o}rperproduktion auszusortieren. Damit wurde erstmalig eine Zellmarkierungsmethode entwickelt, die eine Hochdurchsatz-Selektion lebender Hybridomzellen aus einem Fusionsansatz erm{\"o}glicht. Sie ist nicht zellsch{\"a}digend und kann zus{\"a}tzlich zur Selektion Hapten-selektiver Plasmazellen verwendet werden.}, language = {de} } @article{HahnMeyerSchroeteretal.2017, author = {Hahn, Marc Benjamin and Meyer, Susann and Schr{\"o}ter, Maria-Astrid and Seitz, Harald and Kunte, Hans-J{\"o}rg and Solomun, Tihomir and Sturm, Heinz}, title = {Direct electron irradiation of DNA in a fully aqueous environment}, series = {Physical chemistry, chemical physics : PCCP ; a journal of European chemical societies}, volume = {19}, journal = {Physical chemistry, chemical physics : PCCP ; a journal of European chemical societies}, number = {3}, publisher = {RSC Publ.}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c6cp07707b}, pages = {1798 -- 1805}, year = {2017}, abstract = {We report on a study in which plasmid DNA in water was irradiated with 30 keV electrons generated by a scanning electron microscope and passed through a 100 nm thick Si3N4 membrane. The corresponding Monte Carlo simulations suggest that the kinetic energy spectrum of the electrons throughout the water is dominated by low energy electrons (<100 eV). The DNA radiation damage, single-strand breaks (SSBs) and double-strand breaks (DSBs), was determined by gel electrophoresis. The median lethal dose of D-1/2 = 1.7 +/- 0.3 Gy was found to be much smaller as compared to partially or fully hydrated DNA irradiated under vacuum conditions. The ratio of the DSBs to SSBs was found to be 1 : 12 as compared to 1 : 88 found for hydrated DNA. Our method enables quantitative measurements of radiation damage to biomolecules (DNA, proteins) in solutions under varying conditions (pH, salinity, co-solutes) for an electron energy range which is difficult to probe by standard methods.}, language = {en} } @article{KoussoroplisSchwarzenbergerWacker2017, author = {Koussoroplis, Apostolos-Manuel and Schwarzenberger, Anke and Wacker, Alexander}, title = {Diet quality determines lipase gene expression and lipase/esterase activity in Daphnia pulex}, series = {Biology open : BiO}, volume = {6}, journal = {Biology open : BiO}, publisher = {The company of Biologists}, address = {Cambridge}, doi = {10.1242/bio.022046}, pages = {210 -- 216}, year = {2017}, abstract = {We studied the short- (12 h) and long-term (144 h) response of Daphnia pulex lipases to quality shifts in diets consisting of different mixtures of the green alga Scenedesmus with the cyanobacterium Synechococcus, two species with contrasting lipid compositions. The lipase/esterase activity in both the gut and the body tissues had fast responses to the diet shift and increased with higher dietary contributions of Synechococcus. When screening the Daphnia genome for TAG lipases, we discovered a large gene-family expansion of these enzymes. We used a subset of eight genes for mRNA expression analyses and distinguished between influences of time and diet on the observed gene expression patterns. We identified five diet-responsive lipases of which three showed a sophisticated short- and long-term pattern of expression in response to small changes in food-quality. Furthermore, the gene expression of one of the lipases was strongly correlated to lipase/esterase activity in the gut suggesting its potentially major role in digestion. These findings demonstrate that the lipid-related enzymatic machinery of D. pulex is finely tuned to diet and might constitute an important mechanism of physiological adaptation in nutritionally complex environments.}, language = {en} } @phdthesis{Tabatabaei2017, author = {Tabatabaei, Iman}, title = {Development of new selection systems for organellar genome transformation}, school = {Universit{\"a}t Potsdam}, pages = {II, 152}, year = {2017}, abstract = {Plant cells host two important organelles: mitochondria, known as the cell's 'powerhouse', which act by converting oxygen and nutrients into ATP, and plastids, which perform photosynthesis. These organelles contain their own genomes that encode proteins required for gene expression and energy metabolism. Transformation technologies offer great potential for investigating all aspects of the physiology and gene expression of these organelles in vivo. In addition, organelle transformation can be a valuable tool for biotechnology and molecular plant breeding. Plastid transformation systems are well-developed for a few higher plants, however, mitochondrial transformation has so far only been reported for Saccharomyces cerevisiae and the unicellular alga Chlamydomonas reinhardtii. Development of an efficient new selection marker for plastid transformation is important for several reasons, including facilitating supertransformation of the plastid genome for metabolic engineering purposes and for producing multiple knock-outs or site-directed mutagenesis of two unlinked genes. In this work, we developed a novel selection system for Nicotiana tabacum (tobacco) chloroplast transformation with an alternative marker. The marker gene, aac(6′)-Ie/aph(2′′)-Ia, was cloned into different plastid transformation vectors and several candidate aminoglycoside antibiotics were investigated as selection agents. Generally, the efficiency of selection and the transformation efficiency with aac(6′)-Ie/aph(2′′)-Ia as selectable marker in combination with the aminoglycoside antibiotic tobramycin was similarly high as that with the standard marker gene aadA and spectinomycin selection. Furthermore, our new selection system may be useful for the development of plastid transformation for new species, including cereals, the world's most important food crops, and could also be helpful for the establishment of a selection system for mitochondrial transformation. To date, all attempts to achieve mitochondrial transformation for higher plants have been unsuccessful. A mitochondrial transformation system for higher plants would not only provide a potential for studying mitochondrial physiology but could also provide a method to introduce cytoplasmic male sterility into crops to produce hybrid seeds. Establishing a stable mitochondrial transformation system in higher plants requires several steps including delivery of foreign DNA, stable integration of the foreign sequences into the mitochondrial genome, efficient expression of the transgene, a highly regenerable tissue culture system that allows regeneration of the transformed cells into plants, and finally, a suitable selection system to identify cells with transformed mitochondrial genomes. Among all these requirements, finding a good selection is perhaps the most important obstacle towards the development of a mitochondrial transformation system for higher plants. In this work, two selection systems were tested for mitochondrial transformation: kanamycin as a selection system in combination with the antibiotic-inactivating marker gene nptII, and sulfadiazine as a selection agent that inhibits the folic acid biosynthesis pathway residing in plant mitochondria in combination with the sul gene encoding an enzyme that is insensitive to inhibition by sulfadiazine. Nuclear transformation experiments were considered as proof of the specificity of the sulfadiazine selection system for mitochondria. We showed that an optimized sulfadiazine selection system, with the Sul protein targeted to mitochondria, is much more efficient than the previous sulfadiazine selection system, in which the Sul protein was targeted to the chloroplast. We also showed by systematic experiments that the efficiency of selection and nuclear transformation of the optimized sulfadiazine selection was higher compared to the standard kanamycin selection system. Finally, we also investigated the suitability of this selection system for nuclear transformation of the model alga Chlamydomonas reinhardtii, obtaining promising results. Although we designed several mitochondrial transformation vectors with different expression elements and integration sites in the mitochondrial genome based on the sulfadiazine system, and different tissue culture condition were also considered, we were not able to obtain mitochondrial transformation with this system. Nonetheless, establishing the sul gene as an efficient and specific selection marker for mitochondria addresses one of the major bottlenecks and may pave the way to achieve mitochondrial transformation in higher plants.}, language = {en} } @article{Yarman2017, author = {Yarman, Aysu}, title = {Development of a molecularly imprinted polymer-based electrochemical sensor for tyrosinase}, series = {Turkish journal of chemistry}, volume = {42}, journal = {Turkish journal of chemistry}, number = {2}, publisher = {T{\"u}rkiye Bilimsel ve Teknik Ara{\c{s}}t{\i}rma Kurumu}, address = {Ankara}, issn = {1300-0527}, doi = {10.3906/kim-1708-68}, pages = {346 -- 354}, year = {2017}, abstract = {For the first time a molecularly imprinted polymer (MIP)-based sensor for tyrosinase is described. This sensor is based on the electropolymerization of scopoletin or o-phenylenediamine in the presence of tyrosinase from mushrooms, which has a high homology to the human enzyme. The template was removed either by treatment with proteinase Kor by alkaline treatment. The measuring signal was generated either by measuring the formation of a product by the target enzyme or by evaluation of the permeability of the redox marker ferricyanide. The o-phenylenediamine-based MIP sensor has a linear measuring range up to 50 nM of tyrosinase with a limit of detection of 3.97 nM (R 2 = 0.994) and shows good discrimination towards other proteins, e.g., bovine serum albumin and cytochrome c.}, language = {en} } @article{BauerWerthHaAnNguyenetal.2017, author = {Bauer, Daniel and Werth, Felix and Ha An Nguyen, and Kiecker, Felix and Eberle, J{\"u}rgen}, title = {Critical role of reactive oxygen species (ROS) for synergistic enhancement of apoptosis by vemurafenib and the potassium channel inhibitor TRAM-34 in melanoma cells}, series = {Cell death \& disease}, volume = {8}, journal = {Cell death \& disease}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-4889}, doi = {10.1038/cddis.2017.6}, pages = {10}, year = {2017}, abstract = {Inhibition of MAP kinase pathways by selective BRAF inhibitors, such as vemurafenib and dabrafenib, have evolved as key therapies of BRAF-mutated melanoma. However, tumor relapse and therapy resistance have remained as major problems, which may be addressed by combination with other pathway inhibitors. Here we identified the potassium channel inhibitor TRAM-34 as highly effective in combination with vemurafenib. Thus apoptosis was significantly enhanced and cell viability was decreased. The combination vemurafenib/TRAM-34 was also effective in vemurafenib-resistant cells, suggesting that acquired resistance may be overcome. Vemurafenib decreased ERK phosphorylation, suppressed antiapoptotic Mcl-1 and enhanced proapoptotic Puma and Bim. The combination resulted in enhancement of proapoptotic pathways as caspase-3 and loss of mitochondrial membrane potential. Indicating a special mechanism of vemurafenib-induced apoptosis, we found strong enhancement of intracellular ROS levels already at 1 h of treatment. The critical role of ROS was demonstrated by the antioxidant vitamin E (alpha-tocopherol), which decreased intracellular ROS as well as apoptosis. Also caspase activation and loss of mitochondrial membrane potential were suppressed, proving ROS as an upstream effect. Thus ROS represents an initial and independent apoptosis pathway in melanoma cells that is of particular importance for vemurafenib and its combination with TRAM-34.}, language = {en} } @article{MeyerPeterBatsiosetal.2017, author = {Meyer, Irene and Peter, Tatjana and Batsios, Petros and Kuhnert, Oliver and Krueger-Genge, Anne and Camurca, Carl and Gr{\"a}f, Ralph}, title = {CP39, CP75 and CP91 are major structural components of the Dictyostelium}, series = {European journal of cell biology}, volume = {96}, journal = {European journal of cell biology}, publisher = {Elsevier}, address = {Jena}, issn = {0171-9335}, doi = {10.1016/j.eicb.2017.01.004}, pages = {119 -- 130}, year = {2017}, abstract = {The acentriolar Dictyostelium centrosome is a nucleus-associated body consisting of a core structure with three plaque-like layers, which are surrounded by a microtubule-nucleating corona. The core duplicates once per cell cycle at the G2/M transition, whereby its central layer disappears and the two outer layers form the mitotic spindle poles. Through proteomic analysis of isolated centrosomes, we have identified CP39 and CP75, two essential components of the core structure. Both proteins can be assigned to the central core layer as their centrosomal presence is correlated to the disappearance and reappearance of the central core layer in the course of centrosome duplication. Both proteins contain domains with centrosome-binding activity in their N- and C-terminal halves, whereby the respective N-terminal half is required for cell cycle-dependent regulation. CP39 is capable of self-interaction and GFP-CP39 overexpression elicited supernumerary microtubule-organizing centers and pre-centrosomal cytosolic clusters. Underexpression stopped cell growth and reversed the MTOC amplification phenotype. In contrast, in case of CP75 underexpression of the protein by RNAi treatment elicited supernumerary MTOCs. In addition, CP75RNAi affects correct chromosome segregation and causes co-depletion of CP39 and CP91, another central core layer component. CP39 and CP75 interact with each other directly in a yeast two-hybrid assay. Furthermore, CP39, CP75 and CP91 mutually interact in a proximity-dependent biotin identification (BioID) assay. Our data indicate that these three proteins are all required for proper centrosome biogenesis and make up the major structural components of core structure's central layer.}, language = {en} } @article{SimonsLewinsohnBluethgenetal.2017, author = {Simons, Nadja K. and Lewinsohn, Thomas and Bluethgen, Nico and Buscot, Francois and Boch, Steffen and Daniel, Rolf and Gossner, Martin M. and Jung, Kirsten and Kaiser, Kristin and M{\"u}ller, J{\"o}rg and Prati, Daniel and Renner, Swen C. and Socher, Stephanie A. and Sonnemann, Ilja and Weiner, Christiane N. and Werner, Michael and Wubet, Tesfaye and Wurst, Susanne and Weisser, Wolfgang W.}, title = {Contrasting effects of grassland management modes on species-abundance distributions of multiple groups}, series = {Agriculture, ecosystems \& environment : an international journal for scientific research on the relationship of agriculture and food production to the biosphere}, volume = {237}, journal = {Agriculture, ecosystems \& environment : an international journal for scientific research on the relationship of agriculture and food production to the biosphere}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0167-8809}, doi = {10.1016/j.agee.2016.12.022}, pages = {143 -- 153}, year = {2017}, abstract = {Intensive land use is a major cause of biodiversity loss, but most studies comparing the response of multiple taxa rely on simple diversity measures while analyses of other community attributes are only recently gaining attention. Species-abundance distributions (SADs) are a community attribute that can be used to study changes in the overall abundance structure of species groups, and whether these changes are driven by abundant or rare species. We evaluated the effect of grassland management intensity for three land-use modes (fertilization, mowing, grazing) and their combination on species richness and SADs for three belowground (arbuscular mycorrhizal fungi, prokaryotes and insect larvae) and seven aboveground groups (vascular plants, bryophytes and lichens; arthropod herbivores; arthropod pollinators; bats and birds). Three descriptors of SADs were evaluated: general shape (abundance decay rate), proportion of rare species (rarity) and proportional abundance of the commonest species (dominance). Across groups, taxonomic richness was largely unaffected by land-use intensity and only decreased with increasing mowing intensity. Of the three SAD descriptors, abundance decay rate became steeper with increasing combined land-use intensity across groups. This reflected a decrease in rarity among plants, herbivores and vertebrates. Effects of fertilization on the three descriptors were similar to the combined land-use intensity effects. Mowing intensity only affected the SAD descriptors of insect larvae and vertebrates, while grazing intensity produced a range of effects on different descriptors in distinct groups. Overall, belowground groups had more even abundance distribtitions than aboveground groups. Strong differences among aboveground groups and between above- and belowground groups indicate that no single taxonomic group can serve as an indicator for effects in other groups. In the past, the use of SADs has been hampered by concerns over theoretical models underlying specific forms of SADs. Our study shows that SAD descriptors that are not connected to a particular model are suitable to assess the effect of land use on community structure.}, language = {en} } @article{RiedelSabirSchelleretal.2017, author = {Riedel, M. and Sabir, N. and Scheller, Frieder W. and Parak, Wolfgang J. and Lisdat, Fred}, title = {Connecting quantum dots with enzymes}, series = {Nanoscale}, volume = {9}, journal = {Nanoscale}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2040-3364}, doi = {10.1039/c7nr00091j}, pages = {2814 -- 2823}, year = {2017}, abstract = {The combination of the biocatalytic features of enzymes with the unique physical properties of nanoparticles in a biohybrid system provides a promising approach for the development of advanced bioelectrocatalytic devices. This study describes the construction of photoelectrochemical signal chains based on CdSe/ZnS quantum dot (QD) modified gold electrodes as light switchable elements, and low molecular weight redox molecules for the combination with different biocatalysts. Photoelectrochemical and photoluminescence experiments verify that electron transfer can be achieved between the redox molecules hexacyanoferrate and ferrocene, and the QDs under illumination. Since for both redox mediators a concentration dependent photocurrent change has been found, light switchable enzymatic signal chains are built up with fructose dehydrogenase (FDH) and pyrroloquinoline quinone-dependent glucose dehydrogenase ((PQQ) GDH) for the detection of sugars. After immobilization of the enzymes at the QD electrode the biocatalytic oxidation of the substrates can be followed by conversion of the redox mediator in solution and subsequent detection at the QD electrode. Furthermore, (PQQ) GDH has been assembled together with ferrocenecarboxylic acid on top of the QD electrode for the construction of a funtional biohybrid architecture, showing that electron transfer can be realized from the enzyme over the redox mediator to the QDs and subsequently to the electrode in a completely immobilized fashion. The results obtained here do not only provide the basis for light-switchable biosensing and bioelectrocatalytic applications, but may also open the way for self-driven point-of-care systems by combination with solar cell approaches (power generation at the QD electrode by enzymatic substrate consumption).}, language = {en} }