@phdthesis{Paraskevopoulou2019, author = {Paraskevopoulou, Sofia}, title = {Adaptive genetic variation and responses to thermal stress in brachionid rotifers}, pages = {IV, 177}, year = {2019}, abstract = {The importance of cryptic diversity in rotifers is well understood regarding its ecological consequences, but there remains an in depth comprehension of the underlying molecular mechanisms and forces driving speciation. Temperature has been found several times to affect species spatio-temporal distribution and organisms' performance, but we lack information on the mechanisms that provide thermal tolerance to rotifers. High cryptic diversity was found recently in the freshwater rotifer "Brachionus calyciflorus", showing that the complex comprises at least four species: B. calyciflorus sensu stricto (s.s.), B. fernandoi, B. dorcas, and B. elevatus. The temporal succession among species which have been observed in sympatry led to the idea that temperature might play a crucial role in species differentiation. The central aim of this study was to unravel differences in thermal tolerance between species of the former B. calyciflorus species complex by comparing phenotypic and gene expression responses. More specifically, I used the critical maximum temperature as a proxy for inter-species differences in heat-tolerance; this was modeled as a bi-dimensional phenotypic trait taking into consideration the intention and the duration of heat stress. Significant differences on heat-tolerance between species were detected, with B. calyciflorus s.s. being able to tolerate higher temperatures than B. fernandoi. Based on evidence of within species neutral genetic variation, I further examined adaptive genetic variability within two different mtDNA lineages of the heat tolerant B. calyciflorus s.s. to identify SNPs and genes under selection that might reflect their adaptive history. These analyses did not reveal adaptive genetic variation related to heat, however, they show putatively adaptive genetic variation which may reflect local adaptation. Functional enrichment of putatively positively selected genes revealed signals of adaptation in genes related to "lipid metabolism", "xenobiotics biodegradation and metabolism" and "sensory system", comprising candidate genes which can be utilized in studies on local adaptation. An absence of genetically-based differences in thermal adaptation between the two mtDNA lineages, together with our knowledge that B. calyciflorus s.s. can withstand a broad range of temperatures, led to the idea to further investigate shared transcriptomic responses to long-term exposure to high and low temperatures regimes. With this, I identified candidate genes that are involved in the response to temperature imposed stress. Lastly, I used comparative transcriptomics to examine responses to imposed heat-stress in heat-tolerant and heat-sensitive Brachionus species. I found considerably different patterns of gene expression in the two species. Most striking are patterns of expression regarding the heat shock proteins (hsps) between the two species. In the heat-tolerant, B. calyciflorus s.s., significant up-regulation of hsps at low temperatures was indicative of a stress response at the cooler end of the temperature regimes tested here. In contrast, in the heat-sensitive B. fernandoi, hsps generally exhibited up-regulation of these genes along with rising temperatures. Overall, identification of differences in expression of genes suggests suppression of protein biosynthesis to be a mechanism to increase thermal tolerance. Observed patterns in population growth are correlated with the hsp gene expression differences, indicating that this physiological stress response is indeed related to phenotypic life history performance.}, language = {en} } @phdthesis{Petrovic2019, author = {Petrovic, Nevena}, title = {Analysis of the role of Forgetter2 in thermotolerance responses in Arabidopsis thaliana}, school = {Universit{\"a}t Potsdam}, pages = {117}, year = {2019}, language = {en} } @phdthesis{Kowalski2019, author = {Kowalski, Gabriele Joanna}, title = {Animal movement patterns across habitats}, school = {Universit{\"a}t Potsdam}, pages = {143}, year = {2019}, language = {en} } @phdthesis{Neumann2019, author = {Neumann, Bettina}, title = {Bioelectrocatalytic activity of surface-confined heme catalysts}, school = {Universit{\"a}t Potsdam}, pages = {116}, year = {2019}, language = {en} } @phdthesis{Taube2019, author = {Taube, Robert}, title = {Characterisations of Fungal Communities in Temperate Lakes}, school = {Universit{\"a}t Potsdam}, pages = {139}, year = {2019}, language = {en} } @phdthesis{Riedel2019, author = {Riedel, Simona}, title = {Characterization of Mitochondrial ABC Transporter Homologues in Rhodobacter capsulatus}, school = {Universit{\"a}t Potsdam}, pages = {127}, year = {2019}, abstract = {ABC-Transporter (ABC abgeleitet von ATP-Binding Cassette) geh{\"o}ren zur Klasse der Transmembran-Proteine und kommen in allen drei Dom{\"a}nen des Lebens vor. Ihr struktureller Aufbau ist dabei stets {\"a}hnlich, wohingegen konservierte Proteinsequenzen selten vorkommen. Die Transporter sind aus zwei lipophilen, membran-durchspannenden Dom{\"a}nen, welche auch TMDs (abgeleitet von Transmembrane spanning Domains) genannt werden, und zwei hydrophilen Dom{\"a}nen, die auch NBDs (abgeleitet von Nucleotide Binding Domains) genannt werden, aufgebaut. Die Vielzahl der durch ABC-Transporter bef{\"o}rderten Molek{\"u}le erkl{\"a}rt dabei die enorme Anzahl diverser TMDs. In den Mitochondrien des Menschen findet man vier ABC-Transporter (ABCB6, ABCB7, ABCB8 und ABCB10) mit funktionellen Homologen in Hefen und Pflanzen. In Bakterien hingegen k{\"o}nnen, mit Ausnahme von Rickettsiae und verwandten Bakterien, keine Homologen zu mitochondrialen ABC-Transportern identifiziert werden. Die transportierten Molek{\"u}le sowie die damit verbundenen Funktionen sind im Einzelnen bislang weitgehend unbekannt. ABCB7 und die entsprechenden Homologen in Hefen (Atm1) und in Pflanzen (ATM3) konnten mit der cytosolischen Eisen-Schwefel-Cluster-Biosynthese in Zusammenhang gebracht werden. Eine schwefelhaltige Verbindung der mitochondrialen Matrix wird mit Hilfe dieses Transporters der cytosolischen Eisen-Schwefel-Cluster-Assemblierung zur Verf{\"u}gung gestellt. Die 2014 publizierten Kristallstrukturen von Atm1 (Hefe) und Atm1 aus Novosphingobium aromaticivorans offenbarten dabei eine hoch konservierte Glutathion-Bindetasche innerhalb der TMDs f{\"u}r ABCB7 Homologe. In der Modellpflanze Arabidopsis thaliana konnte ATM3 zus{\"a}tzlich mit der Biosynthese des Molybd{\"a}n-Cofaktors in Verbindung gebracht werden. In der vorliegenden Arbeit wurde das α-Proteobacterium Rhodobacter capsulatus als Modellorganismus genutzt, um mitochondriale ABC-Transporter Homologe zu untersuchen. Das Bakterium enth{\"a}lt zwei ABC-Transporter-Gene, rcc03139 und rcc02305, die mit den humanen mitochondrialen Transportern große Sequenz{\"u}bereinstimmungen aufweisen (rcc03139: 41 \% respektive 38 \% Identit{\"a}t mit ABCB8 und ABCB10, rcc02305: 47 \% identisch mit ABCB7 und ABCB6). Mit Hilfe erzeugter Interposon-Mutanten (Δrcc02305I und Δrcc03139I) konnte erstmals gezeigt werden, dass bakterielle Transporter funktionell sehr {\"a}hnliche Aufgaben wie die mitochondrialen ABC-Transporter {\"u}bernehmen. Beispielsweise akkumulierten beide Interposon-Mutanten reaktive Sauerstoff-Spezies (ROS) ohne gleichzeitige Akkumulation von Glutathion oder Eisen. Weiterhin konnten wir zeigen, dass, {\"a}hnlich wie bereits f{\"u}r ATM3 postuliert, die Biosynthese des Molybd{\"a}n-Cofaktors in Δrcc02305I ver{\"a}ndert ist. Mit Hilfe einer lebensf{\"a}higen Doppelmutante, in der beide ABC-Transporter-Gene gleichzeitig deletiert wurden, konnten wir ausschließen, dass die beiden bakteriellen ABC-Transporter grunds{\"a}tzlich redundante Funktionen haben. Durch die Analyse des Proteoms von Δrcc03139I im Vergleich zu der des Wildtyps, konnte eine extreme Beeinflussung der Tetrapyrrol Biosynthese sowie entsprechender Zielproteine identifiziert werden. Dies konnte zus{\"a}tzlich durch die Quantifizierung einzelner Zwischenprodukte der Biosynthese best{\"a}tigt werden. Im Gegensatz dazu konnte anhand der Analyse des Proteoms in Verbindung mit analytischen Methoden in Δrcc02305I ein Ungleichgewicht in der Schwefelverteilung identifiziert werden. Zusammen mit der Entdeckung einer Pyridoxalphosphat (PLP) Bindestelle in Rcc02305 und anderen ABCB7-artigen Transportern, welche direkt mit dem Walker-A-Motiv der NBD {\"u}berlappt, erm{\"o}glichte dies eine v{\"o}llig neue Theorie, wie die schwefelhaltige Verbindung transportiert werden kann. Wir gehen davon aus, dass an PLP zun{\"a}chst ein Persulfid produziert wird, welches unmittelbar mit dem Glutathion der transmembranen Bindetasche zu einem gemischten Polysulfid reagiert. Im Anschluss daran wird die ATP-Bindestelle frei und die Hydrolyse des ATPs l{\"o}st eine Konformations{\"a}nderung aus, welche das gemischte Polysulfid ins Periplasma bzw. in den intermembranen Raum freigibt.}, language = {en} } @phdthesis{Schwuchow2019, author = {Schwuchow, Viola}, title = {Charakterisierung der periplasmatischen Aldehyd-Oxidoreduktase (PaoABC) aus Escherichia coli}, school = {Universit{\"a}t Potsdam}, pages = {119}, year = {2019}, abstract = {Im Mittelpunkt dieser Arbeit standen Analysen zur Charakterisierung der periplasmatischen Aldehyd Oxidoreduktase aus E. coli. Kinetische Untersuchungen mit Ferricyanid als Elektronenakzeptor unter anaeroben Bedingungen zeigten f{\"u}r dieses Enzym eine h{\"o}here Aktivit{\"a}t als unter aeroben Bedingungen. Die getroffene Hypothese, dass PaoABC f{\"a}hig ist Elektronen an molekularen Sauerstoff weiter zu geben, konnte best{\"a}tigt werden. F{\"u}r den Umsatz aromatischer Aldehyde mit molekularem Sauerstoff wurde ein Optimum von pH 6,0 ermittelt. Dies steht im Gegensatz zur Reaktion mit Ferricyanid, mit welchem ein pH-Optimum von 4,0 gezeigt wurde. Die Reaktion von PaoABC mit molekularem Sauerstoff generiert zwar Wasserstoffperoxid, die Produktion von Superoxid konnte dagegen nicht beobachtet werden. Dass aerobe Bedingungen einen Einfluss auf das Ausl{\"o}sen der Expression von PaoABC haben, wurde in dieser Arbeit ebenfalls ermittelt. Im Zusammenhang mit der Produktion von ROS durch PaoABC wurde die Funktion eines k{\"u}rzlich in Elektronentransfer-Distanz zum FAD identifizierten [4Fe4S]-Clusters untersucht. Ein Austausch der f{\"u}r die Bindung des Clusters zust{\"a}ndigen Cysteine f{\"u}hrte zur Instabilit{\"a}t der Proteinvarianten, weswegen f{\"u}r diese keine weiteren Untersuchungen erfolgten. Daher wird zumindest ein struktur-stabilisierender Einfluss des [4Fe4S]-Clusters angenommen. Zur weiteren Untersuchung der Funktion dieses Clusters, wurde ein zwischen FAD und [4Fe4S]-Cluster lokalisiertes Arginin gegen ein Alanin ausgetauscht. Diese Proteinvariante zeigte eine reduzierte Geschwindigkeit der Reaktion gegen{\"u}ber dem Wildtyp. Die Bildung von Superoxid konnte auch hier nicht beobachtet werden. Die Vermutung, dass dieser Cluster einen elektronen-sammelnden Mechanismus unterst{\"u}tzt, welcher die Radikalbildung verhindert, kann trotz allem nicht ausgeschlossen werden. Da im Umkreis des Arginins weitere geladene und aromatische Aminos{\"a}uren lokalisiert sind, k{\"o}nnen diese den notwendigen Elektronentransfer {\"u}bernehmen. Neben der Ermittlung eines physiologischen Elektronenakzeptors und dessen Einfluss auf die Expression von PaoABC zeigt diese Arbeit auch, dass die Chaperone PaoD und MocA w{\"a}hrend der Reifung des MCD-Kofaktor eine gemeinsame Bindung an PaoABC realisieren. Es konnte im aktiven Zentrum von PaoABC ein Arginin beschrieben werden, welches auf Grund der engen Nachbarschaft zum MCD-Kofaktor und zum Glutamat (PaoABC-EC692) am Prozess der Substratbindung beteiligt ist. Im Zusammenhang mit dem Austausch dieses Arginins gegen ein Histidin oder ein Lysin wurden die Enzymspezifit{\"a}t und der Einfluss physiologischer Bedingungen, wie pH und Ionenst{\"a}rke, auf die Reaktion des Enzyms untersucht. Gegen{\"u}ber dem Wildtyp zeigten die Varianten mit molekularem Sauerstoff eine geringere Affinit{\"a}t zum Substrat aber auch eine h{\"o}here Geschwindigkeit der Reaktion. Vor allem f{\"u}r die Histidin-Variante konnte im gesamten pH-Bereich ein instabiles Verhalten bestimmt werden. Der Grund daf{\"u}r wurde durch das L{\"o}sen der Struktur der Histidin-Variante beschreiben. Durch den Austausch der Aminos{\"a}uren entf{\"a}llt die stabilisierende Wirkung der delokalisierten Elektronen des Arginins und es kommt zu einer Konformations{\"a}nderung im aktiven Zentrum. Neben der Reaktion von PaoABC mit einer Vielzahl aromatischer Aldehyde konnte auch der Umsatz von Salicylaldehyd zu Salicyls{\"a}ure durch PaoABC in einer Farbreaktion bestimmt werden. Durch Ausschluss von molekularem Sauerstoff als terminaler Elektronenakzeptor, in einer enzym-gekoppelten Reaktion, erfolgte ein Elektronentransport auf Ferrocencarboxyls{\"a}ure. Die Kombination aus beiden Methoden erm{\"o}glichte eine Verwendung von Ferrocen-Derivaten zur Generierung einer enzym-gekoppelten Reaktion mit PaoABC. Die Untersuchungen zu PaoABC zeigen, dass die Vielfalt der durch das Enzym katalysierten Rektionen weitere M{\"o}glichkeiten der enzymatischen Bestimmung biokatalytischer Prozesse bietet.}, language = {de} } @phdthesis{Schirmer2019, author = {Schirmer, Annika}, title = {Consistent individual differences in movement-related behaviour as equalising and/or stabilising mechanisms for species coexistence}, school = {Universit{\"a}t Potsdam}, pages = {154}, year = {2019}, abstract = {The facilitation of species coexistence has been a central theme in ecological research for years, highlighting two key aspects: ecological niches and competition between species. According to the competitive exclusion principle, the overlap of species niches predicts the amount of shared resources and therefore competition between species, determining their ability to coexist. Only if niches of two species are sufficiently different, thus niche overlap is low, competition within species is higher than competition between species and stable coexistence is possible. Thereby, differences in species mean traits are focused on and conspecific individuals are assumed to be interchangeable. This approach might be outdated since behaviour, as a key aspect mediating niche differentiation between species, is individual based. Individuals from one species consistently differ across time and situations in their behavioural traits. Causes and consequences of consistent behavioural differences have been thoroughly investigated stimulating their recent incorporation into ecological interactions and niche theory. Spatial components have so far been largely overlooked, although animal movement is strongly connected to several aspects of ecological niches and interactions between individuals. Furthermore, numerous movement aspects haven been proven to be crucially influenced by consistent individual differences. Considering spatial parameters could therefore crucially broaden our understanding of how individual niches are formed and ecological interactions are shaped. Furthermore, extending established concepts on species interactions by an individual component could provide new insights into how species coexistence is facilitated and local biodiversity is maintained. The main aim of this thesis was to test whether consistent inter-individual differences can facilitate the coexistence of ecological similar species. Therefore, the effects of consistent inter-individual differences on the spatial behaviour of two rodent species, the bank vole (Myodes glareolus) and the striped field mouse (Apodemus agrarius), were investigated and put in the context of: (i) individual spatial niches, (ii) interactions between species, and (iii) the importance of different levels of behavioural variation within species for their interactions. Consistent differences of study animals in boldness and exploration were quantified with the same tests in all presented studies and always combined with observations of movement and space use via automated VHF radio telemetry. Consequently, results are comparable throughout the thesis and the methods provide a common denominator for all chapters. The first two chapters are based on observations of free-ranging rodents in natural populations, while chapter III represents an experimental approach under semi-natural conditions. Chapter I focusses on the effect of consistent differences in boldness and exploration on movement and space use of bank voles and their contribution to individual spatial niche separation. Results show boldness to be the dominating predictor for spatial parameters in bank voles. Irrespective of sex, bolder individuals had larger home ranges, moved longer distances, had less spatial interactions with conspecifics and occupied different microhabitats compared to shy individuals. The same boldness-dependent spatial patterns could be observed in striped field mice which is reported in chapter II. Therefore, both study species showed individual spatial niche occupation. Chapter II builds on findings from the first chapter, investigating the effect of boldness driven individual spatial niche occupation on the interactions between species. Irrespective of species and sex, bolder individuals had more interspecific spatial interactions, but less intraspecific interactions, compared to shy individuals. Due to individual niches occupation the competitive environment individuals experience is not random. Interactions are restricted to individuals of similar behavioural type with presumably similar competitive ability, which could balance differences on the species level and support coexistence. In chapter III the experimental populations were either comprised of only shy or only bold bank voles, while striped field mice varied, creating either a shy- or bold-biased competitive community. Irrespective of behavioural type, striped field mice had more intraspecific interactions in bold-biased competitive communities. Only in a shy-biased competitive community, bolder striped field mice had less interspecific interactions compared to shy individuals. Bank voles showed no difference in intra- or interspecific interactions between populations. Chapter III highlights, that not only consistent inter-individual differences per se are important for interactions within and between species, but also the amount of behavioural variation within coexisting species. Overall, this thesis highlights the importance of considering consistent inter-individual differences in a spatial context and their connection to individual spatial niche occupation, as well as the resulting effects on interactions within and between species. Individual differences are discussed in the context of similarity of individuals, individual and species niche width, and individual and species niche overlap. Thereby, this thesis makes one step further from the existing research on individual niches towards integrating consistent inter-individual differences into the larger framework of species coexistence.}, language = {en} } @phdthesis{Wozniak2019, author = {Wozniak, Natalia Joanna}, title = {Convergent evolution of the selfing syndrome in the genus Capsella}, school = {Universit{\"a}t Potsdam}, pages = {229}, year = {2019}, language = {en} } @phdthesis{Gupta2019, author = {Gupta, Saurabh}, title = {Deciphering stress acclimation mechanisms in plants with extreme abiotic stress tolerence using genomics approaches}, school = {Universit{\"a}t Potsdam}, pages = {161}, year = {2019}, language = {en} } @phdthesis{Luzarowski2019, author = {Luzarowski, Marcin}, title = {Development and application of biochemical approaches for characterisation of the protein-protein-metabolite interactome in model organisms' A. thaliana and S. cerevisiae}, school = {Universit{\"a}t Potsdam}, pages = {123}, year = {2019}, language = {en} } @phdthesis{PerlazaJimenez2019, author = {Perlaza-Jimenez, Laura}, title = {Discerning functional associations and relationships between molecules in Arabidopsis thaliana using genome-wide correlated mutations}, school = {Universit{\"a}t Potsdam}, pages = {118}, year = {2019}, language = {en} } @phdthesis{Tong2019, author = {Tong, Hao}, title = {Dissection of genetic architecture of intermediate phenotypes and predictions in plants}, school = {Universit{\"a}t Potsdam}, pages = {127}, year = {2019}, abstract = {Determining the relationship between genotype and phenotype is the key to understand the plasticity and robustness of phenotypes in nature. While the directly observable plant phenotypes (e.g. agronomic, yield and stress resistance traits) have been well-investigated, there is still a lack in our knowledge about the genetic basis of intermediate phenotypes, such as metabolic phenotypes. Dissecting the links between genotype and phenotype depends on suitable statistical models. The state-of-the-art models are developed for directly observable phenotypes, regardless the characteristics of intermediate phenotypes. This thesis aims to fill the gaps in understanding genetic architecture of intermediate phenotypes, and how they tie to composite traits, namely plant growth. The metabolite levels and reaction fluxes, as two aspects of metabolic phenotypes, are shaped by the interrelated chemical reactions formed in genome-scale metabolic network. Here, I attempt to answer the question: Can the knowledge of underlying genome-scale metabolic network improve the model performance for prediction of metabolic phenotypes and associated plant growth? To this end, two projects are investigated in this thesis. Firstly, we propose an approach that couples genomic selection with genome-scale metabolic network and metabolic profiles in Arabidopsis thaliana to predict growth. This project is the first integration of genomic data with fluxes predicted based on constraint-based modeling framework and data on biomass composition. We demonstrate that our approach leads to a considerable increase of prediction accuracy in comparison to the state-of-the-art methods in both within and across environment predictions. Therefore, our work paves the way for combining knowledge on metabolic mechanisms in the statistical approach underlying genomic selection to increase the efficiency of future plant breeding approaches. Secondly, we investigate how reliable is genomic selection for metabolite levels, and which single nucleotide polymorphisms (SNPs), obtained from different neighborhoods of a given metabolic network, contribute most to the accuracy of prediction. The results show that the local structure of first and second neighborhoods are not sufficient for predicting the genetic basis of metabolite levels in Zea mays. Furthermore, we find that the enzymatic SNPs can capture most the genetic variance and the contribution of non-enzymatic SNPs is in fact small. To comprehensively understand the genetic architecture of metabolic phenotypes, I extend my study to a local Arabidopsis thaliana population and their hybrids. We analyze the genetic architecture in primary and secondary metabolism as well as in growth. In comparison to primary metabolites, compounds from secondary metabolism were more variable and show more non-additive inheritance patterns which could be attributed to epistasis. Therefore, our study demonstrates that heterozygosity in local Arabidopsis thaliana population generates metabolic variation and may impact several tasks directly linked to metabolism. The studies in this thesis improve the knowledge of genetic architecture of metabolic phenotypes in both inbreed and hybrid population. The approaches I proposed to integrate genome-scale metabolic network with genomic data provide the opportunity to obtain mechanistic insights about the determinants of agronomically important polygenic traits.}, language = {en} } @phdthesis{Zhang2019, author = {Zhang, Xiaorong}, title = {Electrosynthesis and characterization of molecularly imprinted polymers for peptides and proteins}, school = {Universit{\"a}t Potsdam}, pages = {116}, year = {2019}, language = {en} } @phdthesis{Yishai2019, author = {Yishai, Oren}, title = {Engineering the reductive glycine pathway in Escherichia coli}, school = {Universit{\"a}t Potsdam}, pages = {86}, year = {2019}, language = {en} } @phdthesis{Devkar2019, author = {Devkar, Vikas Suresh}, title = {Functional characterization of NAC transcription factors ATAF1 and SITAF1 in growth and abiotic stress tolerance in tomato}, school = {Universit{\"a}t Potsdam}, year = {2019}, language = {en} } @phdthesis{Gottmann2019, author = {Gottmann, Pascal}, title = {In silico Analyse zur Kl{\"a}rung der Beteiligung von micro-RNAs, die in QTL lokalisiert sind, an den metabolischen Erkrankungen Adipositas und Typ-2-Diabetes mit Hilfe von Mausmodellen}, school = {Universit{\"a}t Potsdam}, pages = {XIII, 106}, year = {2019}, language = {de} } @phdthesis{Scherer2019, author = {Scherer, Philipp C{\´e}dric}, title = {Infection on the move}, school = {Universit{\"a}t Potsdam}, pages = {x, 107, XXXVIII}, year = {2019}, abstract = {Movement plays a major role in shaping population densities and contact rates among individuals, two factors that are particularly relevant for disease outbreaks. Although any differences in movement behaviour due to individual characteristics of the host and heterogeneity in landscape structure are likely to have considerable consequences for disease dynamics, these mechanisms are neglected in most epidemiological studies. Therefore, developing a general understanding how the interaction of movement behaviour and spatial heterogeneity shapes host densities, contact rates and ultimately pathogen spread is a key question in ecological and epidemiological research. In my thesis, I address this gap using both theoretical and empirical modelling approaches. In the theoretical part of my thesis, I investigated bottom-up effects of individual movement behaviour and landscape structure on host density, contact rates, and ultimately disease dynamics. I extended an established agent-based model that simulates ecological and epidemiological key processes to incorporate explicit movement of host individuals and landscape complexity. Neutral landscape models are a powerful basis for spatially-explicit modelling studies to imitate the complex characteristics of natural landscapes. In chapter 2, the first study of my thesis, I introduce two complementary R packages, NLMR and landscapetools, that I have co-developed to simplify the workflow of simulation and customization of such landscapes. To demonstrate the use of the packages I present a case study using the spatially explicit eco-epidemiological model and show that landscape complexity per se increases the probability of disease persistence. By using simple rules to simulate explicit host movement, I highlight in chapter 3 how disease dynamics are affected by population-level properties emerging from different movement rules leading to differences in the realized movement distance, spatiotemporal host density, and heterogeneity in transmission rates. As a consequence, mechanistic movement decisions based on the underlying landscape or conspecific competition led to considerably higher probabilities than phenomenological random walk approaches due directed movement leading to spatiotemporal differences in host densities. The results of these two chapters highlight the need to explicitly consider spatial heterogeneity and host movement behaviour when theoretical approaches are used to assess control measures to prevent outbreaks or eradicate diseases. In the empirical part of my thesis (chapter 4), I focus on the spatiotemporal dynamics of Classical Swine Fever in a wild boar population by analysing epidemiological data that was collected during an outbreak in Northern Germany persisting for eight years. I show that infection risk exhibits different seasonal patterns on the individual and the regional level. These patterns on the one hand show a higher infection risk in autumn and winter that may arise due to onset of mating behaviour and hunting intensity, which result in increased movement ranges. On the other hand, the increased infection risk of piglets, especially during the birth season, indicates the importance of new susceptible host individuals for local pathogen spread. The findings of this chapter underline the importance of different spatial and temporal scales to understand different components of pathogen spread that can have important implications for disease management. Taken together, the complementary use of theoretical and empirical modelling in my thesis highlights that our inferences about disease dynamics depend heavily on the spatial and temporal resolution used and how the inclusion of explicit mechanisms underlying hosts movement are modelled. My findings are an important step towards the incorporation of spatial heterogeneity and a mechanism-based perspective in eco-epidemiological approaches. This will ultimately lead to an enhanced understanding of the feedbacks of contact rates on pathogen spread and disease persistence that are of paramount importance to improve predictive models at the interface of ecology and epidemiology.}, language = {en} } @phdthesis{Thirumalaikumar2019, author = {Thirumalaikumar, Venkatesh P.}, title = {Investigating drought and heat stress regulatory networks in Arabidopsis and tomato}, school = {Universit{\"a}t Potsdam}, pages = {154}, year = {2019}, language = {en} } @phdthesis{Vandrich2019, author = {Vandrich, Jasmina}, title = {Metabolic Engineering in Halomonas elongata}, school = {Universit{\"a}t Potsdam}, pages = {80}, year = {2019}, language = {en} } @phdthesis{GonzalezdelaCruz2019, author = {Gonzalez de la Cruz, Jorge}, title = {Metabolic engineering of Saccharomyces cerevisiae for formatotrophic growth}, school = {Universit{\"a}t Potsdam}, pages = {96}, year = {2019}, language = {en} } @phdthesis{Neukranz2019, author = {Neukranz, Yannika}, title = {MOCS3 and its role in molybdenum cofactor biosynthesis, tRNA thiolation and other cellular pathways in humans}, school = {Universit{\"a}t Potsdam}, pages = {135}, year = {2019}, language = {en} } @phdthesis{Gaballa2019, author = {Gaballa, Mohamed Mahmoud Salem Ahmed}, title = {New pharmacological approaches targeting vascular calcification in chronic kidney disease}, address = {Potsdam}, school = {Universit{\"a}t Potsdam}, pages = {X, 110}, year = {2019}, language = {en} } @phdthesis{Eichelmann2019, author = {Eichelmann, Fabian}, title = {Novel adipokines as inflammatory biomarkers of chronic disease risk}, school = {Universit{\"a}t Potsdam}, pages = {133}, year = {2019}, language = {en} } @phdthesis{Baleka2019, author = {Baleka, Sina Isabelle}, title = {Palaeogenetic analyses of extinct Elephantidae from temperate and subtropical climates}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 114}, year = {2019}, language = {en} } @phdthesis{Kuecuekgoeze2019, author = {K{\"u}{\c{c}}{\"u}kg{\"o}ze, G{\"o}khan}, title = {Purification and characterization of mouse aldehyde oxidases}, school = {Universit{\"a}t Potsdam}, pages = {xiv, 125}, year = {2019}, abstract = {Mouse aldehyde oxidases (mAOXs) have a homodimeric structure and belong to xanthine oxidase family of molybdo-flavoenzymes. In general, each dimer is characterized by three subdomains: a 20 kDa N-terminal 2x[2Fe2S] cluster containing domain, a 40 kDa central FAD-containing domain and an 85 kDa C-terminal molybdenum cofactor (Moco) containing domain. Aldehyde oxidases have a broad substrate specificity including the oxidation of different aldehydes and N-heterocyclic compounds. AOX enzymes are present in mainly all eukaryotes. Four different homologs of AOX were identified to be present with varying numbers among species and rodents like mice and rats contain the highest number of AOX isoenzymes. There are four identified homologs in mouse named mAOX1, mAOX3, mAOX2, and mAOX4. The AOX homologs in mice are expressed in a tissue-specific manner. Expression of mAOX1 and mAOX3 are almost superimposable and predominantly synthesized in liver, lung, and testis. The richest source of mAOX4 is the Harderian gland, which is found within the eye's orbit in tetrapods. Expression of mAOX2 is strictly restricted to the Bowman's gland, the main secretory organ of the nasal mucosa. In this study, the four catalytically active mAOX enzymes were expressed in a heterologous expression system in Escherichia coli and purified in a catalytically active form. Thirty different structurally related aromatic, aliphatic and N-heterocyclic compounds were used as substrates, and the kinetic parameters of all four mAOX enzymes were directly compared. The results showed that all enzymes can catalyze a broad range of substrates. Generally, no major differences between mAOX1, mAOX3 and mAOX2 were identified and the substrate specificity of mAOX1, mAOX3, and mAOX2 was broader compared to that of mAOX4 since mAOX4 showed no activity with substrates like methoxy-benzaldehydes, phenanthridine, N1-methyl-nicotinamide, and cinnamaldehyde and 4-(dimethylamino)cinnamaldehyde. We investigated differences at the flavin site of the mAOX enzymes by measuring the ability of the four mAOX enzymes to oxidize NADH in the absence of oxygen. NADH was able to reduce only mAOX3. The four mouse AOXs are also characterized by quantitative differences in their ability to produce superoxide radicals. mAOX2 is the enzyme generating the largest rate of superoxide radicals of around 40\% in relation to moles of substrate converted and it is followed by mAOX1 with a ratio of 30\%. To understand the factors that contribute to the substrate specificity of mAOX4, site-directed mutagenesis was applied to substitute amino acids in the substrate-binding funnel by the ones present in mAOX1, mAOX3, and mAOX2. The amino acids Val1016, Ile1018 and Met1088 were selected as targets. An increase in activity was obtained by the amino acid exchange M1088V in the active site identified to be specific for mAOX4, to the amino acid identified in mAOX3.}, language = {en} } @phdthesis{Schumacher2019, author = {Schumacher, Julia}, title = {Regulation and function of STERILE APETALA in Arabidopsis flower development}, school = {Universit{\"a}t Potsdam}, pages = {144}, year = {2019}, abstract = {STERILE APETALA (SAP) is known to be an essential regulator of flower development for over 20 years. Loss of SAP function in the model plant Arabidopsis thaliana is associated with a reduction of floral organ number, size and fertility. In accordance with the function of SAP during early flower development, its spatial expression in flowers is confined to meristematic stages and to developing ovules. However, to date, despite extensive research, the molecular function of SAP and the regulation of its spatio-temporal expression still remain elusive. In this work, amino acid sequence analysis and homology modeling revealed that SAP belongs to the rare class of plant F-box proteins with C-terminal WD40 repeats. In opisthokonts, this type of F-box proteins constitutes the substrate binding subunit of SCF complexes, which catalyze the ubiquitination of proteins to initiate their proteasomal degradation. With LC-MS/MS-based protein complex isolation, the interaction of SAP with major SCF complex subunits was confirmed. Additionally, candidate substrate proteins, such as the growth repressor PEAPOD 1 and 2 (PPD1/2), could be revealed during early stages of flower development. Also INDOLE-3-BUTYRIC ACID RESPONSE 5 (IBR5) was identified among putative interactors. Genetic analyses indicated that, different from substrate proteins, IBR5 is required for SAP function. Protein complex isolation together with transcriptome profiling emphasized that the SCFSAP complex integrates multiple biological processes, such as proliferative growth, vascular development, hormonal signaling and reproduction. Phenotypic analysis of sap mutant and SAP overexpressing plants positively correlated SAP function with plant growth during reproductive and vegetative development. Furthermore, to elaborate on the transcriptional regulation of SAP, publicly available ChIP-seq data of key floral homeotic proteins were reanalyzed. Here, it was shown that the MADS-domain transcription factors APETALA 1 (AP1), APETALA 3 (AP3), PISTILLATA (PI), AGAMOUS (AG) and SEPALLATA 3 (SEP3) bind to the SAP locus, which indicates that SAP is expressed in a floral organ-specific manner. Reporter gene analyses in combination with CRISPR/Cas9-mediated deletion of putative regulatory regions further demonstrated that the intron contains major regulatory elements of SAP in Arabidopsis thaliana. In conclusion, these data indicate that SAP is a pleiotropic developmental regulator that acts through tissue-specific destabilization of proteins. The presumed transcriptional regulation of SAP by the floral MADS-domain transcription factors could provide a missing link between the specification of floral organ identity and floral organ growth pathways.}, language = {en} } @phdthesis{Langhammer2019, author = {Langhammer, Maria}, title = {Simulating biodiversity responses to land use mosaics in agricultural landscapes}, school = {Universit{\"a}t Potsdam}, year = {2019}, language = {en} } @phdthesis{Schiro2019, author = {Schiro, Gabriele}, title = {Spatial distribution of phyllosphere fungi in topographically heterogeneous wheat fields}, school = {Universit{\"a}t Potsdam}, pages = {105}, year = {2019}, language = {en} } @phdthesis{Ramming2019, author = {Ramming, Anna}, title = {Specific Roles of POLY(A) POLYMERASE1 in the male Gametophyte and Beyond}, school = {Universit{\"a}t Potsdam}, pages = {143}, year = {2019}, language = {en} }