@article{ZimmermannRaschkeEppetal.2017, author = {Zimmermann, Heike Hildegard and Raschke, Elena and Epp, Laura Saskia and Stoof-Leichsenring, Kathleen Rosemarie and Schirrmeister, Lutz and Schwamborn, Georg and Herzschuh, Ulrike}, title = {The history of tree and shrub taxa on Bol'shoy Lyakhovsky Island (New Siberian Archipelago) since the Last Interglacial Uncovered by Sedimentary Ancient DNA and Pollen Data}, series = {Genes}, volume = {8}, journal = {Genes}, number = {10}, publisher = {MDPI}, address = {Basel}, issn = {2073-4425}, doi = {10.3390/genes8100273}, pages = {273}, year = {2017}, abstract = {Ecosystem boundaries, such as the Arctic-Boreal treeline, are strongly coupled with climate and were spatially highly dynamic during past glacial-interglacial cycles. Only a few studies cover vegetation changes since the last interglacial, as most of the former landscapes are inundated and difficult to access. Using pollen analysis and sedimentary ancient DNA (sedaDNA) metabarcoding, we reveal vegetation changes on Bol'shoy Lyakhovsky Island since the last interglacial from permafrost sediments. Last interglacial samples depict high levels of floral diversity with the presence of trees (Larix, Picea, Populus) and shrubs (Alnus, Betula, Ribes, Cornus, Saliceae) on the currently treeless island. After the Last Glacial Maximum, Larix re-colonised the island but disappeared along with most shrub taxa. This was probably caused by Holocene sea-level rise, which led to increased oceanic conditions on the island. Additionally, we applied two newly developed larch-specific chloroplast markers to evaluate their potential for tracking past population dynamics from environmental samples. The novel markers were successfully re-sequenced and exhibited two variants of each marker in last interglacial samples. SedaDNA can track vegetation changes as well as genetic changes across geographic space through time and can improve our understanding of past processes that shape modern patterns.}, language = {en} } @article{ZimmermannRaschkeEppetal.2017, author = {Zimmermann, Heike Hildegard and Raschke, Elena and Epp, Laura Saskia and Stoof-Leichsenring, Kathleen Rosemarie and Schwamborn, Georg and Schirrmeister, Lutz and Overduin, Pier Paul and Herzschuh, Ulrike}, title = {Sedimentary ancient DNA and pollen reveal the composition of plant organic matter in Late Quaternary permafrost sediments of the Buor Khaya Peninsula (north-eastern Siberia)}, series = {Biogeosciences}, volume = {14}, journal = {Biogeosciences}, number = {3}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1726-4170}, doi = {10.5194/bg-14-575-2017}, pages = {575 -- 596}, year = {2017}, abstract = {Organic matter deposited in ancient, ice-rich permafrost sediments is vulnerable to climate change and may contribute to the future release of greenhouse gases; it is thus important to get a better characterization of the plant organic matter within such sediments. From a Late Quaternary permafrost sediment core from the Buor Khaya Peninsula, we analysed plant-derived sedimentary ancient DNA (sedaDNA) to identify the taxonomic composition of plant organic matter, and undertook palynological analysis to assess the environmental conditions during deposition. Using sedaDNA, we identified 154 taxa and from pollen and non-pollen palynomorphs we identified 83 taxa. In the deposits dated between 54 and 51 kyr BP, sedaDNA records a diverse low-centred polygon plant community including recurring aquatic pond vegetation while from the pollen record we infer terrestrial open-land vegetation with relatively dry environmental conditions at a regional scale. A fluctuating dominance of either terrestrial or swamp and aquatic taxa in both proxies allowed the local hydrological development of the polygon to be traced. In deposits dated between 11.4 and 9.7 kyr BP (13.4-11.1 cal kyr BP), sedaDNA shows a taxonomic turnover to moist shrub tundra and a lower taxonomic richness compared to the older samples. Pollen also records a shrub tundra community, mostly seen as changes in relative proportions of the most dominant taxa, while a decrease in taxonomic richness was less pronounced compared to sedaDNA. Our results show the advantages of using sedaDNA in combination with palynological analyses when macrofossils are rarely preserved. The high resolution of the sedaDNA record provides a detailed picture of the taxonomic composition of plant-derived organic matter throughout the core, and palynological analyses prove valuable by allowing for inferences of regional environmental conditions.}, language = {en} } @article{McVeyKimTabuchietal.2017, author = {McVey, Mark J. and Kim, Michael and Tabuchi, Arata and Srbely, Victoria and Japtok, Lukasz and Arenz, Christoph and Rotstein, Ori and Kleuser, Burkhard and Semple, John W. and Kuebler, Wolfgang M.}, title = {Acid sphingomyelinase mediates murine acute lung injury following transfusion of aged platelets}, series = {American journal of physiology : Lung cellular and molecular physiology}, volume = {312}, journal = {American journal of physiology : Lung cellular and molecular physiology}, number = {5}, publisher = {American Physiological Society}, address = {Bethesda}, issn = {1040-0605}, doi = {10.1152/ajplung.00317.2016}, pages = {625 -- 637}, year = {2017}, abstract = {Pulmonary complications from stored blood products are the leading cause of mortality related to transfusion. Transfusion-related acute lung injury is mediated by antibodies or bioactive mediators, yet underlying mechanisms are incompletely understood. Sphingolipids such as ceramide regulate lung injury, and their composition changes as a function of time in stored blood. Here, we tested the hypothesis that aged platelets may induce lung injury via a sphingolipid-mediated mechanism. To assess this hypothesis, a two-hit mouse model was devised. Recipient mice were treated with 2 mg/kg intraperitoneal lipopolysaccharide (priming) 2 h before transfusion of 10 ml/kg stored (1-5 days) platelets treated with or without addition of acid sphingomyelinase inhibitor ARC39 or platelets from acid sphingomyelinase-deficient mice, which both reduce ceramide formation. Transfused mice were examined for signs of pulmonary neutrophil accumulation, endothelial barrier dysfunction, and histological evidence of lung injury. Sphingolipid profiles in stored platelets were analyzed by mass spectrophotometry. Transfusion of aged platelets into primed mice induced characteristic features of lung injury, which increased in severity as a function of storage time. Ceramide accumulated in platelets during storage, but this was attenuated by ARC39 or in acid sphingomyelinase-deficient platelets. Compared with wild-type platelets, transfusion of ARC39-treated or acid sphingomyelinase-deficient aged platelets alleviated lung injury. Aged platelets elicit lung injury in primed recipient mice, which can be alleviated by pharmacological inhibition or genetic deletion of acid sphingomyelinase. Interventions targeting sphingolipid formation represent a promising strategy to increase the safety and longevity of stored blood products.}, language = {en} } @article{BernacchioniGhiniCencettietal.2017, author = {Bernacchioni, Caterina and Ghini, Veronica and Cencetti, Francesca and Japtok, Lukasz and Donati, Chiara and Bruni, Paola and Turano, Paola}, title = {NMR metabolomics highlights sphingosine kinase-1 as a new molecular switch in the orchestration of aberrant metabolic phenotype in cancer cells}, series = {Molecular oncology / Federation of European Biochemical Societies}, volume = {11}, journal = {Molecular oncology / Federation of European Biochemical Societies}, publisher = {Wiley}, address = {Hoboken}, issn = {1878-0261}, doi = {10.1002/1878-0261.12048}, pages = {517 -- 533}, year = {2017}, abstract = {Strong experimental evidence in animal and cellular models supports a pivotal role of sphingosine kinase-1 (SK1) in oncogenesis. In many human cancers, SK1 levels are upregulated and these increases are linked to poor prognosis in patients. Here, by employing untargeted NMR- based metabolomic profiling combined with functional validations, we report the crucial role of SK1 in the metabolic shift known as the Warburg effect in A2780 ovarian cancer cells. Indeed, expression of SK1 induced a high glycolytic rate, characterized by increased levels of lactate along with increased expression of the proton/monocarboxylate symporter MCT1, and decreased oxidative metabolism, associated with the accumulation of intermediates of the tricarboxylic acid cycle and reduction in CO2 production. Additionally, SK1-expressing cells displayed a significant increase in glucose uptake paralleled by GLUT3 transporter upregulation. The role of SK1 is not limited to the induction of aerobic glycolysis, affecting metabolic pathways that appear to support the biosynthesis of macromolecules. These findings highlight the role of SK1 signaling axis in cancer metabolic reprogramming, pointing out innovative strategies for cancer therapies.}, language = {en} } @article{HoehnJerniganJaptoketal.2017, author = {Hoehn, Richard S. and Jernigan, Peter L. and Japtok, Lukasz and Chang, Alex L. and Midura, Emily F. and Caldwell, Charles C. and Kleuser, Burkhard and Lentsch, Alex B. and Edwards, Michael J. and Gulbins, Erich and Pritts, Timothy A.}, title = {Acid sphingomyelinase inhibition in stored erythrocytes reduces transfusion-associated lung inflammation}, series = {Annals of surgery : a monthly review of surgical science and practice}, volume = {265}, journal = {Annals of surgery : a monthly review of surgical science and practice}, number = {1}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {0003-4932}, doi = {10.1097/SLA.0000000000001648}, pages = {218 -- 226}, year = {2017}, abstract = {Objective: We aimed to identify the role of the enzyme acid sphingomyelinase in the aging of stored units of packed red blood cells (pRBCs) and subsequent lung inflammation after transfusion. Summary Background Data: Large volume pRBC transfusions are associated with multiple adverse clinical sequelae, including lung inflammation. Microparticles are formed in stored pRBCs over time and have been shown to contribute to lung inflammation after transfusion. Methods: Human and murine pRBCs were stored with or without amitriptyline, a functional inhibitor of acid sphingomyelinase, or obtained from acid sphingomyelinase-deficient mice, and lung inflammation was studied in mice receiving transfusions of pRBCs and microparticles isolated from these units. Results: Acid sphingomyelinase activity in pRBCs was associated with the formation of ceramide and the release of microparticles. Treatment of pRBCs with amitriptyline inhibited acid sphingomyelinase activity, ceramide accumulation, and microparticle production during pRBC storage. Transfusion of aged pRBCs or microparticles isolated from aged blood into mice caused lung inflammation. This was attenuated after transfusion of pRBCs treated with amitriptyline or from acid sphingomyelinase-deficient mice. Conclusions: Acid sphingomyelinase inhibition in stored pRBCs offers a novel mechanism for improving the quality of stored blood.}, language = {en} } @article{FolkessonVorkapicGulbinsetal.2017, author = {Folkesson, Maggie and Vorkapic, Emina and Gulbins, Erich and Japtok, Lukasz and Kleuser, Burkhard and Welander, Martin and L{\"a}nne, Toste and W{\aa}gs{\"a}ter, Dick}, title = {Inflammatory cells, ceramides, and expression of proteases in perivascular adipose tissue adjacent to human abdominal aortic aneurysms}, series = {Journal of vascular surgery}, volume = {65}, journal = {Journal of vascular surgery}, number = {4}, publisher = {Elsevier}, address = {New York}, issn = {0741-5214}, doi = {10.1016/j.jvs.2015.12.056}, pages = {1171 -- 1179}, year = {2017}, abstract = {Background: Abdominal aortic aneurysm (AAA) is a deadly irreversible weakening and distension of the abdominal aortic wall. The pathogenesis of AAA remains poorly understood. Investigation into the physical and molecular characteristics of perivascular adipose tissue (PVAT) adjacent to AAA has not been done before and is the purpose of this study. Methods and Results: Human aortae, periaortic PVAT, and fat surrounding peripheral arteries were collected from patients undergoing elective surgical repair of AAA. Control aortas were obtained from recently deceased healthy organ donors with no known arterial disease. Aorta and PVAT was found in AAA to larger extent compared with control aortas. Immunohistochemistry revealed neutrophils, macrophages, mast cells, and T-cells surrounding necrotic adipocytes. Gene expression analysis showed that neutrophils, mast cells, and T-cells were found to be increased in PVAT compared with AAA as well as cathepsin K and S. The concentration of ceramides in PVAT was determined using mass spectrometry and correlated with content of T-cells in the PVAT. Conclusions: Our results suggest a role for abnormal necrotic, inflamed, proteolytic adipose tissue to the adjacent aneurysmal aortic wall in ongoing vascular damage.}, language = {en} } @article{HornickBachCrawfurdetal.2017, author = {Hornick, Thomas and Bach, Lennart T. and Crawfurd, Katharine J. and Spilling, Kristian and Achterberg, Eric P. and Woodhouse, Jason Nicholas and Schulz, Kai G. and Brussaard, Corina P. D. and Riebesell, Ulf and Grossart, Hans-Peter}, title = {Ocean acidification impacts bacteria-phytoplankton coupling at low-nutrient conditions}, series = {Biogeosciences}, volume = {14}, journal = {Biogeosciences}, number = {1}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1726-4170}, doi = {10.5194/bg-14-1-2017}, pages = {1 -- 15}, year = {2017}, abstract = {The oceans absorb about a quarter of the annually produced anthropogenic atmospheric carbon dioxide (CO2), resulting in a decrease in surface water pH, a process termed ocean acidification (OA). Surprisingly little is known about how OA affects the physiology of heterotrophic bacteria or the coupling of heterotrophic bacteria to phytoplankton when nutrients are limited. Previous experiments were, for the most part, undertaken during productive phases or following nutrient additions designed to stimulate algal blooms. Therefore, we performed an in situ large-volume mesocosm (similar to 55 m(3)) experiment in the Baltic Sea by simulating different fugacities of CO2 (fCO(2)) extending from present to future conditions. The study was conducted in July-August after the nominal spring bloom, in order to maintain low-nutrient conditions throughout the experiment. This resulted in phytoplankton communities dominated by small-sized functional groups (picophytoplankton). There was no consistent fCO(2)-induced effect on bacterial protein production (BPP), cell-specific BPP (csBPP) or biovolumes (BVs) of either free-living (FL) or particle-associated (PA) heterotrophic bacteria, when considered as individual components (univariate analyses). Permutational Multivariate Analysis of Variance (PERMANOVA) revealed a significant effect of the fCO(2) treatment on entire assemblages of dissolved and particulate nutrients, metabolic parameters and the bacteria-phytoplankton community. However, distance-based linear modelling only identified fCO(2) as a factor explaining the variability observed amongst the microbial community composition, but not for explaining variability within the metabolic parameters. This suggests that fCO(2) impacts on microbial metabolic parameters occurred indirectly through varying physicochemical parameters and microbial species composition. Cluster analyses examining the co-occurrence of different functional groups of bacteria and phytoplankton further revealed a separation of the four fCO(2)-treated mesocosms from both control mesocosms, indicating that complex trophic interactions might be altered in a future acidified ocean. Possible consequences for nutrient cycling and carbon export are still largely unknown, in particular in a nutrient-limited ocean.}, language = {en} } @article{WeyhenmeyerMackayStockwelletal.2017, author = {Weyhenmeyer, Gesa A. and Mackay, Murray and Stockwell, Jason D. and Thiery, Wim and Grossart, Hans-Peter and Augusto-Silva, Petala B. and Baulch, Helen M. and de Eyto, Elvira and Hejzlar, Josef and Kangur, Kuelli and Kirillin, Georgiy and Pierson, Don C. and Rusak, James A. and Sadro, Steven and Woolway, R. Iestyn}, title = {Citizen science shows systematic changes in the temperature difference between air and inland waters with global warming}, series = {Scientific reports}, volume = {7}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/srep43890}, pages = {9}, year = {2017}, abstract = {Citizen science projects have a long history in ecological studies. The research usefulness of such projects is dependent on applying simple and standardized methods. Here, we conducted a citizen science project that involved more than 3500 Swedish high school students to examine the temperature difference between surface water and the overlying air (T-w-T-a) as a proxy for sensible heat flux (Q(H)). If Q(H) is directed upward, corresponding to positive T-w-T-a, it can enhance CO2 and CH4 emissions from inland waters, thereby contributing to increased greenhouse gas concentrations in the atmosphere. The students found mostly negative T-w-T-a across small ponds, lakes, streams/rivers and the sea shore (i.e. downward Q(H)), with T-w-T-a becoming increasingly negative with increasing T-a. Further examination of T-w-T-a using high-frequency temperature data from inland waters across the globe confirmed that T-w-T-a is linearly related to T-a. Using the longest available high-frequency temperature time series from Lake Erken, Sweden, we found a rapid increase in the occasions of negative T-w-T-a with increasing annual mean T-a since 1989. From these results, we can expect that ongoing and projected global warming will result in increasingly negative T-w-T-a, thereby reducing CO2 and CH4 transfer velocities from inland waters into the atmosphere.}, language = {en} } @article{FerreraSarmentoPriscuetal.2017, author = {Ferrera, Isabel and Sarmento, Hugo and Priscu, John C. and Chiuchiolo, Amy and Gonzalez, Jose M. and Grossart, Hans-Peter}, title = {Diversity and Distribution of Freshwater Aerobic Anoxygenic Phototrophic Bacteria across a Wide Latitudinal Gradient}, series = {Frontiers in microbiology}, volume = {8}, journal = {Frontiers in microbiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-302X}, doi = {10.3389/fmicb.2017.00175}, pages = {12}, year = {2017}, abstract = {Aerobic anoxygenic phototrophs (AAPs) have been shown to exist in numerous marine and brackish environments where they are hypothesized to play important ecological roles. Despite their potential significance, the study of freshwater AAPs is in its infancy and limited to local investigations. Here, we explore the occurrence, diversity and distribution of AAPs in lakes covering a wide latitudinal gradient: Mongolian and German lakes located in temperate regions of Eurasia, tropical Great East African lakes, and polar permanently ice-covered Antarctic lakes. Our results show a widespread distribution of AAPs in lakes with contrasting environmental conditions and confirm that this group is composed of different members of the Alpha- and Betaproteobacteria. While latitude does not seem to strongly influence AAP abundance, clear patterns of community structure and composition along geographic regions were observed as indicated by a strong macro-geographical signal in the taxonomical composition of AAPs. Overall, our results suggest that the distribution patterns of freshwater AAPs are likely driven by a combination of small-scale environmental conditions (specific of each lake and region) and large-scale geographic factors (climatic regions across a latitudinal gradient).}, language = {en} } @article{McGinnisFluryTangetal.2017, author = {McGinnis, Daniel F. and Flury, Sabine and Tang, Kam W. and Grossart, Hans-Peter}, title = {Porewater methane transport within the gas vesicles of diurnally migrating Chaoborus spp.}, series = {Scientific reports}, volume = {7}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/srep44478}, pages = {7}, year = {2017}, abstract = {Diurnally-migrating Chaoborus spp. reach populations of up to 130,000 individuals m-2 in lakes up to 70 meters deep on all continents except Antarctica. Linked to eutrophication, migrating Chaoborus spp. dwell in the anoxic sediment during daytime and feed in the oxic surface layer at night. Our experiments show that by burrowing into the sediment, Chaoborus spp. utilize the high dissolved gas partial pressure of sediment methane to inflate their tracheal sacs. This mechanism provides a significant energetic advantage that allows the larvae to migrate via passive buoyancy rather than more energy-costly swimming. The Chaoborus spp. larvae, in addition to potentially releasing sediment methane bubbles twice a day by entering and leaving the sediment, also transport porewater methane within their gas vesicles into the water column, resulting in a flux of 0.01-2 mol m-2 yr-1 depending on population density and water depth. Chaoborus spp. emerging annually as flies also result in 0.1-6 mol m-2 yr-1 of carbon export from the system. Finding the tipping point in lake eutrophication enabling this methane-powered migration mechanism is crucial for ultimately reconstructing the geographical expansion of Chaoborus spp., and the corresponding shifts in the lake's biogeochemistry, carbon cycling and food web structure.}, language = {en} } @article{RojasJimenezFonvielleMaetal.2017, author = {Rojas-Jimenez, Keilor and Fonvielle, Jeremy Andre and Ma, Hua and Grossart, Hans-Peter}, title = {Transformation of humic substances by the freshwater Ascomycete Cladosporium sp.}, series = {Waterbird}, volume = {40}, journal = {Waterbird}, publisher = {Waterbird SOC}, address = {Washington}, issn = {1524-4695}, doi = {10.1002/lno.10545}, pages = {282 -- 288}, year = {2017}, abstract = {The ecological relevance of fungi in freshwater ecosystems is becoming increasingly evident, particularly in processing the extensive amounts of polymeric organic carbon such as cellulose, chitin, and humic substances (HS). We isolated several fungal strains from oligo-mesotrophic Lake Stechlin, Brandenburg, Germany, and analyzed their ability to degrade polymeric-like substrates. Using liquid chromatography-organic carbon detection, we determined the byproducts of HS transformation by the freshwater fungus Cladosporium sp. KR14. We demonstrate the ability of this fungus to degrade and simultaneously synthesize HS, and that transformation processes were intensified when iron, as indicator of the occurrence of Fenton reactions, was present in the medium. Furthermore, we showed that structural complexity of the HS produced changed with the availability of other polymeric substances in the medium. Our study highlights the contribution of freshwater Ascomycetes to the transformation of complex organic compounds. As such, it has important implications for understanding the ecological contribution of fungi to aquatic food webs and related biogeochemical cycles.}, language = {en} } @article{SchwensowDeteringPedersonetal.2017, author = {Schwensow, Nina I. and Detering, Harald and Pederson, Stephen and Mazzoni, Camila and Sinclair, Ron and Peacock, David and Kovaliski, John and Cooke, Brian and Fickel, J{\"o}rns and Sommer, Simone}, title = {Resistance to RHD virus in wild Australian rabbits}, series = {Molecular ecology}, volume = {26}, journal = {Molecular ecology}, publisher = {Wiley}, address = {Hoboken}, issn = {0962-1083}, doi = {10.1111/mec.14228}, pages = {4551 -- 4561}, year = {2017}, abstract = {Deciphering the genes involved in disease resistance is essential if we are to understand host-pathogen coevolutionary processes. The rabbit haemorrhagic disease virus (RHDV) was imported into Australia in 1995 as a biocontrol agent to manage one of the most successful and devastating invasive species, the European rabbit (Oryctolagus cuniculus). During the first outbreaks of the disease, RHDV caused mortality rates of up to 97\%. Recently, however, increased genetic resistance to RHDV has been reported. Here, we have aimed to identify genomic differences between rabbits that survived a natural infection with RHDV and those that died in the field using a genomewide next-generation sequencing (NGS) approach. We detected 72 SNPs corresponding to 133 genes associated with survival of a RHD infection. Most of the identified genes have known functions in virus infections and replication, immune responses or apoptosis, or have previously been found to be regulated during RHD. Some of the genes identified in experimental studies, however, did not seem to play a role under natural selection regimes, highlighting the importance of field studies to complement the genomic background of wildlife diseases. Our study provides a set of candidate markers as a tool for the future scanning of wild rabbits for their resistance to RHDV. This is important both for wild rabbit populations in southern Europe where RHD is regarded as a serious problem decimating the prey of endangered predator species and for assessing the success of currently planned RHDV variant biocontrol releases in Australia.}, language = {en} } @article{SallehRamosMadrigalPenalozaetal.2017, author = {Salleh, Faezah Mohd and Ramos-Madrigal, Jazmin and Penaloza, Fernando and Liu, Shanlin and Sinding, Mikkel-Holger S. and Patel, Riddhi P. and Martins, Renata and Lenz, Dorina and Fickel, J{\"o}rns and Roos, Christian and Shamsir, Mohd Shahir and Azman, Mohammad Shahfiz and Lim, Burton K. and Rossiter, Stephen J. and Wilting, Andreas and Gilbert, M. Thomas P.}, title = {An expanded mammal mitogenome dataset from Southeast Asia}, series = {Gigascience}, volume = {6}, journal = {Gigascience}, number = {8}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {2047-217X}, pages = {1 -- 19}, year = {2017}, abstract = {Background: Findings: Approximately 55 gigabases of raw sequence were generated. From this data we assembled 72 complete mitogenome sequences, with an average depth of coverage of 102.9x and 55.2x for modern samples and historical samples, respectively. This dataset represents 52 species, of which 30 species had no previous mitogenome data available. The mitogenomes were geotagged to their sampling location, where known, to display a detailed geographical distribution of the species. Conclusion:}, language = {en} } @article{StillfriedFickelBoerneretal.2017, author = {Stillfried, Milena and Fickel, J{\"o}rns and B{\"o}rner, Konstantin and Wittstatt, Ulrich and Heddergott, Mike and Ortmann, Sylvia and Kramer-Schadt, Stephanie and Frantz, Alain C.}, title = {Do cities represent sources, sinks or isolated islands for urban wild boar population structure?}, series = {Journal of applied ecology : an official journal of the British Ecological Society}, volume = {54}, journal = {Journal of applied ecology : an official journal of the British Ecological Society}, number = {1}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0021-8901}, doi = {10.1111/1365-2664.12756}, pages = {272 -- 281}, year = {2017}, language = {en} } @article{MartinsFickelMinhLeetal.2017, author = {Martins, Renata F. and Fickel, J{\"o}rns and Minh Le, and Thanh Van Nguyen, and Nguyen, Ha M. and Timmins, Robert and Gan, Han Ming and Rovie-Ryan, Jeffrine J. and Lenz, Dorina and F{\"o}rster, Daniel W. and Wilting, Andreas}, title = {Phylogeography of red muntjacs reveals three distinct mitochondrial lineages}, series = {BMC evolutionary biology}, volume = {17}, journal = {BMC evolutionary biology}, number = {34}, publisher = {BioMed Central}, address = {London}, issn = {1471-2148}, doi = {10.1186/s12862-017-0888-0}, pages = {12}, year = {2017}, abstract = {Background: The members of the genus Muntiacus are of particular interest to evolutionary biologists due to their extreme chromosomal rearrangements and the ongoing discussions about the number of living species. Red muntjacs have the largest distribution of all muntjacs and were formerly considered as one species. Karyotype differences led to the provisional split between the Southern Red Muntjac (Muntiacus muntjak) and the Northern Red Muntjac (M. vaginalis), but uncertainties remain as, so far, no phylogenetic study has been conducted. Here, we analysed whole mitochondrial genomes of 59 archival and 16 contemporaneous samples to resolve uncertainties about their taxonomy and used red muntjacs as model for understanding the evolutionary history of other species in Southeast Asia. Results: We found three distinct matrilineal groups of red muntjacs: Sri Lankan red muntjacs (including the Western Ghats) diverged first from other muntjacs about 1.5 Mya; later northern red muntjacs (including North India and Indochina) and southern red muntjacs (Sundaland) split around 1.12 Mya. The diversification of red muntjacs into these three main lineages was likely promoted by two Pleistocene barriers: one through the Indian subcontinent and one separating the Indochinese and Sundaic red muntjacs. Interestingly, we found a high level of gene flow within the populations of northern and southern red muntjacs, indicating gene flow between populations in Indochina and dispersal of red muntjacs over the exposed Sunda Shelf during the Last Glacial Maximum. Conclusions: Our results provide new insights into the evolution of species in South and Southeast Asia as we found clear genetic differentiation in a widespread and generalist species, corresponding to two known biogeographical barriers: The Isthmus of Kra and the central Indian dry zone. In addition, our molecular data support either the delineation of three monotypic species or three subspecies, but more importantly these data highlight the conservation importance of the Sri Lankan/South Indian red muntjac.}, language = {en} } @article{PatelWutkeLenzetal.2017, author = {Patel, Riddhi P. and Wutke, Saskia and Lenz, Dorina and Mukherjee, Shomita and Ramakrishnan, Uma and Veron, Geraldine and Fickel, J{\"o}rns and Wilting, Andreas and F{\"o}rster, Daniel W.}, title = {Genetic Structure and Phylogeography of the Leopard Cat (Prionailurus bengalensis) Inferred from Mitochondrial Genomes}, series = {Journal of Heredity}, volume = {108}, journal = {Journal of Heredity}, number = {4}, publisher = {Oxford Univ. Press}, address = {Cary}, issn = {0022-1503}, doi = {10.1093/jhered/esx017}, pages = {349 -- 360}, year = {2017}, abstract = {The Leopard cat Prionailurus bengalensis is a habitat generalist that is widely distributed across Southeast Asia. Based on morphological traits, this species has been subdivided into 12 subspecies. Thus far, there have been few molecular studies investigating intraspecific variation, and those had been limited in geographic scope. For this reason, we aimed to study the genetic structure and evolutionary history of this species across its very large distribution range in Asia. We employed both PCR-based (short mtDNA fragments, 94 samples) and high throughput sequencing based methods (whole mitochondrial genomes, 52 samples) on archival, noninvasively collected and fresh samples to investigate the distribution of intraspecific genetic variation. Our comprehensive sampling coupled with the improved resolution of a mitochondrial genome analyses provided strong support for a deep split between Mainland and Sundaic Leopard cats. Although we identified multiple haplogroups within the species' distribution, we found no matrilineal evidence for the distinction of 12 subspecies. In the context of Leopard cat biogeography, we cautiously recommend a revision of the Prionailurus bengalensis subspecific taxonomy: namely, a reduction to 4 subspecies (2 mainland and 2 Sundaic forms).}, language = {en} } @article{VandenWyngaertSetoRojasJimenezetal.2017, author = {Van den Wyngaert, Silke and Seto, Kensuke and Rojas-Jimenez, Keilor and Kagami, Maiko and Grossart, Hans-Peter}, title = {A New Parasitic Chytrid, Staurastromyces oculus (Rhizophydiales, Staurastromy-cetaceae fam. nov.), Infecting the Freshwater Desmid Staurastrum sp.}, series = {Protist}, volume = {168}, journal = {Protist}, publisher = {Elsevier}, address = {Jena}, issn = {1434-4610}, doi = {10.1016/j.protis.2017.05.001}, pages = {392 -- 407}, year = {2017}, abstract = {Chytrids are a diverse group of ubiquitous true zoosporic fungi. The recent molecular discovery of a large diversity of undescribed chytrids has raised awareness on their important, but so far understudied ecological role in aquatic ecosystems. In the pelagic zone, of both freshwater and marine ecosystems, many chytrid species have been morphologically described as parasites on almost all major groups of phytoplankton. However, the majority of these parasitic chytrids has rarely been isolated and lack DNA sequence data, resulting in a large proportion of "dark taxa" in databases. Here, we report on the isolation and in-depth morphological, molecular and host range characterization of a chytrid infecting the common freshwater desmid Staurastrum sp. We provide first insights on the metabolic activity of the different chytrid development stages by using the vital dye FUN (R)-1 (2-chloro-4-[2,3-dihydro-3-methyl-[benzo-1,3-thiazol-2-yl]-methylidene]-1-phenylquinolinium iodide). Cross infection experiments suggest that this chytrid is an obligate parasite and specific for the genus Staurastrum sp. Phylogenetic analysis, based on ITS1-5.8S-ITS2 and 28S rDNA sequences, placed it in the order Rhizophydiales. Based on the unique zoospore ultrastructure, combined with thallus morphology, and molecular phylogenetic placement, we describe this parasitic chytrid as a new genus and species Staurastromyces oculus, within a new family Staurastromycetaceae. (C) 2017 Elsevier GmbH. All rights reserved.}, language = {en} } @article{EckertDiCesareKettneretal.2017, author = {Eckert, Ester M. and Di Cesare, Andrea and Kettner, Marie Therese and Arias-Andres, Maria and Fontaneto, Diego and Grossart, Hans-Peter and Corno, Gianluca}, title = {Microplastics increase impact of treated wastewater on freshwater microbial community}, series = {Environmental pollution}, volume = {234}, journal = {Environmental pollution}, publisher = {Elsevier}, address = {Oxford}, issn = {0269-7491}, doi = {10.1016/j.envpol.2017.11.070}, pages = {495 -- 502}, year = {2017}, abstract = {Plastic pollution is a major global concern with several million microplastic particles entering every day freshwater ecosystems via wastewater discharge. Microplastic particles stimulate biofilm formation (plastisphere) throughout the water column and have the potential to affect microbial community structure if they accumulate in pelagic waters, especially enhancing the proliferation of biohazardous bacteria. To test this scenario, we simulated the inflow of treated wastewater into a temperate lake using a continuous culture system with a gradient of concentration of microplastic particles. We followed the effect of microplastics on the microbial community structure and on the occurrence of integrase 1 (intl), a marker associated with mobile genetic elements known as a proxy for anthropogenic effects on the spread of antimicrobial resistance genes. The abundance of intl increased in the plastisphere with increasing microplastic particle concentration, but not in the water surrounding the microplastic particles. Likewise, the microbial community on microplastic was more similar to the original wastewater community with increasing microplastic concentrations. Our results show that microplastic particles indeed promote persistence of typical indicators of microbial anthropogenic pollution in natural waters, and substantiate that their removal from treated wastewater should be prioritised. (C) 2017 Elsevier Ltd. All rights reserved.}, language = {en} } @article{HansenMeyerFerrarietal.2017, author = {Hansen, Bjoern Oest and Meyer, Etienne H. and Ferrari, Camilla and Vaid, Neha and Movahedi, Sara and Vandepoele, Klaas and Nikoloski, Zoran and Mutwil, Marek}, title = {Ensemble gene function prediction database reveals genes important for complex I formation in Arabidopsis thaliana}, series = {New phytologist : international journal of plant science}, volume = {217}, journal = {New phytologist : international journal of plant science}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {0028-646X}, doi = {10.1111/nph.14921}, pages = {1521 -- 1534}, year = {2017}, abstract = {Recent advances in gene function prediction rely on ensemble approaches that integrate results from multiple inference methods to produce superior predictions. Yet, these developments remain largely unexplored in plants. We have explored and compared two methods to integrate 10 gene co-function networks for Arabidopsis thaliana and demonstrate how the integration of these networks produces more accurate gene function predictions for a larger fraction of genes with unknown function. These predictions were used to identify genes involved in mitochondrial complex I formation, and for five of them, we confirmed the predictions experimentally. The ensemble predictions are provided as a user-friendly online database, EnsembleNet. The methods presented here demonstrate that ensemble gene function prediction is a powerful method to boost prediction performance, whereas the EnsembleNet database provides a cutting-edge community tool to guide experimentalists.}, language = {en} } @article{ZibulskiWesenerWilkesetal.2017, author = {Zibulski, Romy and Wesener, Felix and Wilkes, Heinz and Plessen, Birgit and Pestryakova, Luidmila Agafyevna and Herzschuh, Ulrike}, title = {C / N ratio, stable isotope (delta C-13, delta N-15), and n-alkane patterns of brown mosses along hydrological gradients of low-centred polygons of the Siberian Arctic}, series = {Biogeosciences}, volume = {14}, journal = {Biogeosciences}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1726-4170}, doi = {10.5194/bg-14-1617-2017}, pages = {1617 -- 1630}, year = {2017}, abstract = {Mosses are a major component of the arctic vegetation, particularly in wetlands. We present C / N atomic ratio, delta C-13 and delta N-15 data of 400 brown-moss samples belonging to 10 species that were collected along hydrological gradients within polygonal mires located on the southern Taymyr Peninsula and the Lena River delta in northern Siberia. Additionally, n-alkane patterns of six of these species (16 samples) were investigated. The aim of the study is to see whether the inter-and intraspecific differences in C / N, isotopic compositions and n-alkanes are indicative of habitat, particularly with respect to water level. Overall, we find high variability in all investigated parameters for two different moisture-related groups of moss species. The C / N ratios range between 11 and 53 (median: 32) and show large variations at the intraspecific level. However, species preferring a dry habitat (xero-mesophilic mosses) show higher C / N ratios than those preferring a wet habitat (meso-hygrophilic mosses). The delta C-13 values range between 37.0 and 22.5\% (median D 27.8 \%). The delta N-15 values range between 6.6 and C 1.7\%(median D 2.2 \%). We find differences in delta C-13 and delta N-15 compositions between both habitat types. For some species of the meso-hygrophilic group, we suggest that a relationship between the individ-ual habitat water level and isotopic composition can be inferred as a function of microbial symbiosis. The n-alkane distribution also shows differences primarily between xeromesophilic and meso-hygrophilic mosses, i. e. having a dominance of n-alkanes with long (n-C29, n-C31 /and intermediate (n-C25 /chain lengths, respectively. Overall, our results reveal that C / N ratios, isotopic signals and n-alkanes of studied brown-moss taxa from polygonal wetlands are characteristic of their habitat.}, language = {en} }