@phdthesis{Becker2009, author = {Becker, Marion}, title = {Bedeutung eines hydrophoben Seitenkettenstapels f{\"u}r Stabilit{\"a}t, Faltung und Struktur des P22 Tailspikeproteins}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-42674}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {Das homotrimere Tailspikeadh{\"a}sin des Bakteriophagen P22 ist ein etabliertes Modellsystem, dessen Faltung, Assemblierung und Stabilit{\"a}t in vivo und in vitro umfassend charakterisiert ist. Das zentrale Strukturmotiv des Proteins ist eine parallele beta-Helix mit 13 Windungen, die von einer N‑terminalen Kapsidbindedom{\"a}ne und einer C‑terminalen Trimerisierungsdom{\"a}ne flankiert wird. Jede Windung beinhaltet drei kurze beta-Str{\"a}nge, die durch turns und loops unterschiedlicher L{\"a}nge verbunden sind. Durch den sich strukturell wiederholenden, spulenf{\"o}rmigen Aufbau formen beta-Str{\"a}nge benachbarter Windungen elongierte beta-Faltbl{\"a}tter. Das Lumen der beta-Helix beinhaltet gr{\"o}ßtenteils hydrophobe Seitenketten, welche linear und sehr regelm{\"a}ßig entlang der L{\"a}ngsachse gestapelt sind. Eine hoch repetitive Struktur, ausgedehnte beta-Faltbl{\"a}tter und die regelm{\"a}ßige Anordnung von {\"a}hnlichen oder identischen Seitenketten entlang der beta-Faltblattachse sind ebenfalls typische Kennzeichen von Amyloidfibrillen, die bei Proteinfaltungskrankheiten wie Alzheimer, der Creutzfeld-Jakob-Krankheit, Chorea Huntington und Typ-II-Diabetes gebildet werden. Es wird vermutet, dass die hohe Stabilit{\"a}t des Tailspikeproteins und auch die der Amyloidfibrille durch Seitenkettenstapelung, einem geordneten Netzwerk von Wasserstoffbr{\"u}ckenbindungen und den rigiden, oligomeren Verbund bedingt ist. Um den Einfluss der Seitenkettenstapelung auf die Stabilit{\"a}t, Faltung und Struktur des P22 Tailspikeproteins zu untersuchen, wurden sieben Valine in einem im Lumen der beta-Helix begrabenen Seitenkettenstapel gegen das kleinere und weniger hydrophobe Alanin und das volumin{\"o}sere Leucin substituiert. Der Einfluss der Mutationen wurde anhand zweier Tailspikevarianten, dem trimeren, N‑terminal verk{\"u}rzten TSPdeltaN‑Konstrukt und der monomeren, isolierten beta-Helix Dom{\"a}ne analysiert. Generell wurde in den Experimenten deutlich, dass Mutationen zu Alanin st{\"a}rkere Effekte ausl{\"o}sen als Mutationen zu Leucin. Die dichte und hydrophobe Packung im Kern der beta-Helix bildet somit die Basis f{\"u}r Stabilit{\"a}t und Faltung des Proteins. Anhand hoch aufgel{\"o}ster Kristallstrukturen jeweils zweier Alanin‑ und Leucin‑Mutanten konnte verdeutlicht werden, dass das Strukturmotiv der parallelen beta-Helix stark formbar ist und mutationsbedingte {\"A}nderungen des Seitenkettenvolumens durch kleine und lokale Verschiebung der Haupt‑ und Seitenketten ausgeglichen werden, sodass m{\"o}gliche Kavit{\"a}ten gef{\"u}llt und sterische Spannung abgebaut werden k{\"o}nnen. Viele Mutanten zeigten in vivo und in vitro einen temperatursensitiven Faltungsph{\"a}notyp (temperature sensitive for folding, tsf), d.h. bei Temperaturerh{\"o}hung waren die Ausbeuten des N‑terminal verk{\"u}rzten Trimers im Vergleich zum Wildtyp deutlich verringert. Weiterf{\"u}hrende Experimente zeigten, dass der tsf‑Ph{\"a}notyp durch die Beeinflussung unterschiedlicher Stadien des Reifungsprozesses oder auch durch die Verminderung der kinetischen Stabilit{\"a}t des nativen Trimers ausgel{\"o}st wurde. Durch Untersuchungen am vollst{\"a}ndigen und am N‑terminal verk{\"u}rzten Wildtypprotein wurde gezeigt, dass die Entfaltungsreaktion des Tailspiketrimers komplex ist. Die Verl{\"a}ufe der Kinetiken folgen zwar einem apparenten Zweizustandsverhalten, jedoch sind bei Darstellung der Entfaltungs{\"a}ste im Chevronplot die Abh{\"a}ngigkeiten der Geschwindigkeitskonstanten vom Denaturierungsmittel nicht linear, sondern in unterschiedliche Richtungen gew{\"o}lbt. Dieses Verhalten k{\"o}nnte durch ein hoch energetisches Entfaltungsintermediat, einen breiten {\"U}bergangsbereich oder parallele Entfaltungswege hervorgerufen sein. Mit Hilfe der monomeren, isolierten beta-Helix Dom{\"a}ne, bei der die N‑terminale Capsidbindedom{\"a}ne und die C‑terminale Trimerisierungsdom{\"a}ne deletiert sind und welche als unabh{\"a}ngige Faltungseinheit fungiert, wurde gezeigt, dass alle Mutanten im Harnstoff‑induzierten Gleichgewicht analog zum Wildtypprotein einem Zweizustandsverhalten mit vergleichbaren Kooperativit{\"a}ten folgen. Die konformationellen Stabilit{\"a}ten von in der beta-Helix zentral gelegenen Alanin‑ und Leucin‑Mutanten sind stark vermindert, w{\"a}hrend Mutationen in {\"a}ußeren Bereichen der Dom{\"a}ne keinen Einfluss auf die Stabilit{\"a}t der beta-Helix haben. Bei Verl{\"a}ngerung der Inkubationszeiten der Gleichgewichtsexperimente konnte die langsame Bildung von Aggregaten im {\"U}bergangsbereich der destabilisierten Mutanten detektiert werden. Die in der Arbeit erlangten Erkenntnisse lassen vermuten, dass die isolierte beta-Helix einem f{\"u}r die Reifung des Tailspikeproteins entscheidenden thermolabilen Faltungsintermediat auf Monomerebene sehr {\"a}hnlich ist. Im Intermediat ist ein zentraler Kern, der die Windungen 4 bis 7 und die „R{\"u}ckenflosse" beinhaltet, stabilit{\"a}tsbestimmend. Dieser Kern k{\"o}nnte als Faltungsnukleus dienen, an den sich sequenziell weitere Helixwindungen anlagern und im Zuge der „Monomerreifung" kompaktieren.}, language = {de} } @phdthesis{Baumgart2013, author = {Baumgart, Natalie}, title = {Faltungseigenschaften des extrazellul{\"a}ren Proteins Internalin J und seine Cysteinleiter}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-69603}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Internalin J (InlJ) geh{\"o}rt zu der Klasse der bakteriellen, cysteinhaltigen (leucine-rich repeat) LRR Proteine. Bei den Internalinen handelt es sich um meist invasions-assoziierte Proteine der Listerien. Die LRR-Dom{\"a}ne von InlJ ist aus 15 regelm{\"a}ßig wiederkehrenden, stark konservierten Sequenzeinheiten (repeats, 21 Aminos{\"a}uren) aufgebaut. Ein interessantes Detail dieses Internalins ist das stark konservierte Cystein innerhalb der repeats. Daraus ergibt sich eine ungew{\"o}hnliche Anordnung von 12 Cysteinen in einem Stapel. Die H{\"a}ufigkeit von Cysteinen in InlJ ist f{\"u}r ein extrazellul{\"a}res Protein von L. monocytogenes außergew{\"o}hnlich, und die Frage nach ihrer Funktion daher umso brennender. Im Vergleich zum ubiquit{\"a}ren Vorkommen der sogenannten repeat-Proteine in der Natur sind Studien zu ihrer Stabilit{\"a}t und Faltung nicht {\"a}quivalent vertreten. Die zentrale Eigenschaft der repeat-Proteine ist ihr modularer Aufbau, der durch einfache Topologie gekennzeichnet ist und auf kurzreichenden Wechselwirkungen basiert. Diese Topologie macht repeat-Proteine zu idealen Modellproteinen, um die stabilit{\"a}tsrelevanten Wechselwirkungen zu separieren und zuzuordnen. In der vorliegenden Arbeit wurde die Faltung und Entfaltung von InlJ umfassend charakterisiert und die Relevanz der Cysteine n{\"a}her beleuchtet. Die spektroskopische Charakterisierung von InlJ zeigte, dass dessen Faltungszustand durch zwei Tryptophane im N- und C-Terminus fluoreszenzspektroskopisch gut zug{\"a}nglich ist. Die thermodynamische Stabilit{\"a}t wurde mittels fluoreszenz-detektierten, Guanidiniumchlorid-induzierten Gleichgewichtsexperimenten bestimmt. Um die kinetischen Eigenschaften von InlJ zu erfassen, wurden die Faltungs- sowie die Entfaltungsreaktion spektroskopisch untersucht. Die Identifizierung der produktiven Faltungsreaktion war lediglich durch die Anwendung des reversen Doppelsprungexperiments m{\"o}glich. Die Auswertung erfolgte nach dem Zweizustandsmodell, wonach die Faltung dem „Alles-oder-Nichts" Prinzip folgt. Die G{\"u}ltigkeit dieser Annahme wurde durch die kinetische Charakterisierung best{\"a}tigt. Es wurde sowohl in den Gleichgewichtsexperimenten als auch in den kinetisch erhaltenen Daten eine hohe freie Stabilisierungsenthalpie festgestellt. Die hohe Stabilit{\"a}t von InlJ geht mit hoher Kooperativit{\"a}t einher. Die kinetischen Daten zeigen zudem, dass die hohe Kooperativit{\"a}t haupts{\"a}chlich der Faltungsreaktion entstammt. Der Tanford-Wert von 0.93 impliziert, dass die Oberfl{\"a}chen{\"a}nderung w{\"a}hrend der Faltung bereits zum gr{\"o}ßten Teil erfolgt ist, bevor der {\"U}bergangszustand ausgebildet wurde. Direkte strukturelle Informationen {\"u}ber den {\"U}bergangszustand wurden mit Hilfe von Mutationsstudien erhalten. Zu diesem Zweck wurden 12 der 14 Cysteine gegen ein Alanin ausgetauscht. Die repeats 1 bis 11 von InlJ beinhalten jeweils ein Cystein, deren Anordnung eine Leiter ergibt. Deren Substitutionen haben einen vergleichbar destabilisierenden Effekt auf InlJ von durchschnittlich 4.8 kJ/mol. Die Verlangsamung der Faltung deutet daraufhin, dass die Interaktionen der repeats 5 bis 11 im {\"U}bergangszustand bereits voll ausgebildet sind. Demnach liegt bei InlJ ein zentraler Faltungsnukleus vor. Im Rahmen dieser Promotionsarbeit wurde eine hohe Stabilit{\"a}t und ein stark-kooperatives Verhalten f{\"u}r das extrazellul{\"a}re Protein InlJ beobachtet. Diese Erkenntnisse k{\"o}nnten wichtige Beitr{\"a}ge zur Entwicklung artifizieller repeat-Proteine leisten, deren Verwendung sich stetig ausweitet.}, language = {de} } @phdthesis{Raffeiner2021, author = {Raffeiner, Margot}, title = {Funktionelle Charakterisierung des Xanthomonas Typ-III Effektorproteins XopS}, doi = {10.25932/publishup-52553}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-525532}, school = {Universit{\"a}t Potsdam}, pages = {IX, 185}, year = {2021}, abstract = {Angepasste Pathogene besitzen eine Reihe von Virulenzmechanismen, um pflanzliche Immunantworten unterhalb eines Schwellenwerts der effektiven Resistenz zu unterdr{\"u}cken. Dadurch sind sie in der Lage sich zu vermehren und Krankheiten auf einem bestimmten Wirt zu verursachen. Eine essentielle Virulenzstrategie Gram-negativer Bakterien ist die Translokation von sogenannten Typ-III Effektorproteinen (T3Es) direkt in die Wirtszelle. Dort st{\"o}ren diese die Immunantwort des Wirts oder f{\"o}rdern die Etablierung einer f{\"u}r das Pathogen g{\"u}nstigen Umgebung. Eine kritische Komponente der Pflanzenimmunit{\"a}t gegen eindringende Pathogene ist die schnelle transkriptionelle Umprogrammierung der angegriffenen Zelle. Viele adaptierte bakterielle Pflanzenpathogene verwenden T3Es, um die Induktion Abwehr-assoziierter Gene zu st{\"o}ren. Die Aufkl{\"a}rung von Effektor-Funktionen, sowie die Identifikation ihrer pflanzlichen Zielproteine sind f{\"u}r das Verst{\"a}ndnis der bakteriellen Pathogenese essentiell. Im Rahmen dieser Arbeit sollte das Typ-III Effektorprotein XopS aus Xanthomonas campestris pv. vesicatoria (Xcv) funktionell charakterisiert werden. Zudem lag hier ein besonderer Fokus auf der Untersuchung der Wechselwirkung zwischen XopS und seinem in Vorarbeiten identifizierten pflanzlichen Interaktionspartner WRKY40, einem transkriptionellen Regulator der Abwehr-assoziierten Genexpression. Es konnte gezeigt werden, dass XopS ein essentieller Virulenzfaktor des Phytopathogens Xcv w{\"a}hrend der pr{\"a}invasiven Immunantwort ist. So zeigten xopS-defiziente Xcv Bakterien bei einer Inokulation der Blattoberfl{\"a}che suszeptibler Paprika Pflanzen eine deutlich reduzierte Virulenz im Vergleich zum Xcv Wildtyp. Die Translokation von XopS durch Xcv, sowie die ektopische Expression von XopS in Arabidopsis oder N. benthamiana verhinderte das Schließen von Stomata als Reaktion auf Bakterien bzw. einem Pathogen-assoziierten Stimulus, wobei zudem gezeigt werden konnte, dass dies in einer WRKY40-abh{\"a}ngigen Weise geschieht. Weiter konnte gezeigt werden, dass XopS in der Lage ist, die Expression Abwehr-assoziierter Gene zu manipulieren. Dies deutet darauf hin, dass XopS sowohl in die pr{\"a}-als auch in die postinvasive, apoplastische Abwehr eingreift. Phytohormon-Signalnetzwerke spielen w{\"a}hrend des Aufbaus einer effizienten pflanzlichen Immunantwort eine wichtige Rolle. Hier konnte gezeigt werden, dass XopS mit genau diesen Signalnetzwerken zu interferieren scheint. Eine ektopische Expression des Effektors in Arabidopsis f{\"u}hrte beispielsweise zu einer signifikanten Induktion des Phytohormons Jasmons{\"a}ure (JA), w{\"a}hrend eine Infektion von suszeptiblen Paprika Pflanzen mit einem xopS-defizienten Xcv Stamm zu einer ebenfalls signifikanten Akkumulation des Salicyls{\"a}ure (SA)-Gehalts f{\"u}hrte. So kann zu diesem Zeitpunkt vermutet werden, dass XopS die Virulenz von Xcv f{\"o}rdert, indem JA-abh{\"a}ngige Signalwege induziert werden und es gleichzeitig zur Unterdr{\"u}ckung SA-abh{\"a}ngiger Signalwege kommt. Die Virus-induzierte Genstilllegung des XopS Interaktionspartners WRKY40a in Paprika erh{\"o}hte die Toleranz der Pflanze gegen{\"u}ber einer Xcv Infektion, was darauf hindeutet, dass es sich bei diesem Protein um einen transkriptionellen Repressor pflanzlicher Immunantworten handelt. Die Hypothese, dass WRKY40 die Abwehr-assoziierte Genexpression reprimiert, konnte hier {\"u}ber verschiedene experimentelle Ans{\"a}tze bekr{\"a}ftigt werden. So wurde beispielsweise gezeigt, dass die Expression von verschiedenen Abwehrgenen einschließlich des SA-abh{\"a}ngigen Gens PR1 und die des Negativregulators des JA-Signalwegs JAZ8 von WRKY40 gehemmt wird. Um bei einem Pathogenangriff die Abwehr-assoziierte Genexpression zu gew{\"a}hrleisten, muss WRKY40 als Negativregulator abgebaut werden. Vorarbeiten zeigten, dass WRKY40 {\"u}ber das 26S Proteasom abgebaut wird. In der hier vorliegenden Studie konnte weiter best{\"a}tigt, dass der T3E XopS zu einer Stabilisierung des WRKY40 Proteins f{\"u}hrt, indem er auf bislang ungekl{\"a}rte Weise dessen Abbau {\"u}ber das 26S Proteasom verhindert. Die Ergebnisse aus der hier vorliegenden Arbeit lassen die Vermutung zu, dass die Stabilisierung des Negativregulators der Immunantwort WRKY40 seitens XopS dazu f{\"u}hrt, dass eine dar{\"u}ber vermittelte Manipulation der Abwehr-assoziierten Genexpression, sowie eine Umsteuerung phytohormoneller Wechselwirkungen die Ausbreitung von Xcv auf suszeptiblen Paprikapflanzen f{\"o}rdert. Ein weiteres Ziel dieser Arbeit war es, weitere potentielle in planta Interaktionspartner von XopS zu identifizieren die f{\"u}r seine Interaktion mit WRKY40 bzw. f{\"u}r die Aufschl{\"u}sselung seines Wirkmechanismus relevant sein k{\"o}nnten. So konnte die Deubiquitinase UBP12 als weiterer pflanzlicher Interaktionspartner sowohl von XopS als auch von WRKY40 gefunden werden. Dieses Enzym ist in der Lage, die Ubiquitinierung von Substratproteinen zu modifizieren und seine Funktion k{\"o}nnte somit ein Bindeglied zwischen XopS und dessen Interferenz mit dem proteasomalen Abbau von WRKY40 sein. W{\"a}hrend einer kompatiblen Xcv-Wirtsinteraktion f{\"u}hrte die Virus-induzierte Genstilllegung von UBP12 zu einer reduzierten Resistenz der Pflanze gegen{\"u}ber des Pathogens Xcv, was auf dessen positiv-regulatorische Wirkung w{\"a}hrend der Immunantwort hindeutet. Zudem zeigten Western Blot Analysen, dass das Protein WRKY40 bei einer Herunterregulierung von UBP12 akkumuliert und dass diese Akkumulation von der Anwesenheit des T3Es XopS zus{\"a}tzlich verst{\"a}rkt wird. Weiterf{\"u}hrende Analysen zur biochemischen Charakterisierung der XopS/WRKY40/UBP12 Interaktion sollten in Zukunft durchgef{\"u}hrt werden, um den genauen Wirkmechanismus des XopS T3Es weiter aufzuschl{\"u}sseln.}, language = {de} } @phdthesis{Gutschow2007, author = {Gutschow, Stephan}, title = {Zu cervicalen Distorsionsverletzungen und deren Auswirkungen auf posturale Schwankungsmuster}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-15367}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {Einleitung \& Problemstellung: Beschwerden nach Beschleunigungsverletzungen der Halswirbels{\"a}ule sind oft nur unzureichend einzuordnen und diagnostizierbar. Eine eindeutige Diagnostik ist jedoch f{\"u}r eine entsprechende Therapie wie auch m{\"o}glicherweise entstehende versicherungsrechtliche Forderungen notwendig. Die Entwicklung eines geeigneten Diagnoseverfahrens liegt damit im Interesse von Betroffenen wie auch Kostentr{\"a}gern. Neben St{\"o}rungen der Weichteilgewebe ist fast immer die Funktion der Halsmuskulatur in Folge eines Traumas beeintr{\"a}chtigt. Dabei wird vor allem die sensorische Funktion der HWS-Muskulatur, die an der Regulation des Gleichgewichts beteiligt ist, gest{\"o}rt. In Folge dessen kann angenommen werden, dass es zu einer Beeintr{\"a}chtigung der Gleichgewichtsregulation kommt. Die Zielstellung der Arbeit lautete deshalb, die m{\"o}glicherweise gest{\"o}rte Gleichgewichtsregulation nach einem Trauma im HWS-Bereich apparativ zu erfassen, um so die Verletzung eindeutig diagnostizieren zu k{\"o}nnen. Methodik: Unter Verwendung eines posturographischen Messsystems mit Kraftmomentensensorik wurden bei 478 Probanden einer Vergleichsgruppe und bei 85 Probanden eines Patientenpools Kraftmomente unter der Fußsohle als {\"A}ußerung der posturalen Balanceregulation aufgezeichnet. Die gemessenen Balancezeitreihen wurden nichtlinear analysiert, um die hohe Variabilit{\"a}t der Gleichgewichtsregulation optimal zu beschreiben. {\"U}ber die dabei gewonnenen Parameter kann {\"u}berpr{\"u}ft werden, ob sich spezifische Unterschiede im Schwankungsverhalten anhand der plantaren Druckverteilung zwischen HWS-Traumatisierten und den Probanden der Kontrollgruppe klassifizieren lassen. Ergebnisse: Die beste Klassifizierung konnte dabei {\"u}ber Parameter erzielt werden, die das Schwankungsverhalten in Phasen beschreiben, in denen die Amplitudenschwankungen relativ gering ausgepr{\"a}gt waren. Die Analysen ergaben signifikante Unterschiede im Balanceverhalten zwischen der Gruppe HWS-traumatisierter Probanden und der Vergleichsgruppe. Die h{\"o}chsten Trennbarkeitsraten wurden dabei durch Messungen im ruhigen beidbeinigen Stand mit geschlossenen Augen erzielt. Diskussion: Das posturale Balanceverhalten wies jedoch in allen Messpositionen eine hohe individuelle Varianz auf, so dass kein allgemeing{\"u}ltiges Schwankungsmuster f{\"u}r eine Gruppengesamtheit klassifiziert werden konnte. Eine individuelle Vorhersage der Gruppenzugeh{\"o}rigkeit ist damit nicht m{\"o}glich. Die verwendete Messtechnik und die angewandten Auswerteverfahren tragen somit zwar zu einem Erkenntnisgewinn und zur Beschreibung des Gleichgewichtsverhaltens nach HWS-Traumatisierung bei. Sie k{\"o}nnen jedoch zum derzeitigen Stand f{\"u}r den Einzelfall keinen Beitrag zu einer eindeutigen Bestimmung eines Schleudertraumas leisten.}, language = {de} } @phdthesis{Zhang2018, author = {Zhang, Yunming}, title = {Understanding the functional specialization of poly(A) polymerases in Arabidopsis thaliana}, school = {Universit{\"a}t Potsdam}, pages = {131}, year = {2018}, language = {de} } @phdthesis{Freiberg2004, author = {Freiberg, Alexander}, title = {Das "Leucine-Rich Repeat" im Invasionsprotein Internalin B : Stabilit{\"a}t und Faltung eines Solenoidproteins}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-2532}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {F{\"u}r das Verst{\"a}ndnis der Strukturbildung bei Proteinen ist es wichtig, allgemein geltende Prinzipien der Stabilit{\"a}t und Faltung zu verstehen. Bisher wurde viel Arbeit in die Er{\"o}rterung von Gesetzm{\"a}ßigkeiten zu den Faltungseigenschaften von globul{\"a}ren Proteinen investiert. Die große Proteinklasse der solenoiden Proteine, zu denen z. B. Leucine-Rich Repeat- (LRR-) oder Ankyrin-Proteine geh{\"o}ren, wurde dahingegen noch wenig untersucht. Die Proteine dieser Klasse sind durch einen stapelf{\"o}rmigen Aufbau von sich wiederholenden typischen Sequenzeinheiten gekennzeichnet, was in der Ausbildung einer elongierten Terti{\"a}rstruktur resultiert. In der vorliegenden Arbeit sollte versucht werden, die Stabilit{\"a}t und Faltung eines LRR-Proteins mittels verschiedener biophysikalischer Methoden zu charakterisieren. Als Untersuchungsobjekt diente die f{\"u}r die Infektion ausreichende zentrale LRR-Dom{\"a}ne des Invasionsproteins Internalin B (InlB241) des Bakteriums Listeria monocytogenes. Des weiteren sollten die Integrit{\"a}t und die Stabilit{\"a}ts- und Faltungseigenschaften der sogenannten Internalin-Dom{\"a}ne (InlB321) untersucht werden. Hierbei handelt es sich um die bei allen Mitgliedern der Internalinfamilie vorkommende Dom{\"a}ne, welche aus einer direkten Fusion des C-terminalen Endes der LRR-Dom{\"a}ne mit einer Immunglobulin (Ig)-{\"a}hnlichen Dom{\"a}ne besteht. Von beiden Konstrukten konnte eine vollst{\"a}ndige thermodynamische Charakterisierung, mit Hilfe von chemisch- bzw. thermisch-induzierten Faltungs- und Entfaltungs{\"u}berg{\"a}ngen durchgef{\"u}hrt werden. Sowohl InlB241 als auch InlB321 zeigen einen reversiblen und kooperativen Verlauf der chemisch-induzierten Gleichgewichts{\"u}berg{\"a}nge, was die Anwendung eines Zweizustandsmodells zur Beschreibung der Daten erlaubte. Die zus{\"a}tzliche Ig-{\"a}hnliche Dom{\"a}ne im InlB321 resultierte im Vergleich zum InlB241 in einer Erh{\"o}hung der freien Enthalpie der Entfaltung (8.8 kcal/mol im Vergleich zu 4.7 kcal/mol). Diese Stabilit{\"a}tszunahme {\"a}ußerte sich sowohl in einer Verschiebung des {\"U}bergangsmittelpunktes zu h{\"o}heren Guanidiniumchlorid-Konzentrationen als auch in einer Erh{\"o}hung der Kooperativit{\"a}t des Gleichgewichts{\"u}bergangs (9.7 kcal/mol/M im Vergleich zu 7.1 kcal/mol/M). Diese Beobachtungen zeigen dass die einzelnen Sequenzeinheiten der LRR-Dom{\"a}ne nicht unabh{\"a}ngig voneinander falten und dass die Ig-{\"a}hnliche Dom{\"a}ne, obwohl sie nicht direkt mit dem Wirtszellrezeptor w{\"a}hrend der Invasion interagiert, eine kritische Rolle f{\"u}r die in\ vivo Stabilit{\"a}t des Internalin B spielt. Des weiteren spiegelt die Kooperativit{\"a}t des {\"U}bergangs die Integrit{\"a}t der Internalin-Dom{\"a}ne wieder und deutet darauf hin, dass bei beiden Proteinen keine Intermediate vorliegen. Kinetische Messungen {\"u}ber Tryptophanfluoreszenz und Fern-UV Circulardichroismus deuteten auf die Existenz eines relativ stabilen Intermediates auf dem Faltungsweg der LRR-Dom{\"a}ne hin. Faltungskinetiken aus einem in pH\ 2 denaturierten Zustand zeigten ein reversibles Verhalten und verliefen {\"u}ber ein Intermediat. Eine Erh{\"o}hung der Salzkonzentration des sauer-denaturierten Proteins f{\"u}hrte zu einer Kompaktierung der entfalteten Struktur und resultierte im {\"U}bergang zu einem alternativ gefalteten Zustand. Bei der Internalin-Dom{\"a}ne deuteten kinetische Messungen des Fluoreszenz- und Fern-UV Circulardichroismus-Signals w{\"a}hrend der Entfaltung m{\"o}glicherweise auf die Pr{\"a}senz von zwei Prozessen hin. Der erste langsame Entfaltungsprozess kurz nach dem {\"U}bergangsmittelpunkt zeigte eine starke Abh{\"a}ngigkeit von der Temperatur, w{\"a}hrend der zweite schnellere Prozess der Entfaltung st{\"a}rker von der Guanidiniumchlorid-Konzentration abhing. Renaturierungskinetiken zeigten das Auftreten von mindestens einem Faltungsintermediat. Kinetische Daten aus Doppelsprungexperimenten lieferten f{\"u}r die Erkl{\"a}rung der langsamen Faltungsphase zun{\"a}chst keinen Hinweis auf dass Vorliegen einer Prolinisomerisierungsreaktion. Die vollst{\"a}ndige Amplitude w{\"a}hrend der Renaturierung konnte nicht detektiert werden, weswegen von einer zweiten schnellen Phase im Submillisekundenbereich ausgegangen werden kann. Die Ergebnisse der Faltungskinetiken zeigen, dass die InlB-Konstrukte als Modelle f{\"u}r die Untersuchung der Faltung von Solenoidproteinen verwendet werden k{\"o}nnen.}, subject = {Proteinfaltung}, language = {de} } @phdthesis{Kuester2002, author = {K{\"u}ster, Frank}, title = {Das Lektin aus der Erbse Pisum sativum : Bindungsstudien, Monomer-Dimer-Gleichgewicht und R{\"u}ckfaltung aus Fragmenten}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000612}, school = {Universit{\"a}t Potsdam}, year = {2002}, abstract = {Das Lektin aus Pisum sativum, der Gartenerbse, ist Teil der Familie der Leguminosenlektine. Diese Proteine haben untereinander eine hohe Sequenzhomologie, und die Struktur ihrer Monomere, ein all-ß-Motiv, ist hoch konserviert. Dagegen gibt es innerhalb der Familie eine große Vielfalt an unterschiedlichen Quart{\"a}rstrukturen, die Gegenstand kristallographischer und theoretischer Arbeiten waren. Das Erbsenlektin ist ein dimeres Leguminosenlektin mit einer Besonderheit in seiner Struktur: Nach der Faltung in der Zelle wird aus einem Loop eine kurze Aminos{\"a}uresequenz herausgeschnitten, so dass sich in jeder Untereinheit zwei unabh{\"a}ngige Polypeptidketten befinden. Beide Ketten sind aber stark miteinander verschr{\"a}nkt und bilden eine gemeinsame strukturelle Dom{\"a}ne. Wie alle Lektine bindet Erbsenlektin komplexe Oligosaccharide, doch sind seine physiologische Rolle und der nat{\"u}rliche Ligand unbekannt. In dieser Arbeit wurden Versuche zur Entwicklung eines Funktionstests f{\"u}r Erbsenlektin durchgef{\"u}hrt und seine Faltung, Stabilit{\"a}t und Monomer-Dimer-Gleichgewicht charakterisiert. Um die spezifische Rolle der Prozessierung f{\"u}r Stabilit{\"a}t und Faltung zu untersuchen, wurde ein unprozessiertes Konstrukt in E. coli exprimiert und mit der prozessierten Form verglichen. Beide Proteine zeigen die gleiche kinetische Stabilit{\"a}t gegen{\"u}ber chemischer Denaturierung. Sie denaturieren extrem langsam, weil nur die isolierten Untereinheiten entfalten k{\"o}nnen und das Monomer-Dimer-Gleichgewicht bei mittleren Konzentrationen an Denaturierungsmittel auf der Seite der Dimere liegt. Durch die extrem langsame Entfaltung zeigen beide Proteine eine apparente Hysterese im Gleichgewichts{\"u}bergang, und es ist nicht m{\"o}glich, die thermodynamische Stabilit{\"a}t zu bestimmen. Die Stabilit{\"a}t und die Geschwindigkeit der Assoziation und Dissoziation in die prozessierten bzw. nichtprozessierten Untereinheiten sind f{\"u}r beide Proteine gleich. Dar{\"u}ber hinaus konnte gezeigt werden, dass auch unter nicht-denaturierenden Bedingungen die Untereinheiten zwischen den Dimeren ausgetauscht werden. Die Renaturierung der unprozessierten Variante ist unter stark nativen Bedingungen zu 100 \% m{\"o}glich. Das prozessierte Protein dagegen renaturiert nur zu etwa 50 \%, und durch die Prozessierung ist die Faltung stark verlangsamt, der Faltungsprozess ist erst nach mehreren Tagen abgeschlossen. Im Laufe der Renaturierung wird ein Intermediat populiert, in dem die l{\"a}ngere der beiden Polypeptidketten ein Homodimer mit nativ{\"a}hnlicher Untereinheitenkontaktfl{\"a}che bildet. Der geschwindigkeitsbestimmende Schritt der Renaturierung ist die Assoziation der entfalteten k{\"u}rzeren Kette mit diesem Dimer.}, language = {de} } @phdthesis{Pacholsky2003, author = {Pacholsky, Dirk}, title = {Zell-Zell- und Zell-Matrix-Kontakte w{\"a}hrend der Muskelentwicklung}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001161}, school = {Universit{\"a}t Potsdam}, year = {2003}, abstract = {Im Rahmen dieser Arbeit wurden zwei humane Varianten des von Wang et al., 1999, erstmals beschriebenen muskelspezifischen Proteins Xin (Huhn und Maus) {\"u}ber Sequenzanalyse, Immunofluoreszenzmikroskopie, Transfektionsstudien und biochemischer Analyse n{\"a}her charakterisiert. Die Proteine wurden mit human Xin related proteins 1 und 2 - hXirp1 und 2 -bezeichnet. Die Xin-Proteine enthielten bisher unbekannte, sowie spezifische, repetitive Motive, die aus jeweils mindestens 16 Aminos{\"a}uren bestanden. Ihre Aminos{\"a}uresequenz, mit einer Vielzahl weiterer putativer Motivsequenzen, verwies auf eine potentielle Funktion von hXirp als Adapterprotein in Muskelzellen. Das hier n{\"a}her untersuchte hXirp1 lokalisierte an den Zell-Matrix-Verbindungen der Muskel-Sehnen-{\"U}bergangszone im Skelettmuskel, sowie an den Zell-Zell-Verbindungen der Glanzstreifen im Herzmuskel. W{\"a}hrend der Muskelentwicklung zeigte hXirp1 eine sehr fr{\"u}he Expression, zusammen mit einer pr{\"a}gnanten Lokalisation an den Pr{\"a}myofibrillen und deren Verankerungsstrukturen, die auf eine Funktion des Proteins in der Myofibrillogenese deuten. Ektopische Expressionen von hXirp1 in einer Vielzahl von Nichtmuskel-Kulturzellen zeigten wiederum eine Lokalisation des Proteins an den Zell-Matrix-Kontakten dieser Zellen. Am Beispiel von hXirp1 und 2 wurde stellvertretend f{\"u}r die Familie der Xin-Proteine gezeigt, daß es sich bei den repetitiven Motiven um neuartige, F-Aktin bindende Sequenzmotive handelte. Die Xin-Proteine k{\"o}nnen somit als muskelspezifische, aktinbindende, potentielle Adapterproteine bezeichnet werden, denen eine strukturelle und funktionelle Beteiligung an der Verankerung der Myofibrillen im adulten Muskel, wie auch w{\"a}hrend der Myofibrillogenese zukommt.}, language = {de} } @phdthesis{Walter2002, author = {Walter, Monika}, title = {Die parallele beta-Helix der Pektat-Lyase aus Bacillus subtilis : Stabilit{\"a}t, Faltungsmechanismus und Faltungsmutanten}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000588}, school = {Universit{\"a}t Potsdam}, year = {2002}, abstract = {Die Pektat-Lyasen geh{\"o}ren zu einer Proteinfamilie, die meistens von pflanzenpathogenen Mikroorganismen sekretiert werden. Die Enzyme katalysieren den Abbau von Polygalakturons{\"a}ure, einem Hauptbestandteil in pflanzlichen Mittellamellen und Prim{\"a}rzellw{\"a}nden. Der Abbau der alpha-1,4-verbr{\"u}ckten Galakturons{\"a}urereste erfogt durch eine beta-Eliminierungsreaktion, dabei entsteht ein Produkt mit einer unges{\"a}ttigten C4-C5 Bindung am nicht reduzierenden Ende, das durch spektroskopische Messungen beobachtet werden kann. F{\"u}r die enzymatische Reaktion der Pektat-Lyasen ist Calcium n{\"o}tig und das pH-Optimum der Reaktion liegt bei pH 8.5. Alle bis jetzt bekannten Strukturen der Pektat- und Pektin-Lyasen haben das gleiche Strukturmotiv - eine rechtsg{\"a}ngige parallele beta-Helix. Die Struktur der Pektat-Lyase aus Bacillus subtilis (BsPel) ist im Komplex mit Calcium gel{\"o}st worden. BsPel ist ein monomeres Protein mit einer ungef{\"a}hren Molekularmasse von 43 kDa, das keine Disulfidbr{\"u}cken enth{\"a}lt. Dies erlaubte sowohl eine effiziente rekombinante Expression des Wildtypproteins, als auch von destabilisierten Mutanten im Cytoplasma von E. coli. Parallele beta-Helices sind relativ große, jedoch verh{\"a}ltnism{\"a}ßig einfach aufgebaute Proteine. Um detailliertere Informationen {\"u}ber die kritischen Schritte bei der in vitro-Faltung von parallelen beta-Helices zu erhalten, sollte in der vorliegenden Arbeit versucht werden, den Faltungsmechanismus dieses Proteins n{\"a}her zu charakterisieren. Dabei sollte vor allem die Frage gekl{\"a}rt werden, welche Wechselwirkungen f{\"u}r die Stabilit{\"a}t dieses Proteins einerseits und f{\"u}r die Stabilit{\"a}t von essentiellen Faltungsintermediaten andererseits besonders wichtig sind.
R{\"u}ckfaltung von BsPel, ausgehend vom guanidiniumchlorid-denaturierten Zustand, war bei kleinen Proteinkonzentrationen und niedrigen Temperaturen vollst{\"a}ndig m{\"o}glich. GdmCl-induzierte Faltungs{\"u}berg{\"a}nge waren aber nicht reversibel und zeigten eine apparente Hysterese. Kinetische Messungen des Fluoreszenz- und CD-Signals im fernen UV ergaben eine extreme Denaturierungsmittelabh{\"a}ngigkeit der R{\"u}ckfaltungsrate im Bereich des {\"U}bergangmittelpunktes. Der extreme Abfall der R{\"u}ckfaltungsraten mit steigender Denaturierungsmittelkonzentration kann als kooperative Entfaltung eines essentiellen Faltungsintermediats verstanden werden. Dieses Faltungsintermediat ist temperaturlabil und kann durch den Zusatz Glycerin im Renaturierungspuffer stabilisiert werden, wobei sich die Hysterese verringert, jedoch nicht vollst{\"a}ndig aufgehoben wird. Durch reverse Doppelsprungexperimente konnten zwei transiente Faltungsintermediate nachgewiesen werden, die auf zwei parallelen Faltungswegen liegen und beide zum nativen Zustand weiterreagieren k{\"o}nnen. Fluoreszenzemissionsspektren der beiden Intermediate zeigten, daß beide schon nativ{\"a}hnliche Struktur aufweisen. Kinetische Daten von Prolin-Doppelsprungexperimenten zeigten, daß Prolinisomerisierung den geschwindigkeitsbestimmenden Schritt in der Reaktivierung des denaturierten Enzyms darstellt. Desweiteren konnte durch Prolin-Doppelsprungexperimenten an Mutanten mit Substitutionen im Prolinrest 281 gezeigt werden, daß die langsame Renaturierung von BsPel nicht durch die Isomerisierung der einzigen cis-Peptidbindung an Prolin 281 verursacht wird, sondern durch die Isomerisierung mehrerer trans-Proline. Die beiden beobachteten transienten Faltungsintermediate sind somit wahrscheinlich zwei Populationen von Faltungsintermediaten mit nicht-nativen X-Pro-Peptidbindungen, wobei sich die Populationen durch mindestens eine nicht-native X-Pro-Peptidbindung unterscheiden.
Der Austausch des Prolinrestes 281 gegen verschiedene Aminos{\"a}uren (Ala, Ile, Leu, Phe, Gly) f{\"u}hrte zu einer starken Destabilisierung des nativen Proteins und daneben auch zu einer Reduktion in der Aktivit{\"a}t, da die Mutationsstelle in der N{\"a}he der putativen Substratbindetasche liegt. Die R{\"u}ckfaltungskinetiken der Prolinmutanten war bei 10\&\#176;C ann{\"a}hernd gleich zum Wildtyp und die geschwindigkeitsbestimmenden Schritte der Faltung waren durch die Mutation nicht ver{\"a}ndert. Die durch die Mutation verursachte drastische Destabilisierung des nativen Zustands f{\"u}hrte zu einem reversiblen Entfaltungsgleichgewicht bei pH 7 und 10\&\#176;C. GdmCl-induzierte Faltungs{\"u}berg{\"a}nge der Mutante P281A zeigten bei Messungen der Tryptophanfluoreszenzemission und der Aktivit{\"a}t einen kooperativen Phasen{\"u}bergang mit einem {\"U}bergangsmittelpunkt bei 1.1 M GdmCl. Durch die {\"U}bereinstimmung der Faltungs{\"u}berg{\"a}nge bei beiden Messparametern konnten die Faltungs{\"u}berg{\"a}nge nach dem Zwei-Zustandsmodell ausgewertet werden. Dabei wurde eine freie Sabilisierungsenthalpie der Faltung f{\"u}r die Mutante von -\ 64.2\ \&\#177;\ 0.4\ kJ/mol und eine Kooperativit{\"a}t des {\"U}bergangs von -\ 58.2\ \&\#177;\ 0.3\ kJ/(mol\&\#183;M) bestimmt.
BsPel enth{\"a}lt, wie die meisten monomeren rechtsg{\"a}ngigen parallelen beta-Helix-Proteine, einen internen Stapel wasserstoffverbr{\"u}ckter Asparagin-Seitenketten. Die Mehrheit der erzeugten Mutanten mit Substitutionen im Zentrum der Asn-Leiter (N271X) waren als enzymatisch aktives Protein zug{\"a}nglich. Die Auswirkung der Mutation auf die Stabilit{\"a}t und R{\"u}ckfaltung wurde an den Proteinen BsPel-N271T und BsPel-N271A n{\"a}her analysiert. Dabei f{\"u}hrte die Unterbrechung des Asparaginstapels im Inneren der beta-Helix zu keiner drastischen Destabilisierung des nativen Proteins. Allerdings f{\"u}hrten diese Mutationen zu einem temperatur-sensitiven Faltungsph{\"a}notyp und die Hysterese im Denaturierungs{\"u}bergang wurde verst{\"a}rkt. Offenbar wird durch die Unterbrechung des Asparaginstapel ein essentielles, thermolabiles Faltungsintermediat destabilisiert. Der Asparaginstapel wird somit bei der Faltung sehr fr{\"u}h ausgebildet und ist wahrscheinlich schon im {\"U}bergangszustand vorhanden.}, subject = {Heubacillus ; Pectat-Lyase ; Helix }, language = {de} } @phdthesis{Barbirz2005, author = {Barbirz, Stefanie}, title = {Konservierte Struktur bei genetischer Mosaizit{\"a}t : die Tailspike Proteine dreier Phagen der Familie Podviridae}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-6885}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {Die Tailspike Proteine (TSP) der Bakteriophagen P22, Sf6 und HK620 dienen der Erkennung von Kohlenhydratstrukturen auf ihren gram-negativen Wirtsbakterien und zeigen, von den ersten 110 Aminos{\"a}uren des N-Terminus abgesehen, keine Sequenz{\"u}bereinstimmung. Mit R{\"o}ntgenkristallstrukturanalyse konnte gezeigt werden, dass HK620TSP und Sf6TSP ebenfalls zu einer parallelen, rechtsg{\"a}ngigen beta-Helix falten, wie dies schon f{\"u}r P22TSP bekannt war. Die Kohlenhydratbindestelle ist bei Sf6TSP im Vergleich zu P22TSP zwischen die Untereinheiten verschoben.}, subject = {Bakteriophagen}, language = {de} }