@misc{MengerYarmanErdőssyetal.2017, author = {Menger, Marcus and Yarman, Aysu and Erdőssy, J{\´u}lia and Yildiz, Huseyin Bekir and Gyurcs{\´a}nyi, R{\´o}bert E. and Scheller, Frieder W.}, title = {MIPs and aptamers for recognition of proteins in biomimetic sensing}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400496}, pages = {19}, year = {2017}, abstract = {Biomimetic binders and catalysts have been generated in order to substitute the biological pendants in separation techniques and bioanalysis. The two major approaches use either "evolution in the test tube" of nucleotides for the preparation of aptamers or total chemical synthesis for molecularly imprinted polymers (MIPs). The reproducible production of aptamers is a clear advantage, whilst the preparation of MIPs typically leads to a population of polymers with different binding sites. The realization of binding sites in the total bulk of the MIPs results in a higher binding capacity, however, on the expense of the accessibility and exchange rate. Furthermore, the readout of the bound analyte is easier for aptamers since the integration of signal generating labels is well established. On the other hand, the overall negative charge of the nucleotides makes aptamers prone to non-specific adsorption of positively charged constituents of the sample and the "biological" degradation of non-modified aptamers and ionic strength-dependent changes of conformation may be challenging in some application.}, language = {en} } @phdthesis{Schedina2017, author = {Schedina, Ina-Maria}, title = {Comparative genetic and transcriptomic analyses of the amazon molly, poecilia formosa and its parental species, poecilia mexicana and poecilia latipinna}, school = {Universit{\"a}t Potsdam}, pages = {124}, year = {2017}, language = {en} } @misc{RibeiroMartinsFickelLeetal.2017, author = {Ribeiro Martins, Renata Filipa and Fickel, J{\"o}rns and Le, Minh and Nguyen, Thanh van and Nguyen, Ha M. and Timmins, Robert and Gan, Han Ming and Rovie-Ryan, Jeffrine J. and Lenz, Dorina and F{\"o}rster, Daniel W. and Wilting, Andreas}, title = {Phylogeography of red muntjacs reveals three distinct mitochondrial lineages}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {973}, issn = {1866-8372}, doi = {10.25932/publishup-43078}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-430780}, pages = {14}, year = {2017}, abstract = {Background The members of the genus Muntiacus are of particular interest to evolutionary biologists due to their extreme chromosomal rearrangements and the ongoing discussions about the number of living species. Red muntjacs have the largest distribution of all muntjacs and were formerly considered as one species. Karyotype differences led to the provisional split between the Southern Red Muntjac (Muntiacus muntjak) and the Northern Red Muntjac (M. vaginalis), but uncertainties remain as, so far, no phylogenetic study has been conducted. Here, we analysed whole mitochondrial genomes of 59 archival and 16 contemporaneous samples to resolve uncertainties about their taxonomy and used red muntjacs as model for understanding the evolutionary history of other species in Southeast Asia. Results We found three distinct matrilineal groups of red muntjacs: Sri Lankan red muntjacs (including the Western Ghats) diverged first from other muntjacs about 1.5 Mya; later northern red muntjacs (including North India and Indochina) and southern red muntjacs (Sundaland) split around 1.12 Mya. The diversification of red muntjacs into these three main lineages was likely promoted by two Pleistocene barriers: one through the Indian subcontinent and one separating the Indochinese and Sundaic red muntjacs. Interestingly, we found a high level of gene flow within the populations of northern and southern red muntjacs, indicating gene flow between populations in Indochina and dispersal of red muntjacs over the exposed Sunda Shelf during the Last Glacial Maximum. Conclusions Our results provide new insights into the evolution of species in South and Southeast Asia as we found clear genetic differentiation in a widespread and generalist species, corresponding to two known biogeographical barriers: The Isthmus of Kra and the central Indian dry zone. In addition, our molecular data support either the delineation of three monotypic species or three subspecies, but more importantly these data highlight the conservation importance of the Sri Lankan/South Indian red muntjac.}, language = {en} } @article{SchwensowDeteringPedersonetal.2017, author = {Schwensow, Nina I. and Detering, Harald and Pederson, Stephen and Mazzoni, Camila and Sinclair, Ron and Peacock, David and Kovaliski, John and Cooke, Brian and Fickel, J{\"o}rns and Sommer, Simone}, title = {Resistance to RHD virus in wild Australian rabbits}, series = {Molecular ecology}, volume = {26}, journal = {Molecular ecology}, publisher = {Wiley}, address = {Hoboken}, issn = {0962-1083}, doi = {10.1111/mec.14228}, pages = {4551 -- 4561}, year = {2017}, abstract = {Deciphering the genes involved in disease resistance is essential if we are to understand host-pathogen coevolutionary processes. The rabbit haemorrhagic disease virus (RHDV) was imported into Australia in 1995 as a biocontrol agent to manage one of the most successful and devastating invasive species, the European rabbit (Oryctolagus cuniculus). During the first outbreaks of the disease, RHDV caused mortality rates of up to 97\%. Recently, however, increased genetic resistance to RHDV has been reported. Here, we have aimed to identify genomic differences between rabbits that survived a natural infection with RHDV and those that died in the field using a genomewide next-generation sequencing (NGS) approach. We detected 72 SNPs corresponding to 133 genes associated with survival of a RHD infection. Most of the identified genes have known functions in virus infections and replication, immune responses or apoptosis, or have previously been found to be regulated during RHD. Some of the genes identified in experimental studies, however, did not seem to play a role under natural selection regimes, highlighting the importance of field studies to complement the genomic background of wildlife diseases. Our study provides a set of candidate markers as a tool for the future scanning of wild rabbits for their resistance to RHDV. This is important both for wild rabbit populations in southern Europe where RHD is regarded as a serious problem decimating the prey of endangered predator species and for assessing the success of currently planned RHDV variant biocontrol releases in Australia.}, language = {en} } @article{SallehRamosMadrigalPenalozaetal.2017, author = {Salleh, Faezah Mohd and Ramos-Madrigal, Jazmin and Penaloza, Fernando and Liu, Shanlin and Sinding, Mikkel-Holger S. and Patel, Riddhi P. and Martins, Renata and Lenz, Dorina and Fickel, J{\"o}rns and Roos, Christian and Shamsir, Mohd Shahir and Azman, Mohammad Shahfiz and Lim, Burton K. and Rossiter, Stephen J. and Wilting, Andreas and Gilbert, M. Thomas P.}, title = {An expanded mammal mitogenome dataset from Southeast Asia}, series = {Gigascience}, volume = {6}, journal = {Gigascience}, number = {8}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {2047-217X}, pages = {1 -- 19}, year = {2017}, abstract = {Background: Findings: Approximately 55 gigabases of raw sequence were generated. From this data we assembled 72 complete mitogenome sequences, with an average depth of coverage of 102.9x and 55.2x for modern samples and historical samples, respectively. This dataset represents 52 species, of which 30 species had no previous mitogenome data available. The mitogenomes were geotagged to their sampling location, where known, to display a detailed geographical distribution of the species. Conclusion:}, language = {en} } @article{StillfriedFickelBoerneretal.2017, author = {Stillfried, Milena and Fickel, J{\"o}rns and B{\"o}rner, Konstantin and Wittstatt, Ulrich and Heddergott, Mike and Ortmann, Sylvia and Kramer-Schadt, Stephanie and Frantz, Alain C.}, title = {Do cities represent sources, sinks or isolated islands for urban wild boar population structure?}, series = {Journal of applied ecology : an official journal of the British Ecological Society}, volume = {54}, journal = {Journal of applied ecology : an official journal of the British Ecological Society}, number = {1}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0021-8901}, doi = {10.1111/1365-2664.12756}, pages = {272 -- 281}, year = {2017}, language = {en} } @article{MartinsFickelMinhLeetal.2017, author = {Martins, Renata F. and Fickel, J{\"o}rns and Minh Le, and Thanh Van Nguyen, and Nguyen, Ha M. and Timmins, Robert and Gan, Han Ming and Rovie-Ryan, Jeffrine J. and Lenz, Dorina and F{\"o}rster, Daniel W. and Wilting, Andreas}, title = {Phylogeography of red muntjacs reveals three distinct mitochondrial lineages}, series = {BMC evolutionary biology}, volume = {17}, journal = {BMC evolutionary biology}, number = {34}, publisher = {BioMed Central}, address = {London}, issn = {1471-2148}, doi = {10.1186/s12862-017-0888-0}, pages = {12}, year = {2017}, abstract = {Background: The members of the genus Muntiacus are of particular interest to evolutionary biologists due to their extreme chromosomal rearrangements and the ongoing discussions about the number of living species. Red muntjacs have the largest distribution of all muntjacs and were formerly considered as one species. Karyotype differences led to the provisional split between the Southern Red Muntjac (Muntiacus muntjak) and the Northern Red Muntjac (M. vaginalis), but uncertainties remain as, so far, no phylogenetic study has been conducted. Here, we analysed whole mitochondrial genomes of 59 archival and 16 contemporaneous samples to resolve uncertainties about their taxonomy and used red muntjacs as model for understanding the evolutionary history of other species in Southeast Asia. Results: We found three distinct matrilineal groups of red muntjacs: Sri Lankan red muntjacs (including the Western Ghats) diverged first from other muntjacs about 1.5 Mya; later northern red muntjacs (including North India and Indochina) and southern red muntjacs (Sundaland) split around 1.12 Mya. The diversification of red muntjacs into these three main lineages was likely promoted by two Pleistocene barriers: one through the Indian subcontinent and one separating the Indochinese and Sundaic red muntjacs. Interestingly, we found a high level of gene flow within the populations of northern and southern red muntjacs, indicating gene flow between populations in Indochina and dispersal of red muntjacs over the exposed Sunda Shelf during the Last Glacial Maximum. Conclusions: Our results provide new insights into the evolution of species in South and Southeast Asia as we found clear genetic differentiation in a widespread and generalist species, corresponding to two known biogeographical barriers: The Isthmus of Kra and the central Indian dry zone. In addition, our molecular data support either the delineation of three monotypic species or three subspecies, but more importantly these data highlight the conservation importance of the Sri Lankan/South Indian red muntjac.}, language = {en} } @article{PatelWutkeLenzetal.2017, author = {Patel, Riddhi P. and Wutke, Saskia and Lenz, Dorina and Mukherjee, Shomita and Ramakrishnan, Uma and Veron, Geraldine and Fickel, J{\"o}rns and Wilting, Andreas and F{\"o}rster, Daniel W.}, title = {Genetic Structure and Phylogeography of the Leopard Cat (Prionailurus bengalensis) Inferred from Mitochondrial Genomes}, series = {Journal of Heredity}, volume = {108}, journal = {Journal of Heredity}, number = {4}, publisher = {Oxford Univ. Press}, address = {Cary}, issn = {0022-1503}, doi = {10.1093/jhered/esx017}, pages = {349 -- 360}, year = {2017}, abstract = {The Leopard cat Prionailurus bengalensis is a habitat generalist that is widely distributed across Southeast Asia. Based on morphological traits, this species has been subdivided into 12 subspecies. Thus far, there have been few molecular studies investigating intraspecific variation, and those had been limited in geographic scope. For this reason, we aimed to study the genetic structure and evolutionary history of this species across its very large distribution range in Asia. We employed both PCR-based (short mtDNA fragments, 94 samples) and high throughput sequencing based methods (whole mitochondrial genomes, 52 samples) on archival, noninvasively collected and fresh samples to investigate the distribution of intraspecific genetic variation. Our comprehensive sampling coupled with the improved resolution of a mitochondrial genome analyses provided strong support for a deep split between Mainland and Sundaic Leopard cats. Although we identified multiple haplogroups within the species' distribution, we found no matrilineal evidence for the distinction of 12 subspecies. In the context of Leopard cat biogeography, we cautiously recommend a revision of the Prionailurus bengalensis subspecific taxonomy: namely, a reduction to 4 subspecies (2 mainland and 2 Sundaic forms).}, language = {en} } @misc{HornickBachCrawfurdetal.2017, author = {Hornick, Thomas and Bach, Lennart T. and Crawfurd, Katharine J. and Spilling, Kristian and Achterberg, Eric Pieter and Woodhouse, Jason Nicholas and Schulz, Kai Georg and Brussaard, Corina P. D. and Riebesell, Ulf and Grossart, Hans-Peter}, title = {Ocean acidification impacts bacteria-phytoplankton coupling at low-nutrient conditions}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {667}, issn = {1866-8372}, doi = {10.25932/publishup-41712}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-417126}, pages = {15}, year = {2017}, abstract = {The oceans absorb about a quarter of the annually produced anthropogenic atmospheric carbon dioxide (CO2), resulting in a decrease in surface water pH, a process termed ocean acidification (OA). Surprisingly little is known about how OA affects the physiology of heterotrophic bacteria or the coupling of heterotrophic bacteria to phytoplankton when nutrients are limited. Previous experiments were, for the most part, undertaken during productive phases or following nutrient additions designed to stimulate algal blooms. Therefore, we performed an in situ large-volume mesocosm (similar to 55 m(3)) experiment in the Baltic Sea by simulating different fugacities of CO2 (fCO(2)) extending from present to future conditions. The study was conducted in July-August after the nominal spring bloom, in order to maintain low-nutrient conditions throughout the experiment. This resulted in phytoplankton communities dominated by small-sized functional groups (picophytoplankton). There was no consistent fCO(2)-induced effect on bacterial protein production (BPP), cell-specific BPP (csBPP) or biovolumes (BVs) of either free-living (FL) or particle-associated (PA) heterotrophic bacteria, when considered as individual components (univariate analyses). Permutational Multivariate Analysis of Variance (PERMANOVA) revealed a significant effect of the fCO(2) treatment on entire assemblages of dissolved and particulate nutrients, metabolic parameters and the bacteria-phytoplankton community. However, distance-based linear modelling only identified fCO(2) as a factor explaining the variability observed amongst the microbial community composition, but not for explaining variability within the metabolic parameters. This suggests that fCO(2) impacts on microbial metabolic parameters occurred indirectly through varying physicochemical parameters and microbial species composition. Cluster analyses examining the co-occurrence of different functional groups of bacteria and phytoplankton further revealed a separation of the four fCO(2)-treated mesocosms from both control mesocosms, indicating that complex trophic interactions might be altered in a future acidified ocean. Possible consequences for nutrient cycling and carbon export are still largely unknown, in particular in a nutrient-limited ocean.}, language = {en} } @article{VandenWyngaertSetoRojasJimenezetal.2017, author = {Van den Wyngaert, Silke and Seto, Kensuke and Rojas-Jimenez, Keilor and Kagami, Maiko and Grossart, Hans-Peter}, title = {A New Parasitic Chytrid, Staurastromyces oculus (Rhizophydiales, Staurastromy-cetaceae fam. nov.), Infecting the Freshwater Desmid Staurastrum sp.}, series = {Protist}, volume = {168}, journal = {Protist}, publisher = {Elsevier}, address = {Jena}, issn = {1434-4610}, doi = {10.1016/j.protis.2017.05.001}, pages = {392 -- 407}, year = {2017}, abstract = {Chytrids are a diverse group of ubiquitous true zoosporic fungi. The recent molecular discovery of a large diversity of undescribed chytrids has raised awareness on their important, but so far understudied ecological role in aquatic ecosystems. In the pelagic zone, of both freshwater and marine ecosystems, many chytrid species have been morphologically described as parasites on almost all major groups of phytoplankton. However, the majority of these parasitic chytrids has rarely been isolated and lack DNA sequence data, resulting in a large proportion of "dark taxa" in databases. Here, we report on the isolation and in-depth morphological, molecular and host range characterization of a chytrid infecting the common freshwater desmid Staurastrum sp. We provide first insights on the metabolic activity of the different chytrid development stages by using the vital dye FUN (R)-1 (2-chloro-4-[2,3-dihydro-3-methyl-[benzo-1,3-thiazol-2-yl]-methylidene]-1-phenylquinolinium iodide). Cross infection experiments suggest that this chytrid is an obligate parasite and specific for the genus Staurastrum sp. Phylogenetic analysis, based on ITS1-5.8S-ITS2 and 28S rDNA sequences, placed it in the order Rhizophydiales. Based on the unique zoospore ultrastructure, combined with thallus morphology, and molecular phylogenetic placement, we describe this parasitic chytrid as a new genus and species Staurastromyces oculus, within a new family Staurastromycetaceae. (C) 2017 Elsevier GmbH. All rights reserved.}, language = {en} } @article{EckertDiCesareKettneretal.2017, author = {Eckert, Ester M. and Di Cesare, Andrea and Kettner, Marie Therese and Arias-Andres, Maria and Fontaneto, Diego and Grossart, Hans-Peter and Corno, Gianluca}, title = {Microplastics increase impact of treated wastewater on freshwater microbial community}, series = {Environmental pollution}, volume = {234}, journal = {Environmental pollution}, publisher = {Elsevier}, address = {Oxford}, issn = {0269-7491}, doi = {10.1016/j.envpol.2017.11.070}, pages = {495 -- 502}, year = {2017}, abstract = {Plastic pollution is a major global concern with several million microplastic particles entering every day freshwater ecosystems via wastewater discharge. Microplastic particles stimulate biofilm formation (plastisphere) throughout the water column and have the potential to affect microbial community structure if they accumulate in pelagic waters, especially enhancing the proliferation of biohazardous bacteria. To test this scenario, we simulated the inflow of treated wastewater into a temperate lake using a continuous culture system with a gradient of concentration of microplastic particles. We followed the effect of microplastics on the microbial community structure and on the occurrence of integrase 1 (intl), a marker associated with mobile genetic elements known as a proxy for anthropogenic effects on the spread of antimicrobial resistance genes. The abundance of intl increased in the plastisphere with increasing microplastic particle concentration, but not in the water surrounding the microplastic particles. Likewise, the microbial community on microplastic was more similar to the original wastewater community with increasing microplastic concentrations. Our results show that microplastic particles indeed promote persistence of typical indicators of microbial anthropogenic pollution in natural waters, and substantiate that their removal from treated wastewater should be prioritised. (C) 2017 Elsevier Ltd. All rights reserved.}, language = {en} } @phdthesis{Perillon2017, author = {P{\´e}rillon, C{\´e}cile}, title = {The effect of groundwater on benthic primary producers and their interaction}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-406883}, school = {Universit{\"a}t Potsdam}, pages = {XVII, 180}, year = {2017}, abstract = {In littoral zones of lakes, multiple processes determine lake ecology and water quality. Lacustrine groundwater discharge (LGD), most frequently taking place in littoral zones, can transport or mobilize nutrients from the sediments and thus contribute significantly to lake eutrophication. Furthermore, lake littoral zones are the habitat of benthic primary producers, namely submerged macrophytes and periphyton, which play a key role in lake food webs and influence lake water quality. Groundwater-mediated nutrient-influx can potentially affect the asymmetric competition between submerged macrophytes and periphyton for light and nutrients. While rooted macrophytes have superior access to sediment nutrients, periphyton can negatively affect macrophytes by shading. LGD may thus facilitate periphyton production at the expense of macrophyte production, although studies on this hypothesized effect are missing. The research presented in this thesis is aimed at determining how LGD influences periphyton, macrophytes, and the interactions between these benthic producers. Laboratory experiments were combined with field experiments and measurements in an oligo-mesotrophic hard water lake. In the first study, a general concept was developed based on a literature review of the existing knowledge regarding the potential effects of LGD on nutrients and inorganic and organic carbon loads to lakes, and the effect of these loads on periphyton and macrophytes. The second study includes a field survey and experiment examining the effects of LGD on periphyton in an oligotrophic, stratified hard water lake (Lake Stechlin). This study shows that LGD, by mobilizing phosphorus from the sediments, significantly promotes epiphyton growth, especially at the end of the summer season when epilimnetic phosphorus concentrations are low. The third study focuses on the potential effects of LGD on submerged macrophytes in Lake Stechlin. This study revealed that LGD may have contributed to an observed change in macrophyte community composition and abundance in the shallow littoral areas of the lake. Finally, a laboratory experiment was conducted which mimicked the conditions of a seepage lake. Groundwater circulation was shown to mobilize nutrients from the sediments, which significantly promoted periphyton growth. Macrophyte growth was negatively affected at high periphyton biomasses, confirming the initial hypothesis. More generally, this thesis shows that groundwater flowing into nutrient-limited lakes may import or mobilize nutrients. These nutrients first promote periphyton, and subsequently provoke radical changes in macrophyte populations before finally having a possible influence on the lake's trophic state. Hence, the eutrophying effect of groundwater is delayed and, at moderate nutrient loading rates, partly dampened by benthic primary producers. The present research emphasizes the importance and complexity of littoral processes, and the need to further investigate and monitor the benthic environment. As present and future global changes can significantly affect LGD, the understanding of these complex interactions is required for the sustainable management of lake water quality.}, language = {en} } @phdthesis{Heise2017, author = {Heise, Janine}, title = {Phylogenetic and physiological characterization of deep-biosphere microorganisms in El'gygytgyn Crater Lake sediments}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-403436}, school = {Universit{\"a}t Potsdam}, pages = {117}, year = {2017}, abstract = {The existence of diverse and active microbial ecosystems in the deep subsurface - a biosphere that was originally considered devoid of life - was discovered in multiple microbiological studies. However, most of the studies are restricted to marine ecosystems, while our knowledge about the microbial communities in the deep subsurface of lake systems and their potentials to adapt to changing environmental conditions is still fragmentary. This doctoral thesis aims to build up a unique data basis for providing the first detailed high-throughput characterization of the deep biosphere of lacustrine sediments and to emphasize how important it is to differentiate between the living and the dead microbial community in deep biosphere studies. In this thesis, up to 3.6 Ma old sediments (up to 317 m deep) of the El'gygytgyn Crater Lake were examined, which represents the oldest terrestrial climate record of the Arctic. Combining next generation sequencing with detailed geochemical characteristics and other environmental parameters, the microbial community composition was analyzed in regard to changing climatic conditions within the last 3.6 Ma to 1.0 Ma (Pliocene and Pleistocene). DNA from all investigated sediments was successfully extracted and a surprisingly diverse (6,910 OTUs) and abundant microbial community in the El'gygytgyn deep sediments were revealed. The bacterial abundance (10³-10⁶ 16S rRNA copies g⁻¹ sediment) was up to two orders of magnitudes higher than the archaeal abundance (10¹-10⁵) and fluctuates with the Pleistocene glacial/interglacial cyclicality. Interestingly, a strong increase in the microbial diversity with depth was observed (approximately 2.5 times higher diversity in Pliocene sediments compared to Pleistocene sediments). The increase in diversity with depth in the Lake El'gygytgyn is most probably caused by higher sedimentary temperatures towards the deep sediment layers as well as an enhanced temperature-induced intra-lake bioproductivity and higher input of allochthonous organic-rich material during Pliocene climatic conditions. Moreover, the microbial richness parameters follow the general trends of the paleoclimatic parameters, such as the paleo-temperature and paleo-precipitation. The most abundant bacterial representatives in the El'gygytgyn deep biosphere are affiliated with the phyla Proteobacteria, Actinobacteria, Bacteroidetes, and Acidobacteria, which are also commonly distributed in the surrounding permafrost habitats. The predominated taxon was the halotolerant genus Halomonas (in average 60\% of the total reads per sample). Additionally, this doctoral thesis focuses on the live/dead differentiation of microbes in cultures and environmental samples. While established methods (e.g., fluorescence in situ hybridization, RNA analyses) are not applicable to the challenging El'gygytgyn sediments, two newer methods were adapted to distinguish between DNA from live cells and free (extracellular, dead) DNA: the propidium monoazide (PMA) treatment and the cell separation adapted for low amounts of DNA. The applicability of the DNA-intercalating dye PMA was successfully evaluated to mask free DNA of different cultures of methanogenic archaea, which play a major role in the global carbon cycle. Moreover, an optimal procedure to simultaneously treat bacteria and archaea was developed using 130 µM PMA and 5 min of photo-activation with blue LED light, which is also applicable on sandy environmental samples with a particle load of ≤ 200 mg mL⁻¹. It was demonstrated that the soil texture has a strong influence on the PMA treatment in particle-rich samples and that in particular silt and clay-rich samples (e.g., El'gygytgyn sediments) lead to an insufficient shielding of free DNA by PMA. Therefore, a cell separation protocol was used to distinguish between DNA from live cells (intracellular DNA) and extracellular DNA in the El'gygytgyn sediments. While comparing these two DNA pools with a total DNA pool extracted with a commercial kit, significant differences in the microbial composition of all three pools (mean distance of relative abundance: 24.1\%, mean distance of OTUs: 84.0\%) was discovered. In particular, the total DNA pool covers significantly fewer taxa than the cell-separated DNA pools and only inadequately represents the living community. Moreover, individual redundancy analyses revealed that the microbial community of the intra- and extracellular DNA pool are driven by different environmental factors. The living community is mainly influenced by life-dependent parameters (e.g., sedimentary matrix, water availability), while the extracellular DNA is dependent on the biogenic silica content. The different community-shaping parameters and the fact, that a redundancy analysis of the total DNA pool explains significantly less variance of the microbial community, indicate that the total DNA represents a mixture of signals of the live and dead microbial community. This work provides the first fundamental data basis of the diversity and distribution of microbial deep biosphere communities of a lake system over several million years. Moreover, it demonstrates the substantial importance of extracellular DNA in old sediments. These findings may strongly influence future environmental community analyses, where applications of live/dead differentiation avoid incorrect interpretations due to a failed extraction of the living microbial community or an overestimation of the past community diversity in the course of total DNA extraction approaches.}, language = {en} } @misc{Scheffler2017, author = {Scheffler, Tatjana}, title = {Root infinitives on Twitter}, series = {Snippets}, journal = {Snippets}, number = {31}, publisher = {Editioni Universit{\`a} di Lettere Economica Diritto}, address = {Milano}, issn = {1590-1807}, doi = {10.7358/snip-2017-031-sche}, pages = {24 -- 25}, year = {2017}, language = {en} } @misc{CastroGruneSpeckmann2017, author = {Castro, Jos{\´e} Pedro and Grune, Tilman and Speckmann, Bodo}, title = {The two faces of reactive oxygen species (ROS) in adipocyte function and dysfunction}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-398039}, pages = {16}, year = {2017}, abstract = {White adipose tissue (WAT) is actively involved in the regulation of whole-body energy homeostasis via storage/release of lipids and adipokine secretion. Current research links WAT dysfunction to the development of metabolic syndrome (MetS) and type 2 diabetes (T2D). The expansion of WAT during oversupply of nutrients prevents ectopic fat accumulation and requires proper preadipocyte-to-adipocyte differentiation. An assumed link between excess levels of reactive oxygen species (ROS), WAT dysfunction and T2D has been discussed controversially. While oxidative stress conditions have conclusively been detected in WAT of T2D patients and related animal models, clinical trials with antioxidants failed to prevent T2D or to improve glucose homeostasis. Furthermore, animal studies yielded inconsistent results regarding the role of oxidative stress in the development of diabetes. Here, we discuss the contribution of ROS to the (patho)physiology of adipocyte function and differentiation, with particular emphasis on sources and nutritional modulators of adipocyte ROS and their functions in signaling mechanisms controlling adipogenesis and functions of mature fat cells. We propose a concept of ROS balance that is required for normal functioning of WAT. We explain how both excessive and diminished levels of ROS, e.g. resulting from over supplementation with antioxidants, contribute to WAT dysfunction and subsequently insulin resistance.}, language = {en} } @phdthesis{Lachmann2017, author = {Lachmann, Sabrina C.}, title = {Ecophysiology matters: Inorganic carbon acquisition in green microalgae related to different nutrient conditions}, school = {Universit{\"a}t Potsdam}, pages = {178}, year = {2017}, language = {en} } @phdthesis{RobainaEstevez2017, author = {Robaina Estevez, Semidan}, title = {Context-specific metabolic predictions}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-401365}, school = {Universit{\"a}t Potsdam}, pages = {vi, 158}, year = {2017}, abstract = {All life-sustaining processes are ultimately driven by thousands of biochemical reactions occurring in the cells: the metabolism. These reactions form an intricate network which produces all required chemical compounds, i.e., metabolites, from a set of input molecules. Cells regulate the activity through metabolic reactions in a context-specific way; only reactions that are required in a cellular context, e.g., cell type, developmental stage or environmental condition, are usually active, while the rest remain inactive. The context-specificity of metabolism can be captured by several kinds of experimental data, such as by gene and protein expression or metabolite profiles. In addition, these context-specific data can be assimilated into computational models of metabolism, which then provide context-specific metabolic predictions. This thesis is composed of three individual studies focussing on context-specific experimental data integration into computational models of metabolism. The first study presents an optimization-based method to obtain context-specific metabolic predictions, and offers the advantage of being fully automated, i.e., free of user defined parameters. The second study explores the effects of alternative optimal solutions arising during the generation of context-specific metabolic predictions. These alternative optimal solutions are metabolic model predictions that represent equally well the integrated data, but that can markedly differ. This study proposes algorithms to analyze the space of alternative solutions, as well as some ways to cope with their impact in the predictions. Finally, the third study investigates the metabolic specialization of the guard cells of the plant Arabidopsis thaliana, and compares it with that of a different cell type, the mesophyll cells. To this end, the computational methods developed in this thesis are applied to obtain metabolic predictions specific to guard cell and mesophyll cells. These cell-specific predictions are then compared to explore the differences in metabolic activity between the two cell types. In addition, the effects of alternative optima are taken into consideration when comparing the two cell types. The computational results indicate a major reorganization of the primary metabolism in guard cells. These results are supported by an independent 13C labelling experiment.}, language = {en} } @article{HansenMeyerFerrarietal.2017, author = {Hansen, Bjoern Oest and Meyer, Etienne H. and Ferrari, Camilla and Vaid, Neha and Movahedi, Sara and Vandepoele, Klaas and Nikoloski, Zoran and Mutwil, Marek}, title = {Ensemble gene function prediction database reveals genes important for complex I formation in Arabidopsis thaliana}, series = {New phytologist : international journal of plant science}, volume = {217}, journal = {New phytologist : international journal of plant science}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {0028-646X}, doi = {10.1111/nph.14921}, pages = {1521 -- 1534}, year = {2017}, abstract = {Recent advances in gene function prediction rely on ensemble approaches that integrate results from multiple inference methods to produce superior predictions. Yet, these developments remain largely unexplored in plants. We have explored and compared two methods to integrate 10 gene co-function networks for Arabidopsis thaliana and demonstrate how the integration of these networks produces more accurate gene function predictions for a larger fraction of genes with unknown function. These predictions were used to identify genes involved in mitochondrial complex I formation, and for five of them, we confirmed the predictions experimentally. The ensemble predictions are provided as a user-friendly online database, EnsembleNet. The methods presented here demonstrate that ensemble gene function prediction is a powerful method to boost prediction performance, whereas the EnsembleNet database provides a cutting-edge community tool to guide experimentalists.}, language = {en} } @article{ZibulskiWesenerWilkesetal.2017, author = {Zibulski, Romy and Wesener, Felix and Wilkes, Heinz and Plessen, Birgit and Pestryakova, Luidmila Agafyevna and Herzschuh, Ulrike}, title = {C / N ratio, stable isotope (delta C-13, delta N-15), and n-alkane patterns of brown mosses along hydrological gradients of low-centred polygons of the Siberian Arctic}, series = {Biogeosciences}, volume = {14}, journal = {Biogeosciences}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1726-4170}, doi = {10.5194/bg-14-1617-2017}, pages = {1617 -- 1630}, year = {2017}, abstract = {Mosses are a major component of the arctic vegetation, particularly in wetlands. We present C / N atomic ratio, delta C-13 and delta N-15 data of 400 brown-moss samples belonging to 10 species that were collected along hydrological gradients within polygonal mires located on the southern Taymyr Peninsula and the Lena River delta in northern Siberia. Additionally, n-alkane patterns of six of these species (16 samples) were investigated. The aim of the study is to see whether the inter-and intraspecific differences in C / N, isotopic compositions and n-alkanes are indicative of habitat, particularly with respect to water level. Overall, we find high variability in all investigated parameters for two different moisture-related groups of moss species. The C / N ratios range between 11 and 53 (median: 32) and show large variations at the intraspecific level. However, species preferring a dry habitat (xero-mesophilic mosses) show higher C / N ratios than those preferring a wet habitat (meso-hygrophilic mosses). The delta C-13 values range between 37.0 and 22.5\% (median D 27.8 \%). The delta N-15 values range between 6.6 and C 1.7\%(median D 2.2 \%). We find differences in delta C-13 and delta N-15 compositions between both habitat types. For some species of the meso-hygrophilic group, we suggest that a relationship between the individ-ual habitat water level and isotopic composition can be inferred as a function of microbial symbiosis. The n-alkane distribution also shows differences primarily between xeromesophilic and meso-hygrophilic mosses, i. e. having a dominance of n-alkanes with long (n-C29, n-C31 /and intermediate (n-C25 /chain lengths, respectively. Overall, our results reveal that C / N ratios, isotopic signals and n-alkanes of studied brown-moss taxa from polygonal wetlands are characteristic of their habitat.}, language = {en} } @misc{WurzbacherFuchsAttermeyeretal.2017, author = {Wurzbacher, Christian and Fuchs, Andrea and Attermeyer, Katrin and Frindte, Katharina and Grossart, Hans-Peter and Hupfer, Michael and Casper, Peter and Monaghan, Michael T.}, title = {Shifts among Eukaryota, Bacteria, and Archaea define the vertical organization of a lake sediment}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1111}, issn = {1866-8372}, doi = {10.25932/publishup-43196}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-431965}, pages = {18}, year = {2017}, abstract = {Background Lake sediments harbor diverse microbial communities that cycle carbon and nutrients while being constantly colonized and potentially buried by organic matter sinking from the water column. The interaction of activity and burial remained largely unexplored in aquatic sediments. We aimed to relate taxonomic composition to sediment biogeochemical parameters, test whether community turnover with depth resulted from taxonomic replacement or from richness effects, and to provide a basic model for the vertical community structure in sediments. Methods We analyzed four replicate sediment cores taken from 30-m depth in oligo-mesotrophic Lake Stechlin in northern Germany. Each 30-cm core spanned ca. 170 years of sediment accumulation according to 137Cs dating and was sectioned into layers 1-4 cm thick. We examined a full suite of biogeochemical parameters and used DNA metabarcoding to examine community composition of microbial Archaea, Bacteria, and Eukaryota. Results Community β-diversity indicated nearly complete turnover within the uppermost 30 cm. We observed a pronounced shift from Eukaryota- and Bacteria-dominated upper layers (<5 cm) to Bacteria-dominated intermediate layers (5-14 cm) and to deep layers (>14 cm) dominated by enigmatic Archaea that typically occur in deep-sea sediments. Taxonomic replacement was the prevalent mechanism in structuring the community composition and was linked to parameters indicative of microbial activity (e.g., CO2 and CH4 concentration, bacterial protein production). Richness loss played a lesser role but was linked to conservative parameters (e.g., C, N, P) indicative of past conditions. Conclusions By including all three domains, we were able to directly link the exponential decay of eukaryotes with the active sediment microbial community. The dominance of Archaea in deeper layers confirms earlier findings from marine systems and establishes freshwater sediments as a potential low-energy environment, similar to deep sea sediments. We propose a general model of sediment structure and function based on microbial characteristics and burial processes. An upper "replacement horizon" is dominated by rapid taxonomic turnover with depth, high microbial activity, and biotic interactions. A lower "depauperate horizon" is characterized by low taxonomic richness, more stable "low-energy" conditions, and a dominance of enigmatic Archaea.}, language = {en} } @article{WurzbacherFuchsAttermeyeretal.2017, author = {Wurzbacher, Christian and Fuchs, Andrea and Attermeyer, Katrin and Frindte, Katharina and Grossart, Hans-Peter and Hupfer, Michael and Casper, Peter and Monaghan, Michael T.}, title = {Shifts among Eukaryota, Bacteria, and Archaea define the vertical organization of a lake sediment}, series = {Microbiome}, volume = {5}, journal = {Microbiome}, publisher = {BioMed Central}, address = {London}, issn = {2049-2618}, doi = {10.1186/s40168-017-0255-9}, pages = {16}, year = {2017}, abstract = {Background: Lake sediments harbor diverse microbial communities that cycle carbon and nutrients while being constantly colonized and potentially buried by organic matter sinking from the water column. The interaction of activity and burial remained largely unexplored in aquatic sediments. We aimed to relate taxonomic composition to sediment biogeochemical parameters, test whether community turnover with depth resulted from taxonomic replacement or from richness effects, and to provide a basic model for the vertical community structure in sediments. Methods: We analyzed four replicate sediment cores taken from 30-m depth in oligo-mesotrophic Lake Stechlin in northern Germany. Each 30-cm core spanned ca. 170 years of sediment accumulation according to Cs-137 dating and was sectioned into layers 1-4 cm thick. We examined a full suite of biogeochemical parameters and used DNA metabarcoding to examine community composition of microbial Archaea, Bacteria, and Eukaryota. Results: Community beta-diversity indicated nearly complete turnover within the uppermost 30 cm. We observed a pronounced shift from Eukaryota- and Bacteria-dominated upper layers (<5 cm) to Bacteria-dominated intermediate layers (5-14 cm) and to deep layers (>14 cm) dominated by enigmatic Archaea that typically occur in deep-sea sediments. Taxonomic replacement was the prevalent mechanism in structuring the community composition and was linked to parameters indicative of microbial activity (e.g., CO2 and CH4 concentration, bacterial protein production). Richness loss played a lesser role but was linked to conservative parameters (e.g., C, N, P) indicative of past conditions. Conclusions: By including all three domains, we were able to directly link the exponential decay of eukaryotes with the active sediment microbial community. The dominance of Archaea in deeper layers confirms earlier findings from marine systems and establishes freshwater sediments as a potential low-energy environment, similar to deep sea sediments. We propose a general model of sediment structure and function based on microbial characteristics and burial processes. An upper "replacement horizon" is dominated by rapid taxonomic turnover with depth, high microbial activity, and biotic interactions. A lower "depauperate horizon" is characterized by low taxonomic richness, more stable "low-energy" conditions, and a dominance of enigmatic Archaea.}, language = {en} } @misc{ZimmermannRaschkeEppetal.2017, author = {Zimmermann, Heike Hildegard and Raschke, Elena and Epp, Laura Saskia and Stoof-Leichsenring, Kathleen Rosemarie and Schwamborn, Georg and Schirrmeister, Lutz and Overduin, Pier Paul and Herzschuh, Ulrike}, title = {Sedimentary ancient DNA and pollen reveal the composition of plant organic matter in Late Quaternary permafrost sediments of the Buor Khaya Peninsula (north-eastern Siberia)}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {670}, issn = {1866-8372}, doi = {10.25932/publishup-41713}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-417130}, pages = {22}, year = {2017}, abstract = {Organic matter deposited in ancient, ice-rich permafrost sediments is vulnerable to climate change and may contribute to the future release of greenhouse gases; it is thus important to get a better characterization of the plant organic matter within such sediments. From a Late Quaternary permafrost sediment core from the Buor Khaya Peninsula, we analysed plant-derived sedimentary ancient DNA (sedaDNA) to identify the taxonomic composition of plant organic matter, and undertook palynological analysis to assess the environmental conditions during deposition. Using sedaDNA, we identified 154 taxa and from pollen and non-pollen palynomorphs we identified 83 taxa. In the deposits dated between 54 and 51 kyr BP, sedaDNA records a diverse low-centred polygon plant community including recurring aquatic pond vegetation while from the pollen record we infer terrestrial open-land vegetation with relatively dry environmental conditions at a regional scale. A fluctuating dominance of either terrestrial or swamp and aquatic taxa in both proxies allowed the local hydrological development of the polygon to be traced. In deposits dated between 11.4 and 9.7 kyr BP (13.4-11.1 cal kyr BP), sedaDNA shows a taxonomic turnover to moist shrub tundra and a lower taxonomic richness compared to the older samples. Pollen also records a shrub tundra community, mostly seen as changes in relative proportions of the most dominant taxa, while a decrease in taxonomic richness was less pronounced compared to sedaDNA. Our results show the advantages of using sedaDNA in combination with palynological analyses when macrofossils are rarely preserved. The high resolution of the sedaDNA record provides a detailed picture of the taxonomic composition of plant-derived organic matter throughout the core, and palynological analyses prove valuable by allowing for inferences of regional environmental conditions.}, language = {en} } @phdthesis{Kruse2017, author = {Kruse, Stefan}, title = {Larix treeline dynamics in northern Siberia inferred from population genetics and individual-based modelling}, school = {Universit{\"a}t Potsdam}, pages = {181}, year = {2017}, language = {en} } @misc{WeisserStueblerMatheisetal.2017, author = {Weisser, Karin and St{\"u}bler, Sabine and Matheis, Walter and Huisinga, Wilhelm}, title = {Towards toxicokinetic modelling of aluminium exposure from adjuvants in medicinal products}, series = {Regulatory toxicology and pharmacology : official journal of the International Society for Regulatory Toxicology and Pharmacology}, volume = {88}, journal = {Regulatory toxicology and pharmacology : official journal of the International Society for Regulatory Toxicology and Pharmacology}, publisher = {Elsevier}, address = {San Diego}, issn = {0273-2300}, doi = {10.1016/j.yrtph.2017.02.018}, pages = {310 -- 321}, year = {2017}, abstract = {As a potentially toxic agent on nervous system and bone, the safety of aluminium exposure from adjuvants in vaccines and subcutaneous immune therapy (SCIT) products has to be continuously reevaluated, especially regarding concomitant administrations. For this purpose, knowledge on absorption and disposition of aluminium in plasma and tissues is essential. Pharmacokinetic data after vaccination in humans, however, are not available, and for methodological and ethical reasons difficult to obtain. To overcome these limitations, we discuss the possibility of an in vitro-in silico approach combining a toxicokinetic model for aluminium disposition with biorelevant kinetic absorption parameters from adjuvants. We critically review available kinetic aluminium-26 data for model building and, on the basis of a reparameterized toxicokinetic model (Nolte et al., 2001), we identify main modelling gaps. The potential of in vitro dissolution experiments for the prediction of intramuscular absorption kinetics of aluminium after vaccination is explored. It becomes apparent that there is need for detailed in vitro dissolution and in vivo absorption data to establish an in vitro-in vivo correlation (IVIVC) for aluminium adjuvants. We conclude that a combination of new experimental data and further refinement of the Nolte model has the potential to fill a gap in aluminium risk assessment. (C) 2017 Elsevier Inc. All rights reserved.}, language = {en} } @phdthesis{Hethey2017, author = {Hethey, Christoph Philipp}, title = {Cell physiology based pharmacodynamic modeling of antimicrobial drug combinations}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-401056}, school = {Universit{\"a}t Potsdam}, pages = {102}, year = {2017}, abstract = {Mathematical models of bacterial growth have been successfully applied to study the relationship between antibiotic drug exposure and the antibacterial effect. Since these models typically lack a representation of cellular processes and cell physiology, the mechanistic integration of drug action is not possible on the cellular level. The cellular mechanisms of drug action, however, are particularly relevant for the prediction, analysis and understanding of interactions between antibiotics. Interactions are also studied experimentally, however, a lacking consent on the experimental protocol hinders direct comparison of results. As a consequence, contradictory classifications as additive, synergistic or antagonistic are reported in literature. In the present thesis we developed a novel mathematical model for bacterial growth that integrates cell-level processes into the population growth level. The scope of the model is to predict bacterial growth under antimicrobial perturbation by multiple antibiotics in vitro. To this end, we combined cell-level data from literature with population growth data for Bacillus subtilis, Escherichia coli and Staphylococcus aureus. The cell-level data described growth-determining characteristics of a reference cell, including the ribosomal concentration and efficiency. The population growth data comprised extensive time-kill curves for clinically relevant antibiotics (tetracycline, chloramphenicol, vancomycin, meropenem, linezolid, including dual combinations). The new cell-level approach allowed for the first time to simultaneously describe single and combined effects of the aforementioned antibiotics for different experimental protocols, in particular different growth phases (lag and exponential phase). Consideration of ribosomal dynamics and persisting sub-populations explained the decreased potency of linezolid on cultures in the lag phase compared to exponential phase cultures. The model captured growth rate dependent killing and auto-inhibition of meropenem and - also for vancomycin exposure - regrowth of the bacterial cultures due to adaptive resistance development. Stochastic interaction surface analysis demonstrated the pronounced antagonism between meropenem and linezolid to be robust against variation in the growth phase and pharmacodynamic endpoint definition, but sensitive to a change in the experimental duration. Furthermore, the developed approach included a detailed representation of the bacterial cell-cycle. We used this representation to describe septation dynamics during the transition of a bacterial culture from the exponential to stationary growth phase. Resulting from a new mechanistic understanding of transition processes, we explained the lag time between the increase in cell number and bacterial biomass during the transition from the lag to exponential growth phase. Furthermore, our model reproduces the increased intracellular RNA mass fraction during long term exposure of bacteria to chloramphenicol. In summary, we contribute a new approach to disentangle the impact of drug effects, assay readout and experimental protocol on antibiotic interactions. In the absence of a consensus on the corresponding experimental protocols, this disentanglement is key to translate information between heterogeneous experiments and also ultimately to the clinical setting.}, language = {en} } @article{EhmannZollerMinichmayretal.2017, author = {Ehmann, Lisa and Zoller, Michael and Minichmayr, Iris K. and Scharf, Christina and Maier, Barbara and Schmitt, Maximilian V. and Hartung, Niklas and Huisinga, Wilhelm and Vogeser, Michael and Frey, Lorenz and Zander, Johannes and Kloft, Charlotte}, title = {Role of renal function in risk assessment of target non-attainment after standard dosing of meropenem in critically ill patients}, series = {Critical care}, volume = {21}, journal = {Critical care}, publisher = {BioMed Central}, address = {London}, issn = {1466-609X}, doi = {10.1186/s13054-017-1829-4}, pages = {14}, year = {2017}, abstract = {Background: Severe bacterial infections remain a major challenge in intensive care units because of their high prevalence and mortality. Adequate antibiotic exposure has been associated with clinical success in critically ill patients. The objective of this study was to investigate the target attainment of standard meropenem dosing in a heterogeneous critically ill population, to quantify the impact of the full renal function spectrum on meropenem exposure and target attainment, and ultimately to translate the findings into a tool for practical application. Methods: A prospective observational single-centre study was performed with critically ill patients with severe infections receiving standard dosing of meropenem. Serial blood samples were drawn over 4 study days to determine meropenem serum concentrations. Renal function was assessed by creatinine clearance according to the Cockcroft and Gault equation (CLCRCG). Variability in meropenem serum concentrations was quantified at the middle and end of each monitored dosing interval. The attainment of two pharmacokinetic/pharmacodynamic targets (100\% T->MIC, 50\% T->4xMIC) was evaluated for minimum inhibitory concentration (MIC) values of 2 mg/L and 8 mg/L and standard meropenem dosing (1000 mg, 30-minute infusion, every 8 h). Furthermore, we assessed the impact of CLCRCG on meropenem concentrations and target attainment and developed a tool for risk assessment of target non-attainment. Results: Large inter-and intra-patient variability in meropenem concentrations was observed in the critically ill population (n = 48). Attainment of the target 100\% T->MIC was merely 48.4\% and 20.6\%, given MIC values of 2 mg/L and 8 mg/L, respectively, and similar for the target 50\% T->4xMIC. A hyperbolic relationship between CLCRCG (25-255 ml/minute) and meropenem serum concentrations at the end of the dosing interval (C-8h) was derived. For infections with pathogens of MIC 2 mg/L, mild renal impairment up to augmented renal function was identified as a risk factor for target non-attainment (for MIC 8 mg/L, additionally, moderate renal impairment). Conclusions: The investigated standard meropenem dosing regimen appeared to result in insufficient meropenem exposure in a considerable fraction of critically ill patients. An easy-and free-to-use tool (the MeroRisk Calculator) for assessing the risk of target non-attainment for a given renal function and MIC value was developed.}, language = {en} } @misc{ZibulskiWesenerWilkesetal.2017, author = {Zibulski, Romy and Wesener, Felix and Wilkes, Heinz and Plessen, Birgit and Pestryakova, Luidmila Agafyevna and Herzschuh, Ulrike}, title = {C / N ratio, stable isotope (δ 13 C, δ 15 N), and n-alkane patterns of brown mosses along hydrological gradients of low-centred polygons of the Siberian Arctic}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {672}, issn = {1866-8372}, doi = {10.25932/publishup-41710}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-417104}, pages = {14}, year = {2017}, abstract = {Mosses are a major component of the arctic vegetation, particularly in wetlands. We present C / N atomic ratio, delta C-13 and delta N-15 data of 400 brown-moss samples belonging to 10 species that were collected along hydrological gradients within polygonal mires located on the southern Taymyr Peninsula and the Lena River delta in northern Siberia. Additionally, n-alkane patterns of six of these species (16 samples) were investigated. The aim of the study is to see whether the inter-and intraspecific differences in C / N, isotopic compositions and n-alkanes are indicative of habitat, particularly with respect to water level. Overall, we find high variability in all investigated parameters for two different moisture-related groups of moss species. The C / N ratios range between 11 and 53 (median: 32) and show large variations at the intraspecific level. However, species preferring a dry habitat (xero-mesophilic mosses) show higher C / N ratios than those preferring a wet habitat (meso-hygrophilic mosses). The delta C-13 values range between 37.0 and 22.5\% (median D 27.8 \%). The delta N-15 values range between 6.6 and C 1.7\%(median D 2.2 \%). We find differences in delta C-13 and delta N-15 compositions between both habitat types. For some species of the meso-hygrophilic group, we suggest that a relationship between the individ-ual habitat water level and isotopic composition can be inferred as a function of microbial symbiosis. The n-alkane distribution also shows differences primarily between xeromesophilic and meso-hygrophilic mosses, i. e. having a dominance of n-alkanes with long (n-C29, n-C31 /and intermediate (n-C25 /chain lengths, respectively. Overall, our results reveal that C / N ratios, isotopic signals and n-alkanes of studied brown-moss taxa from polygonal wetlands are characteristic of their habitat.}, language = {en} } @article{ShahnejatBushehriAlluMehterovetal.2017, author = {Shahnejat-Bushehri, Sara and Allu, Annapurna Devi and Mehterov, Nikolay and Thirumalaikumar, Venkatesh P. and Alseekh, Saleh and Fernie, Alisdair R. and Mueller-Roeber, Bernd and Balazadeh, Salma}, title = {Arabidopsis NAC Transcription Factor JUNGBRUNNEN1 Exerts Conserved Control Over Gibberellin and Brassinosteroid Metabolism and Signaling Genes in Tomato}, series = {Frontiers in plant science}, volume = {8}, journal = {Frontiers in plant science}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2017.00214}, pages = {13}, year = {2017}, abstract = {The Arabidopsis thaliana NAC transcription factor JUNGBRUNNEN1 (AtJUB1) regulates growth by directly repressing GA3ox1 and DWF4, two key genes involved in gibberellin (GA) and brassinosteroid (BR) biosynthesis, respectively, leading to GA and BR deficiency phenotypes. AtJUB1 also reduces the expression of PIF4, a bHLH transcription factor that positively controls cell elongation, while it stimulates the expression of DELLA genes, which are important repressors of growth. Here, we extend our previous findings by demonstrating that AtJUB1 induces similar GA and BR deficiency phenotypes and changes in gene expression when overexpressed in tomato (Solanum lycopersicum). Importantly, and in accordance with the growth phenotypes observed, AtJUB1 inhibits the expression of growth-supporting genes, namely the tomato orthologs of GA3ox1, DWF4 and PIF4, but activates the expression of DELLA orthologs, by directly binding to their promoters. Overexpression of AtJUB1 in tomato delays fruit ripening, which is accompanied by reduced expression of several ripeningrelated genes, and leads to an increase in the levels of various amino acids (mostly proline, beta-alanine, and phenylalanine), gamma-aminobutyric acid (GABA), and major organic acids including glutamic acid and aspartic acid. The fact that AtJUB1 exerts an inhibitory effect on the GA/BR biosynthesis and PIF4 genes but acts as a direct activator of DELLA genes in both, Arabidopsis and tomato, strongly supports the model that the molecular constituents of the JUNGBRUNNEN1 growth control module are considerably conserved across species.}, language = {en} } @phdthesis{deSouza2017, author = {de Souza, Leonardo Perez}, title = {Functional characterization of biosynthesis and regulation of plant secondary metabolism}, school = {Universit{\"a}t Potsdam}, pages = {102}, year = {2017}, language = {en} } @misc{KramerLenhard2017, author = {Kramer, Elena M. and Lenhard, Michael}, title = {Shape and form in plant development}, series = {Seminars in cell \& developmental biology}, volume = {79}, journal = {Seminars in cell \& developmental biology}, publisher = {Elsevier}, address = {London}, issn = {1084-9521}, doi = {10.1016/j.semcdb.2017.11.004}, pages = {1 -- 2}, year = {2017}, language = {en} } @article{TaubeGanzertGrossartetal.2017, author = {Taube, Robert and Ganzert, Lars and Grossart, Hans-Peter and Gleixner, Gerd and Premke, Katrin}, title = {Organic matter quality structures benthic fatty acid patterns and the abundance of fungi and bacteria in temperate lakes}, series = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, volume = {610}, journal = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0048-9697}, doi = {10.1016/j.scitotenv.2017.07.256}, pages = {469 -- 481}, year = {2017}, abstract = {Benthic microbial communities (BMCs) play important roles in the carbon cycle of lakes, and benthic littoral zones in particular have been previously highlighted as biogeochemical hotspots. Dissolved organic matter (DOM) presents the major carbon pool in lakes, and although the effect of DOM composition on the pelagic microbial community composition is widely accepted, little is known about its effect on BMCs, particularly aquatic fungi. Therefore, we investigated the composition of benthic littoral microbial communities in twenty highly diverse lakes in northeast Germany. DOM quality was analyzed via size exclusion chromatography (SEC), fluorescence parallel factor analyses (PRAFACs) and UV-Vis spectroscopy. We determined the BMC composition and biomass using phospholipid-derived fatty acids (PLFA) and extended the interpretation to the analysis of fungi by applying a Bayesian mixed model. We present evidence that the quality of DOM structures the BMCs, which are dominated by heterotrophic bacteria and show low fungal biomass. The fungal biomass increases when the DOM pool is processed by microorganisms of allochthonous origin, whereas the opposite is true for bacteria.}, language = {en} } @misc{ReilRosenfeldImholtetal.2017, author = {Reil, Daniela and Rosenfeld, Ulrike and Imholt, Christian and Schmidt, Sabrina and Ulrich, Rainer G. and Eccard, Jana and Jacob, Jens}, title = {Puumala hantavirus infections in bank vole populations}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {957}, issn = {1866-8372}, doi = {10.25932/publishup-43123}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-431232}, pages = {15}, year = {2017}, abstract = {Background In Europe, bank voles (Myodes glareolus) are widely distributed and can transmit Puumala virus (PUUV) to humans, which causes a mild to moderate form of haemorrhagic fever with renal syndrome, called nephropathia epidemica. Uncovering the link between host and virus dynamics can help to prevent human PUUV infections in the future. Bank voles were live trapped three times a year in 2010-2013 in three woodland plots in each of four regions in Germany. Bank vole population density was estimated and blood samples collected to detect PUUV specific antibodies. Results We demonstrated that fluctuation of PUUV seroprevalence is dependent not only on multi-annual but also on seasonal dynamics of rodent host abundance. Moreover, PUUV infection might affect host fitness, because seropositive individuals survived better from spring to summer than uninfected bank voles. Individual space use was independent of PUUV infections. Conclusions Our study provides robust estimations of relevant patterns and processes of the dynamics of PUUV and its rodent host in Central Europe, which are highly important for the future development of predictive models for human hantavirus infection risk.}, language = {en} } @article{NietzscheGuerraAlseekhetal.2017, author = {Nietzsche, Madlen and Guerra, Tiziana and Alseekh, Saleh and Wiermer, Marcel and Sonnewald, Sophia and Fernie, Alisdair R. and B{\"o}rnke, Frederik}, title = {STOREKEEPER RELATED1/G-Element Binding Protein (STKR1) Interacts with Protein Kinase SnRK1}, series = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, volume = {176}, journal = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, number = {2}, publisher = {American Society of Plant Physiologists}, address = {Rockville}, issn = {0032-0889}, doi = {10.1104/pp.17.01461}, pages = {1773 -- 1792}, year = {2017}, abstract = {Sucrose nonfermenting related kinase1 (SnRK1) is a conserved energy sensor kinase that regulates cellular adaptation to energy deficit in plants. Activation of SnRK1 leads to the down-regulation of ATP-consuming biosynthetic processes and the stimulation of energy-generating catabolic reactions by transcriptional reprogramming and posttranslational modifications. Although considerable progress has been made during the last years in understanding the SnRK1 signaling pathway, many of its components remain unidentified. Here, we show that the catalytic alpha-subunits KIN10 and KIN11 of the Arabidopsis (Arabidopsis thaliana) SnRK1 complex interact with the STOREKEEPER RELATED1/G-Element Binding Protein (STKR1) inside the plant cell nucleus. Overexpression of STKR1 in transgenic Arabidopsis plants led to reduced growth, a delay in flowering, and strongly attenuated senescence. Metabolite profiling revealed that the transgenic lines exhausted their carbohydrates during the dark period to a greater extent than the wild type and accumulated a range of amino acids. At the global transcriptome level, genes affected by STKR1 overexpression were broadly associated with systemic acquired resistance, and transgenic plants showed enhanced resistance toward a virulent strain of the biotrophic oomycete pathogen Hyaloperonospora arabidopsidis Noco2. We discuss a possible connection of STKR1 function, SnRK1 signaling, and plant immunity.}, language = {en} } @article{ReilImholtRosenfeldetal.2017, author = {Reil, Daniela and Imholt, Christian and Rosenfeld, Ulrike and Drewes, Stephan and Fischer, S. and Heuser, Emil and Petraityte-Burneikiene, Rasa and Ulrich, R. G. and Jacob, J.}, title = {Validation of the Puumala virus rapid field test for bank voles in Germany}, series = {Epidemiology and infection}, volume = {145}, journal = {Epidemiology and infection}, number = {3}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {0950-2688}, doi = {10.1017/S0950268816002557}, pages = {434 -- 439}, year = {2017}, abstract = {Puumala virus (PUUV) causes many human infections in large parts of Europe and can lead to mild to moderate disease. The bank vole (Myodes glareolus) is the only reservoir of PUUV in Central Europe. A commercial PUUV rapid field test for rodents was validated for bank-vole blood samples collected in two PUUV-endemic regions in Germany (North Rhine-Westphalia and Baden-Wurttemberg). A comparison of the results of the rapid field test and standard ELISAs indicated a test efficacy of 93-95\%, largely independent of the origin of the antigens used in the ELISA. In ELISAs, reactivity for the German PUUV strain was higher compared to the Swedish strain but not compared to the Finnish strain, which was used for the rapid field test. In conclusion, the use of the rapid field test can facilitate short-term estimation of PUUV seroprevalence in bank-vole populations in Germany and can aid in assessing human PUUV infection risk.}, language = {en} } @article{ReilRosenfeldImholtetal.2017, author = {Reil, Daniela and Rosenfeld, Ulrike and Imholt, Christian and Schmidt, Sabrina and Ulrich, Rainer G. and Eccard, Jana and Jacob, Jens}, title = {Puumala hantavirus infections in bank vole populations}, series = {BMC ecology}, volume = {17}, journal = {BMC ecology}, publisher = {BioMed Central}, address = {London}, issn = {1472-6785}, doi = {10.1186/s12898-017-0118-z}, pages = {13}, year = {2017}, abstract = {Background In Europe, bank voles (Myodes glareolus) are widely distributed and can transmit Puumala virus (PUUV) to humans, which causes a mild to moderate form of haemorrhagic fever with renal syndrome, called nephropathia epidemica. Uncovering the link between host and virus dynamics can help to prevent human PUUV infections in the future. Bank voles were live trapped three times a year in 2010-2013 in three woodland plots in each of four regions in Germany. Bank vole population density was estimated and blood samples collected to detect PUUV specific antibodies. Results We demonstrated that fluctuation of PUUV seroprevalence is dependent not only on multi-annual but also on seasonal dynamics of rodent host abundance. Moreover, PUUV infection might affect host fitness, because seropositive individuals survived better from spring to summer than uninfected bank voles. Individual space use was independent of PUUV infections. Conclusions Our study provides robust estimations of relevant patterns and processes of the dynamics of PUUV and its rodent host in Central Europe, which are highly important for the future development of predictive models for human hantavirus infection risk}, language = {en} }