@phdthesis{TabaresJimenez2021, author = {Tabares Jimenez, Ximena del Carmen}, title = {A palaeoecological approach to savanna dynamics and shrub encroachment in Namibia}, doi = {10.25932/publishup-49281}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-492815}, school = {Universit{\"a}t Potsdam}, pages = {121}, year = {2021}, abstract = {The spread of shrubs in Namibian savannas raises questions about the resilience of these ecosystems to global change. This makes it necessary to understand the past dynamics of the vegetation, since there is no consensus on whether shrub encroachment is a new phenomenon, nor on its main drivers. However, a lack of long-term vegetation datasets for the region and the scarcity of suitable palaeoecological archives, makes reconstructing past vegetation and land cover of the savannas a challenge. To help meet this challenge, this study addresses three main research questions: 1) is pollen analysis a suitable tool to reflect the vegetation change associated with shrub encroachment in savanna environments? 2) Does the current encroached landscape correspond to an alternative stable state of savanna vegetation? 3) To what extent do pollen-based quantitative vegetation reconstructions reflect changes in past land cover? The research focuses on north-central Namibia, where despite being the region most affected by shrub invasion, particularly since the 21st century, little is known about the dynamics of this phenomenon. Field-based vegetation data were compared with modern pollen data to assess their correspondence in terms of composition and diversity along precipitation and grazing intensity gradients. In addition, two sediment cores from Lake Otjikoto were analysed to reveal changes in vegetation composition that have occurred in the region over the past 170 years and their possible drivers. For this, a multiproxy approach (fossil pollen, sedimentary ancient DNA (sedaDNA), biomarkers, compound specific carbon (δ13C) and deuterium (δD) isotopes, bulk carbon isotopes (δ13Corg), grain size, geochemical properties) was applied at high taxonomic and temporal resolution. REVEALS modelling of the fossil pollen record from Lake Otjikoto was run to quantitatively reconstruct past vegetation cover. For this, we first made pollen productivity estimates (PPE) of the most relevant savanna taxa in the region using the extended R-value model and two pollen dispersal options (Gaussian plume model and Lagrangian stochastic model). The REVEALS-based vegetation reconstruction was then validated using remote sensing-based regional vegetation data. The results show that modern pollen reflects the composition of the vegetation well, but diversity less well. Interestingly, precipitation and grazing explain a significant amount of the compositional change in the pollen and vegetation spectra. The multiproxy record shows that a state change from open Combretum woodland to encroached Terminalia shrubland can occur over a century, and that the transition between states spans around 80 years and is characterized by a unique vegetation composition. This transition is supported by gradual environmental changes induced by management (i.e. broad-scale logging for the mining industry, selective grazing and reduced fire activity associated with intensified farming) and related land-use change. Derived environmental changes (i.e. reduced soil moisture, reduced grass cover, changes in species composition and competitiveness, reduced fire intensity) may have affected the resilience of Combretum open woodlands, making them more susceptible to change to an encroached state by stochastic events such as consecutive years of precipitation and drought, and by high concentrations of pCO2. We assume that the resulting encroached state was further stabilized by feedback mechanisms that favour the establishment and competitiveness of woody vegetation. The REVEALS-based quantitative estimates of plant taxa indicate the predominance of a semi-open landscape throughout the 20th century and a reduction in grass cover below 50\% since the 21st century associated with the spread of encroacher woody taxa. Cover estimates show a close match with regional vegetation data, providing support for the vegetation dynamics inferred from multiproxy analyses. Reasonable PPEs were made for all woody taxa, but not for Poaceae. In conclusion, pollen analysis is a suitable tool to reconstruct past vegetation dynamics in savannas. However, because pollen cannot identify grasses beyond family level, a multiproxy approach, particularly the use of sedaDNA, is required. I was able to separate stable encroached states from mere woodland phases, and could identify drivers and speculate about related feedbacks. In addition, the REVEALS-based quantitative vegetation reconstruction clearly reflects the magnitude of the changes in the vegetation cover that occurred during the last 130 years, despite the limitations of some PPEs. This research provides new insights into pollen-vegetation relationships in savannas and highlights the importance of multiproxy approaches when reconstructing past vegetation dynamics in semi-arid environments. It also provides the first time series with sufficient taxonomic resolution to show changes in vegetation composition during shrub encroachment, as well as the first quantitative reconstruction of past land cover in the region. These results help to identify the different stages in savanna dynamics and can be used to calibrate predictive models of vegetation change, which are highly relevant to land management.}, language = {en} } @misc{RolinskiRammigWalzetal.2014, author = {Rolinski, Susanne and Rammig, Anja and Walz, Ariane and von Bloh, Werner and van Oijen, M. and Thonicke, Kirsten}, title = {A probabilistic risk assessment for the vulnerability of the European carbon cycle to weather extremes}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch naturwissenschaftliche Reihe (487)}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch naturwissenschaftliche Reihe (487)}, number = {487}, issn = {1866-8372}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407999}, pages = {1813 -- 1831}, year = {2014}, abstract = {Extreme weather events are likely to occur more often under climate change and the resulting effects on ecosystems could lead to a further acceleration of climate change. But not all extreme weather events lead to extreme ecosystem response. Here, we focus on hazardous ecosystem behaviour and identify coinciding weather conditions. We use a simple probabilistic risk assessment based on time series of ecosystem behaviour and climate conditions. Given the risk assessment terminology, vulnerability and risk for the previously defined hazard are estimated on the basis of observed hazardous ecosystem behaviour. We apply this approach to extreme responses of terrestrial ecosystems to drought, defining the hazard as a negative net biome productivity over a 12-month period. We show an application for two selected sites using data for 1981-2010 and then apply the method to the pan-European scale for the same period, based on numerical modelling results (LPJmL for ecosystem behaviour; ERA-Interim data for climate). Our site-specific results demonstrate the applicability of the proposed method, using the SPEI to describe the climate condition. The site in Spain provides an example of vulnerability to drought because the expected value of the SPEI is 0.4 lower for hazardous than for non-hazardous ecosystem behaviour. In northern Germany, on the contrary, the site is not vulnerable to drought because the SPEI expectation values imply wetter conditions in the hazard case than in the non-hazard case. At the pan-European scale, ecosystem vulnerability to drought is calculated in the Mediterranean and temperate region, whereas Scandinavian ecosystems are vulnerable under conditions without water shortages. These first model- based applications indicate the conceptual advantages of the proposed method by focusing on the identification of critical weather conditions for which we observe hazardous ecosystem behaviour in the analysed data set. Application of the method to empirical time series and to future climate would be important next steps to test the approach.}, language = {en} } @misc{WaltherGuanterHeimetal.2018, author = {Walther, Sophia and Guanter, Luis and Heim, Birgit and Jung, Martin and Duveiller, Gregory and Wolanin, Aleksandra and Sachs, Torsten}, title = {Assessing the dynamics of vegetation productivity in circumpolar regions with different satellite indicators of greenness and photosynthesis}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1025}, issn = {1866-8372}, doi = {10.25932/publishup-44620}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-446205}, pages = {6221 -- 6256}, year = {2018}, abstract = {High-latitude treeless ecosystems represent spatially highly heterogeneous landscapes with small net carbon fluxes and a short growing season. Reliable observations and process understanding are critical for projections of the carbon balance of the climate-sensitive tundra. Space-borne remote sensing is the only tool to obtain spatially continuous and temporally resolved information on vegetation greenness and activity in remote circumpolar areas. However, confounding effects from persistent clouds, low sun elevation angles, numerous lakes, widespread surface inundation, and the sparseness of the vegetation render it highly challenging. Here, we conduct an extensive analysis of the timing of peak vegetation productivity as shown by satellite observations of complementary indicators of plant greenness and photosynthesis. We choose to focus on productivity during the peak of the growing season, as it importantly affects the total annual carbon uptake. The suite of indicators are as follows: (1) MODIS-based vegetation indices (VIs) as proxies for the fraction of incident photosynthetically active radiation (PAR) that is absorbed (fPAR), (2) VIs combined with estimates of PAR as a proxy of the total absorbed radiation (APAR), (3) sun-induced chlorophyll fluorescence (SIF) serving as a proxy for photosynthesis, (4) vegetation optical depth (VOD), indicative of total water content and (5) empirically upscaled modelled gross primary productivity (GPP). Averaged over the pan-Arctic we find a clear order of the annual peak as APAR ≦ GPP 0.05), indicating that the cyanobacteria in the sediments reflected the cyanobacterial assemblage in the water column. However, total cyanobacterial abundances (qPCR) decreased from the metalimnion down the water column. The aggregate-forming (Aphanizomenon) and colony-forming taxa (Snowella) showed pronounced sedimentation. In contrast, Planktothrix was only very poorly represented in sediment traps (meta- and hypolimnion) and surface sediments, despite its highest relative abundance at the thermocline (10 m water depth) during periods of lake stratification (May-October). We conclude that this skewed representation in taxonomic abundances reflects taphonomic processes, which should be considered in future DNA-based paleolimnological investigations.}, language = {en} } @article{HuangHerzschuhPestryakovaetal.2020, author = {Huang, Sichao and Herzschuh, Ulrike and Pestryakova, Luidmila Agafyevna and Zimmermann, Heike Hildegard and Davydova, Paraskovya and Biskaborn, Boris and Shevtsova, Iuliia and Stoof-Leichsenring, Kathleen Rosemarie}, title = {Genetic and morphologic determination of diatom community composition in surface sediments from glacial and thermokarst lakes in the Siberian Arctic}, series = {Journal of paleolimnolog}, volume = {64}, journal = {Journal of paleolimnolog}, number = {3}, publisher = {Springer}, address = {Dordrecht}, issn = {0921-2728}, doi = {10.1007/s10933-020-00133-1}, pages = {225 -- 242}, year = {2020}, abstract = {Lakes cover large parts of the climatically sensitive Arctic landscape and respond rapidly to environmental change. Arctic lakes have different origins and include the predominant thermokarst lakes, which are small, young and highly dynamic, as well as large, old and stable glacial lakes. Freshwater diatoms dominate the primary producer community in these lakes and can be used to detect biotic responses to climate and environmental change. We used specific diatom metabarcoding on sedimentary DNA, combined with next-generation sequencing and diatom morphology, to assess diatom diversity in five glacial and 15 thermokarst lakes within the easternmost expanse of the Siberian treeline ecotone in Chukotka, Russia. We obtained 163 verified diatom sequence types and identified 176 diatom species morphologically. Although there were large differences in taxonomic assignment using the two approaches, they showed similar high abundances and diversity of Fragilariceae and Aulacoseiraceae. In particular, the genetic approach detected hidden within-lake variations of fragilarioids in glacial lakes and dominance of centric Aulacoseira species, whereas Lindavia ocellata was predominant using morphology. In thermokarst lakes, sequence types and valve counts also detected high diversity of Fragilariaceae, which followed the vegetation gradient along the treeline. Ordination analyses of the genetic data from glacial and thermokarst lakes suggest that concentrations of sulfate (SO42-), an indicator of the activity of sulfate-reducing microbes under anoxic conditions, and bicarbonate (HCO3-), which relates to surrounding vegetation, have a significant influence on diatom community composition. For thermokarst lakes, we also identified lake depth as an important variable, but SO42- best explains diatom diversity derived from genetic data, whereas HCO3- best explains the data from valve counts. Higher diatom diversity was detected in glacial lakes, most likely related to greater lake age and different edaphic settings, which gave rise to diversification and endemism. In contrast, small, dynamic thermokarst lakes are inhabited by stress-tolerant fragilarioids and are related to different vegetation types along the treeline ecotone. Our study demonstrated that genetic investigations of lake sediments can be used to interpret climate and environmental responses of diatoms. It also showed how lake type affects diatom diversity, and that such genetic analyses can be used to track diatom community changes under ongoing warming in the Arctic.}, language = {en} } @misc{VuilleminFrieseAlawietal.2016, author = {Vuillemin, Aur{\`e}le and Friese, Andr{\´e} and Alawi, Mashal and Henny, Cynthia and Nomosatryo, Sulung and Wagner, Dirk and Crowe, Sean A. and Kallmeyer, Jens}, title = {Geomicrobiological features of ferruginous sediments from Lake Towuti, Indonesia}, series = {Frontiers in microbiology}, journal = {Frontiers in microbiology}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407312}, pages = {16}, year = {2016}, abstract = {Lake Towuti is a tectonic basin, surrounded by ultramafic rocks. Lateritic soils form through weathering and deliver abundant iron (oxy)hydroxides but very little sulfate to the lake and its sediment. To characterize the sediment biogeochemistry, we collected cores at three sites with increasing water depth and decreasing bottom water oxygen concentrations. Microbial cell densities were highest at the shallow site a feature we attribute to the availability of labile organic matter (OM) and the higher abundance of electron acceptors due to oxic bottom water conditions. At the two other sites, OM degradation and reduction processes below the oxycline led to partial electron acceptor depletion. Genetic information preserved in the sediment as extracellular DNA (eDNA) provided information on aerobic and anaerobic heterotrophs related to Nitrospirae. Chloroflexi, and Therrnoplasmatales. These taxa apparently played a significant role in the degradation of sinking OM. However, eDNA concentrations rapidly decreased with core depth. Despite very low sulfate concentrations, sulfate-reducing bacteria were present and viable in sediments at all three sites, as confirmed by measurement of potential sulfate reduction rates. Microbial community fingerprinting supported the presence of taxa related to Deltaproteobacteria and Firmicutes with demonstrated capacity for iron and sulfate reduction. Concomitantly, sequences of Ruminococcaceae, Clostridiales, and Methanornicrobiales indicated potential for fermentative hydrogen and methane production. Such first insights into ferruginous sediments showed that microbial populations perform successive metabolisms related to sulfur, iron, and methane. In theory, iron reduction could reoxidize reduced sulfur compounds and desorb OM from iron minerals to allow remineralization to methane. Overall, we found that biogeochemical processes in the sediments can be linked to redox differences in the bottom waters of the three sites, like oxidant concentrations and the supply of labile OM. At the scale of the lacustrine record, our geomicrobiological study should provide a means to link the extant subsurface biosphere to past environments.}, language = {en} } @article{GluecklerGengGrimmetal.2022, author = {Gl{\"u}ckler, Ramesh and Geng, Rongwei and Grimm, Lennart and Baisheva, Izabella and Herzschuh, Ulrike and Stoof-Leichsenring, Kathleen R. and Kruse, Stefan and Andreev, Andrej Aleksandrovic and Pestryakova, Luidmila and Dietze, Elisabeth}, title = {Holocene wildfire and vegetation dynamics in Central Yakutia, Siberia, reconstructed from lake-sediment proxies}, series = {Frontiers in Ecology and Evolution}, volume = {10}, journal = {Frontiers in Ecology and Evolution}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-701X}, doi = {10.3389/fevo.2022.962906}, pages = {19}, year = {2022}, abstract = {Wildfires play an essential role in the ecology of boreal forests. In eastern Siberia, fire activity has been increasing in recent years, challenging the livelihoods of local communities. Intensifying fire regimes also increase disturbance pressure on the boreal forests, which currently protect the permafrost beneath from accelerated degradation. However, long-term relationships between changes in fire regime and forest structure remain largely unknown. We assess past fire-vegetation feedbacks using sedimentary proxy records from Lake Satagay, Central Yakutia, Siberia, covering the past c. 10,800 years. Results from macroscopic and microscopic charcoal analyses indicate high amounts of burnt biomass during the Early Holocene, and that the present-day, low-severity surface fire regime has been in place since c. 4,500 years before present. A pollen-based quantitative reconstruction of vegetation cover and a terrestrial plant record based on sedimentary ancient DNA metabarcoding suggest a pronounced shift in forest structure toward the Late Holocene. Whereas the Early Holocene was characterized by postglacial open larch-birch woodlands, forest structure changed toward the modern, mixed larch-dominated closed-canopy forest during the Mid-Holocene. We propose a potential relationship between open woodlands and high amounts of burnt biomass, as well as a mediating effect of dense larch forest on the climate-driven intensification of fire regimes. Considering the anticipated increase in forest disturbances (droughts, insect invasions, and wildfires), higher tree mortality may force the modern state of the forest to shift toward an open woodland state comparable to the Early Holocene. Such a shift in forest structure may result in a positive feedback on currently intensifying wildfires. These new long-term data improve our understanding of millennial-scale fire regime changes and their relationships to changes of vegetation in Central Yakutia, where the local population is already being confronted with intensifying wildfire seasons.}, language = {en} } @article{SantamansCordobaFrancoetal.2021, author = {Santamans, Carla Daniela and Cordoba, Francisco E. and Franco, Mar{\´i}a G. and Vignoni, Paula and Lupo, Liliana C.}, title = {Hydro-climatological variability in Lagunas de Vilama System, Argentinean Altiplano-Puna Plateau, Southern Tropical Andes (22 degrees S) and its response to large-scale climate forcings}, series = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, volume = {767}, journal = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0048-9697}, doi = {10.1016/j.scitotenv.2020.144926}, pages = {19}, year = {2021}, abstract = {The Altiplano-Puna Plateau holds several shallow lakes, which are very sensitive to climate changes. This work is focused on a high-altitude lake system called Lagunas de Vilama (LVS), located in a complex climatic transition area with scarcity of continuous and homogeneous instrumental records. The objective of this study is to determine the regional spatial-temporal variability of precipitation and evaluate the seasonal and interannual lake responses. We use a lake-surfaces record derived from Landsat images to investigate links with regional precipitations and different climatic forcings. The results reveal that austral summer and autumn precipitations control the variability of the annual lake-surfaces. Also, we found intra-annual and interannual lags in the lake responses to precipitations, and identified several wet and dry stages. Our results show negative trends in precipitations and lake-surfaces, whose were strengthened by a shift to a warm phase of the Atlantic Multidecadal Oscillation in the 1990s. The El Nino Southern Oscillation, Pacific Decadal Oscillation, and Southern Annular Mode also exert a strong influence in the region. This study demonstrates that the variability of LVS lakes is strongly related to the South American Monsoon System dynamics and large-scale climate fordngs from the Pacific and Atlantic Oceans. This work provides novel indices which demonstrated to be good indicators of regional hydroclimatological variability for this region of South America.}, language = {en} } @misc{AdhikariGlombitzaNickeletal.2016, author = {Adhikari, Rishi Ram and Glombitza, Clemens and Nickel, Julia C. and Anderson, Chloe H. and Dunlea, Ann G. and Spivack, Arthur J. and Murray, Richard W. and D'Hondt, Steven and Kallmeyer, Jens}, title = {Hydrogen utilization potential in subsurface sediments}, series = {Frontiers in microbiology}, journal = {Frontiers in microbiology}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407678}, pages = {16}, year = {2016}, abstract = {Subsurface microbial communities undertake many terminal electron-accepting processes, often simultaneously. Using a tritium-based assay, we measured the potential hydrogen oxidation catalyzed by hydrogenase enzymes in several subsurface sedimentary environments (Lake Van, Barents Sea, Equatorial Pacific, and Gulf of Mexico) with different predominant electron-acceptors. Hydrogenases constitute a diverse family of enzymes expressed by microorganisms that utilize molecular hydrogen as a metabolic substrate, product, or intermediate. The assay reveals the potential for utilizing molecular hydrogen and allows qualitative detection of microbial activity irrespective of the predominant electron-accepting process. Because the method only requires samples frozen immediately after recovery, the assay can be used for identifying microbial activity in subsurface ecosystems without the need to preserve live material. We measured potential hydrogen oxidation rates in all samples from multiple depths at several sites that collectively span a wide range of environmental conditions and biogeochemical zones. Potential activity normalized to total cell abundance ranges over five orders of magnitude and varies, dependent upon the predominant terminal electron acceptor. Lowest per-cell potential rates characterize the zone of nitrate reduction and highest per-cell potential rates occur in the methanogenic zone. Possible reasons for this relationship to predominant electron acceptor include (i) increasing importance of fermentation in successively deeper biogeochemical zones and (ii) adaptation of H(2)ases to successively higher concentrations of H-2 in successively deeper zones.}, language = {en} } @misc{LiuKaempfBussertetal.2018, author = {Liu, Qi and K{\"a}mpf, Horst and Bussert, Robert and Krauze, Patryk and Horn, Fabian and Nickschick, Tobias and Plessen, Birgit and Wagner, Dirk and Alawi, Mashal}, title = {Influence of CO2 degassing on the microbial community in a dry mofette field in Hartoušov, Czech Republic (Western Eger Rift)}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1100}, issn = {1866-8372}, doi = {10.25932/publishup-47115}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-471153}, pages = {19}, year = {2018}, abstract = {The Cheb Basin (CZ) is a shallow Neogene intracontinental basin filled with fluvial and lacustrine sediments that is located in the western part of the Eger Rift. The basin is situated in a seismically active area and is characterized by diffuse degassing of mantle-derived CO2 in mofette fields. The Hartousov mofette field shows a daily CO2 flux of 23-97 tons of CO2 released over an area of 0.35 km(2) and a soil gas concentration of up to 100\% CO2. The present study aims to explore the geo-bio interactions provoked by the influence of elevated CO2 concentrations on the geochemistry and microbial community of soils and sediments. To sample the strata, two 3-m cores were recovered. One core stems from the center of the degassing structure, whereas the other core was taken 8 m from the ENE and served as an undisturbed reference site. The sites were compared regarding their geochemical features, microbial abundances, and microbial community structures. The mofette site is characterized by a low pH and high TOC/sulfate contents. Striking differences in the microbial community highlight the substantial impact of elevated CO2 concentrations and their associated side effects on microbial processes. The abundance of microbes did not show a typical decrease with depth, indicating that the uprising CO2-rich fluid provides sufficient substrate for chemolithoautotrophic anaerobic microorganisms. Illumine MiSeq sequencing of the 16S rRNA genes and multivariate statistics reveals that the pH strongly influences microbial composition and explains around 38.7\% of the variance at the mofette site and 22.4\% of the variance between the mofette site and the undisturbed reference site. Accordingly, acidophilic microorganisms (e.g., OTUs assigned to Acidobacteriaceae and Acidithiobacillus) displayed a much higher relative abundance at the mofette site than at the reference site. The microbial community at the mofette site is characterized by a high relative abundance of methanogens and taxa involved in sulfur cycling. The present study provides intriguing insights into microbial life and geo-bio interactions in an active seismic region dominated by emanating mantle-derived CO2-rich fluids, and thereby builds the basis for further studies, e.g., focusing on the functional repertoire of the communities. However, it remains open if the observed patterns can be generalized for different time-points or sites.}, language = {en} } @phdthesis{Hesse2018, author = {Hesse, Cornelia}, title = {Integrated water quality modelling in meso- to large-scale catchments of the Elbe river basin under climate and land use change}, doi = {10.25932/publishup-42295}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-422957}, school = {Universit{\"a}t Potsdam}, pages = {ix, 217}, year = {2018}, abstract = {In einer sich {\"a}ndernden Umwelt sind Fließgew{\"a}sser{\"o}kosysteme vielf{\"a}ltigen direkten und indirekten anthropogenen Belastungen ausgesetzt, die die Gew{\"a}sser sowohl in ihrer Menge als auch in ihrer G{\"u}te beeintr{\"a}chtigen k{\"o}nnen. Ein {\"u}berm{\"a}ßiger Eintrag von N{\"a}hrstoffen verursacht etwa Massenentwicklungen von Algen und Sauerstoffdefizite in den Gew{\"a}ssern, was zum Verfehlen der Ziele der Wasserrahmenrichtlinie (WRRL) f{\"u}hren kann. In vielen europ{\"a}ischen Einzugsgebieten und auch dem der Elbe sind solche Probleme zu beobachten. W{\"a}hrend der letzten Jahrzehnte entstanden diverse computergest{\"u}tzte Modelle, die zum Schutz und Management von Wasserressourcen genutzt werden k{\"o}nnen. Sie helfen beim Verstehen der N{\"a}hrstoffprozesse und Belastungspfade in Einzugsgebieten, bei der Absch{\"a}tzung m{\"o}glicher Folgen von Klima- und Landnutzungs{\"a}nderungen f{\"u}r die Wasserk{\"o}rper, sowie bei der Entwicklung eventueller Kompensationsmaßnahmen. Aufgrund der Vielzahl an sich gegenseitig beeinflussenden Prozessen ist die Modellierung der Wasserqualit{\"a}t komplexer und aufw{\"a}ndiger als eine reine hydrologische Modellierung. {\"O}kohydrologische Modelle zur Simulation der Gew{\"a}sserg{\"u}te, einschließlich des Modells SWIM (Soil and Water Integrated Model), bed{\"u}rfen auch h{\"a}ufig noch einer Weiterentwicklung und Verbesserung der Prozessbeschreibungen. Aus diesen {\"U}berlegungen entstand die vorliegende Dissertation, die sich zwei Hauptanliegen widmet: 1) einer Weiterentwicklung des N{\"a}hrstoffmoduls des {\"o}kohydrologischen Modells SWIM f{\"u}r Stickstoff- und Phosphorprozesse, und 2) der Anwendung des Modells SWIM im Elbegebiet zur Unterst{\"u}tzung eines anpassungsf{\"a}higen Wassermanagements im Hinblick auf m{\"o}gliche zuk{\"u}nftige {\"A}nderungen der Umweltbedingungen. Die kumulative Dissertation basiert auf f{\"u}nf wissenschaftlichen Artikeln, die in internationalen Zeitschriften ver{\"o}ffentlicht wurden. Im Zuge der Arbeit wurden verschiedene Modellanpassungen in SWIM vorgenommen, wie etwa ein einfacher Ansatz zur Verbesserung der Simulation der Wasser- und N{\"a}hrstoffverh{\"a}ltnisse in Feuchtgebieten, ein um Ammonium erweiterter Stickstoffkreislauf im Boden, sowie ein Flussprozessmodul, das Umwandlungsprozesse, Sauerstoffverh{\"a}ltnisse und Algenwachstum im Fließgew{\"a}sser simuliert, haupts{\"a}chlich angetrieben von Temperatur und Licht. Auch wenn dieser neue Modellansatz ein sehr komplexes Modell mit einer Vielzahl an neuen Kalibrierungsparametern und steigender Unsicherheit erzeugte, konnten gute Ergebnisse in den Teileinzugsgebieten und dem gesamten Gebiet der Elbe erzielt werden, so dass das Modell zur Absch{\"a}tzung m{\"o}glicher Folgen von Klimavariabilit{\"a}ten und ver{\"a}nderten anthropogenen Einfl{\"u}ssen f{\"u}r die Gew{\"a}sserg{\"u}te genutzt werden konnte. Das neue Fließgew{\"a}ssermodul ist ein wichtiger Beitrag zur Verbesserung der N{\"a}hrstoffmodellierung in SWIM, vor allem f{\"u}r Stoffe, die haupts{\"a}chlich aus Punktquellen in die Gew{\"a}sser gelangen (wie z.B. Phosphat). Der neue Modellansatz verbessert zudem die Anwendbarkeit von SWIM f{\"u}r Fragestellungen im Zusammenhang mit der WRRL, bei der biologische Qualit{\"a}tskomponenten (wie etwa Phytoplankton) eine zentrale Rolle spielen. Die dargestellten Ergebnisse der Wirkungsstudien k{\"o}nnen bei Entscheidungstr{\"a}gern und anderen Akteuren das Verst{\"a}ndnis f{\"u}r zuk{\"u}nftige Herausforderungen im Gew{\"a}ssermanagement erh{\"o}hen und dazu beitragen, ein angepasstes Management f{\"u}r das Elbeeinzugsgebiet zu entwickeln.}, language = {en} } @article{HerzschuhLiBoehmeretal.2022, author = {Herzschuh, Ulrike and Li, Chenzhi and Boehmer, Thomas and Postl, Alexander K. and Heim, Birgit and Andreev, Andrei A. and Cao, Xianyong and Wieczorek, Mareike and Ni, Jian}, title = {LegacyPollen 1.0}, series = {Earth system science data : ESSD}, volume = {14}, journal = {Earth system science data : ESSD}, number = {7}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1866-3508}, doi = {10.5194/essd-14-3213-2022}, pages = {3213 -- 3227}, year = {2022}, abstract = {Here we describe the LegacyPollen 1.0, a dataset of 2831 fossil pollen records with metadata, a harmonized taxonomy, and standardized chronologies. A total of 1032 records originate from North America, 1075 from Europe, 488 from Asia, 150 from Latin America, 54 from Africa, and 32 from the Indo-Pacific. The pollen data cover the late Quaternary (mostly the Holocene). The original 10 110 pollen taxa names (including variations in the notations) were harmonized to 1002 terrestrial taxa (including Cyperaceae), with woody taxa and major herbaceous taxa harmonized to genus level and other herbaceous taxa to family level. The dataset is valuable for synthesis studies of, for example, taxa areal changes, vegetation dynamics, human impacts (e.g., deforestation), and climate change at global or continental scales. The harmonized pollen and metadata as well as the harmonization table are available from PANGAEA (https://doi.org/10.1594/PANGAEA.929773; Herzschuh et al., 2021). R code for the harmonization is provided at Zenodo (https://doi.org/10.5281/zenodo.5910972; Herzschuh et al., 2022) so that datasets at a customized harmonization level can be easily established.}, language = {en} } @article{GenderjahnLewinHornetal.2021, author = {Genderjahn, Steffi and Lewin, Simon and Horn, Fabian and Schleicher, Anja M. and Mangelsdorf, Kai and Wagner, Dirk}, title = {Living lithic and sublithic bacterial communities in Namibian drylands}, series = {Microorganisms : open access journal}, volume = {9}, journal = {Microorganisms : open access journal}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2076-2607}, doi = {10.3390/microorganisms9020235}, pages = {20}, year = {2021}, abstract = {Dryland xeric conditions exert a deterministic effect on microbial communities, forcing life into refuge niches. Deposited rocks can form a lithic niche for microorganisms in desert regions. Mineral weathering is a key process in soil formation and the importance of microbial-driven mineral weathering for nutrient extraction is increasingly accepted. Advances in geobiology provide insight into the interactions between microorganisms and minerals that play an important role in weathering processes. In this study, we present the examination of the microbial diversity in dryland rocks from the Tsauchab River banks in Namibia. We paired culture-independent 16S rRNA gene amplicon sequencing with culture-dependent (isolation of bacteria) techniques to assess the community structure and diversity patterns. Bacteria isolated from dryland rocks are typical of xeric environments and are described as being involved in rock weathering processes. For the first time, we extracted extra- and intracellular DNA from rocks to enhance our understanding of potentially rock-weathering microorganisms. We compared the microbial community structure in different rock types (limestone, quartz-rich sandstone and quartz-rich shale) with adjacent soils below the rocks. Our results indicate differences in the living lithic and sublithic microbial communities.}, language = {en} } @misc{SiegmundSandersHeinrichetal.2016, author = {Siegmund, Jonatan Frederik and Sanders, Tanja G. M. and Heinrich, Ingo and Maaten, Ernst van der and Simard, Sonia and Helle, Gerhard and Donner, Reik Volker}, title = {Meteorological drivers of extremes in daily stem radius variations of beech, oak, and pine in Northeastern Germany}, series = {Frontiers in plant science}, journal = {Frontiers in plant science}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407943}, pages = {14}, year = {2016}, abstract = {Observed recent and expected future increases in frequency and intensity of climatic extremes in central Europe may pose critical challenges for domestic tree species. Continuous dendrometer recordings provide a valuable source of information on tree stem radius variations, offering the possibility to study a tree's response to environmental influences at a high temporal resolution. In this study, we analyze stem radius variations (SRV) of three domestic tree species (beech, oak, and pine) from 2012 to 2014. We use the novel statistical approach of event coincidence analysis (ECA) to investigate the simultaneous occurrence of extreme daily weather conditions and extreme SRVs, where extremes are defined with respect to the common values at a given phase of the annual growth period. Besides defining extreme events based on individual meteorological variables, we additionally introduce conditional and joint ECA as new multivariate extensions of the original methodology and apply them for testing 105 different combinations of variables regarding their impact on SRV extremes. Our results reveal a strong susceptibility of all three species to the extremes of several meteorological variables. Yet, the inter-species differences regarding their response to the meteorological extremes are comparatively low. The obtained results provide a thorough extension of previous correlation-based studies by emphasizing on the timings of climatic extremes only. We suggest that the employed methodological approach should be further promoted in forest research regarding the investigation of tree responses to changing environmental conditions.}, language = {en} } @article{LiuAdlerLipusetal.2020, author = {Liu, Qi and Adler, Karsten and Lipus, Daniel and K{\"a}mpf, Horst and Bussert, Robert and Plessen, Birgit and Schulz, Hans-Martin and Krauze, Patryk and Horn, Fabian and Wagner, Dirk and Mangelsdorf, Kai and Alawi, Mashal}, title = {Microbial signatures in deep CO2-saturated miocene sediments of the active Hartousov mofette system (NW Czech Republic)}, series = {Frontiers in microbiology}, volume = {11}, journal = {Frontiers in microbiology}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1664-302X}, doi = {10.3389/fmicb.2020.543260}, pages = {21}, year = {2020}, abstract = {The Hartousov mofette system is a natural CO2 degassing site in the central Cheb Basin (Eger Rift, Central Europe). In early 2016 a 108 m deep core was obtained from this system to investigate the impact of ascending mantle-derived CO2 on indigenous deep microbial communities and their surrounding life habitat. During drilling, a CO2 blow out occurred at a depth of 78.5 meter below surface (mbs) suggesting a CO2 reservoir associated with a deep low-permeable CO2-saturated saline aquifer at the transition from Early Miocene terrestrial to lacustrine sediments. Past microbial communities were investigated by hopanoids and glycerol dialkyl glycerol tetraethers (GDGTs) reflecting the environmental conditions during the time of deposition rather than showing a signal of the current deep biosphere. The composition and distribution of the deep microbial community potentially stimulated by the upward migration of CO2 starting during Mid Pleistocene time was investigated by intact polar lipids (IPLs), quantitative polymerase chain reaction (qPCR), and deoxyribonucleic acid (DNA) analysis. The deep biosphere is characterized by microorganisms that are linked to the distribution and migration of the ascending CO2-saturated groundwater and the availability of organic matter instead of being linked to single lithological units of the investigated rock profile. Our findings revealed high relative abundances of common soil and water bacteria, in particular the facultative, anaerobic and potential iron-oxidizing Acidovorax and other members of the family Comamonadaceae across the whole recovered core. The results also highlighted the frequent detection of the putative sulfate-oxidizing and CO2-fixating genus Sulfuricurvum at certain depths. A set of new IPLs are suggested to be indicative for microorganisms associated to CO2 accumulation in the mofette system.}, language = {en} } @article{MitzscherlingMacLeanLipusetal.2022, author = {Mitzscherling, Julia and MacLean, Joana and Lipus, Daniel and Bartholom{\"a}us, Alexander and Mangelsdorf, Kai and Lipski, Andr{\´e} and Roddatis, Vladimir and Liebner, Susanne and Wagner, Dirk}, title = {Nocardioides alcanivorans sp. nov., a novel hexadecane-degrading species isolated from plastic waste}, series = {International journal of systematic and evolutionary microbiology}, volume = {72}, journal = {International journal of systematic and evolutionary microbiology}, number = {4}, publisher = {Microbiology Society}, address = {London}, issn = {1466-5026}, doi = {10.1099/ijsem.0.005319}, pages = {11}, year = {2022}, abstract = {Strain NGK65(T), a novel hexadecane degrading, non-motile, Gram-positive, rod-to-coccus shaped, aerobic bacterium, was isolated from plastic polluted soil sampled at a landfill. Strain NGK65(T) hydrolysed casein, gelatin, urea and was catalase-positive. It optimally grew at 28 degrees C. in 0-1\% NaCl and at pH 7.5-8.0. Glycerol, D-glucose, arbutin, aesculin, salicin, potassium 5-ketogluconate. sucrose, acetate, pyruvate and hexadecane were used as sole carbon sources. The predominant membrane fatty acids were iso-C-16:0 followed by iso-C(17:)0 and C-18:1 omega 9c. The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and hydroxyphosphatidylinositol. The cell-wall peptidoglycan type was A3 gamma, with LL-diaminopimelic acid and glycine as the diagnostic amino acids. MK 8 (H-4) was the predominant menaquinone. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain NGK65(T) belongs to the genus Nocardioides (phylum Actinobacteria). appearing most closely related to Nocardioides daejeonensis MJ31(T) (98.6\%) and Nocardioides dubius KSL-104(T) (98.3\%). The genomic DNA G+C content of strain NGK65(T) was 68.2\%. Strain NGK65(T) and the type strains of species involved in the analysis had average nucleotide identity values of 78.3-71.9\% as well as digital DNA-DNA hybridization values between 22.5 and 19.7\%, which clearly indicated that the isolate represents a novel species within the genus Nocardioides. Based on phenotypic and molecular characterization, strain NGK65(T) can clearly be differentiated from its phylogenetic neighbours to establish a novel species, for which the name Nocardioides alcanivorans sp. nov. is proposed. The type strain is NGK65(T) (=DSM 113112(T)=NCCB 100846(T)).}, language = {en} } @misc{JongejansStraussLenzetal.2018, author = {Jongejans, Loeka Laura and Strauss, Jens and Lenz, Josefine and Peterse, Francien and Mangelsdorf, Kai and Fuchs, Matthias and Grosse, Guido}, title = {Organic matter characteristics in yedoma and thermokarst deposits on Baldwin Peninsula, west Alaska}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {20}, issn = {1866-8372}, doi = {10.25932/publishup-44625}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-446250}, pages = {6033 -- 6048}, year = {2018}, abstract = {As Arctic warming continues and permafrost thaws, more soil and sedimentary organic matter (OM) will be decomposed in northern high latitudes. Still, uncertainties remain in the quality of the OM and the size of the organic carbon (OC) pools stored in different deposit types of permafrost landscapes. This study presents OM data from deep permafrost and lake deposits on the Baldwin Peninsula which is located in the southern portion of the continuous permafrost zone in west Alaska. Sediment samples from yedoma and drained thermokarst lake basin (DTLB) deposits as well as thermokarst lake sediments were analyzed for cryostratigraphical and biogeochemical parameters and their lipid biomarker composition to identify the below-ground OC pool size and OM quality of ice-rich permafrost on the Baldwin Peninsula. We provide the first detailed characterization of yedoma deposits on Baldwin Peninsula. We show that three-quarters of soil OC in the frozen deposits of the study region (total of 68 Mt) is stored in DTLB deposits (52 Mt) and one-quarter in the frozen yedoma deposits (16 Mt). The lake sediments contain a relatively small OC pool (4 Mt), but have the highest volumetric OC content (93 kgm(-3)) compared to the DTLB (35 kgm(-3)) and yedoma deposits (8 kgm(-3)), largely due to differences in the ground ice content. The biomarker analysis indicates that the OM in both yedoma and DTLB deposits is mainly of terrestrial origin. Nevertheless, the relatively high carbon preference index of plant leaf waxes in combination with a lack of a degradation trend with depth in the yedoma deposits indi-cates that OM stored in yedoma is less degraded than that stored in DTLB deposits. This suggests that OM in yedoma has a higher potential for decomposition upon thaw, despite the relatively small size of this pool. These findings show that the use of lipid biomarker analysis is valuable in the assessment of the potential future greenhouse gas emissions from thawing permafrost, especially because this area, close to the discontinuous permafrost boundary, is projected to thaw substantially within the 21st century.}, language = {en} } @article{CesarFernandezLecomteVignonietal.2022, author = {Cesar Fern{\´a}ndez, Guillermo and Lecomte, Karina and Vignoni, Paula and Soto-Rueda, Eliana Marcela and Coria, Silvia H. and Lirio, Juan Manuel and Mlewski, Estela Cecilia}, title = {Prokaryotic diversity and biogeochemical characteristics of benthic microbial ecosystems from James Ross Archipelago (West Antarctica)}, series = {Polar biology : current research and development in science and technology}, volume = {45}, journal = {Polar biology : current research and development in science and technology}, number = {3}, publisher = {Springer}, address = {Berlin ; Heidelberg}, issn = {0722-4060}, doi = {10.1007/s00300-021-02997-z}, pages = {405 -- 418}, year = {2022}, abstract = {The James Ross archipelago houses numerous lakes and ponds. In this region, a vast diatom and cyanobacterial variety has been reported; however, the prokaryotic diversity in microbial mats from these lakes remains poorly explored. Here, a high-throughput sequencing of 16S rRNA gene in microbial mats from Lake Bart-Roja in James Ross Island and lakes Pan Negro and North Pan Negro located in Vega Island was performed. Combined with mineralogical and environmental characteristics, we analyzed the diversity and structure of the microbial communities. Sequences assigned to Archaea were extremely low, while Bacteria domain prevailed with the abundance of Proteobacteria (mostly Betaproteobacteriales) followed by Bacteroidetes, Verrucomicrobia, Firmicutes, and Cyanobacteria. Local environmental conditions, such as conductivity and Eh, provided differential microbial assemblages that might have implications in the oligotrophic status of the lakes. Consequently, a clear segregation at the family level was observed. In this sense, the assigned diversity was related to taxa recognized as denitrifiers and sulfur oxidizers. Particularly, in Lake Pan Negro sulfur-reducing and methanogenic representatives were also found and positively correlate with alkalinity and water depth. Moreover, Deinococcus-Thermus was observed in Lake Bart-Roja, while Melainabacteria (Cyanobacteria)-poorly reported in Antarctic mats-was detected in Lake Pan Negro. Epsilonbacteraeota was exclusively found in this lake, suggesting new potential phylotypes. This study contributes to the understanding of the diversity, composition, and structure of Antarctic benthic microbial ecosystems and provides highly valuable information, which can be used as a proxy to evaluate environmental changes affecting Antarctic microbiota.}, language = {en} } @article{BastianRobelSchmidtetal.2021, author = {Bastian, Philipp U. and Robel, Nathalie and Schmidt, Peter and Schrumpf, Tim and G{\"u}nter, Christina and Roddatis, Vladimir and Kumke, Michael U.}, title = {Resonance energy transfer to track the motion of lanthanide ions}, series = {Biosensors : open access journal}, volume = {11}, journal = {Biosensors : open access journal}, number = {12}, publisher = {MDPI}, address = {Basel}, issn = {2079-6374}, doi = {10.3390/bios11120515}, pages = {23}, year = {2021}, abstract = {The imagination of clearly separated core-shell structures is already outdated by the fact, that the nanoparticle core-shell structures remain in terms of efficiency behind their respective bulk material due to intermixing between core and shell dopant ions. In order to optimize the photoluminescence of core-shell UCNP the intermixing should be as small as possible and therefore, key parameters of this process need to be identified. In the present work the Ln(III) ion migration in the host lattices NaYF4 and NaGdF4 was monitored. These investigations have been performed by laser spectroscopy with help of lanthanide resonance energy transfer (LRET) between Eu(III) as donor and Pr(III) or Nd(III) as acceptor. The LRET is evaluated based on the Forster theory. The findings corroborate the literature and point out the migration of ions in the host lattices. Based on the introduced LRET model, the acceptor concentration in the surrounding of one donor depends clearly on the design of the applied core-shell-shell nanoparticles. In general, thinner intermediate insulating shells lead to higher acceptor concentration, stronger quenching of the Eu(III) donor and subsequently stronger sensitization of the Pr(III) or the Nd(III) acceptors. The choice of the host lattice as well as of the synthesis temperature are parameters to be considered for the intermixing process.}, language = {en} } @misc{ThiekenKienzlerKreibichetal.2016, author = {Thieken, Annegret and Kienzler, Sarah and Kreibich, Heidi and Kuhlicke, Christian and Kunz, Michael and M{\"u}hr, Bernhard and M{\"u}ller, Meike and Otto, Antje and Petrow, Theresia and Pisi, Sebastian and Schr{\"o}ter, Kai}, title = {Review of the flood risk management system in Germany after the major flood in 2013}, issn = {1866-8372}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-100600}, pages = {12}, year = {2016}, abstract = {Widespread flooding in June 2013 caused damage costs of €6 to 8 billion in Germany, and awoke many memories of the floods in August 2002, which resulted in total damage of €11.6 billion and hence was the most expensive natural hazard event in Germany up to now. The event of 2002 does, however, also mark a reorientation toward an integrated flood risk management system in Germany. Therefore, the flood of 2013 offered the opportunity to review how the measures that politics, administration, and civil society have implemented since 2002 helped to cope with the flood and what still needs to be done to achieve effective and more integrated flood risk management. The review highlights considerable improvements on many levels, in particular (1) an increased consideration of flood hazards in spatial planning and urban development, (2) comprehensive property-level mitigation and preparedness measures, (3) more effective flood warnings and improved coordination of disaster response, and (4) a more targeted maintenance of flood defense systems. In 2013, this led to more effective flood management and to a reduction of damage. Nevertheless, important aspects remain unclear and need to be clarified. This particularly holds for balanced and coordinated strategies for reducing and overcoming the impacts of flooding in large catchments, cross-border and interdisciplinary cooperation, the role of the general public in the different phases of flood risk management, as well as a transparent risk transfer system. Recurring flood events reveal that flood risk management is a continuous task. Hence, risk drivers, such as climate change, land-use changes, economic developments, or demographic change and the resultant risks must be investigated at regular intervals, and risk reduction strategies and processes must be reassessed as well as adapted and implemented in a dialogue with all stakeholders.}, language = {en} } @article{ThiekenKienzlerKreibichetal.2016, author = {Thieken, Annegret and Kienzler, Sarah and Kreibich, Heidi and Kuhlicke, Christian and Kunz, Michael and M{\"u}hr, Bernhard and M{\"u}ller, Meike and Otto, Antje and Petrow, Theresia and Pisi, Sebastian and Schr{\"o}ter, Kai}, title = {Review of the flood risk management system in Germany after the major flood in 2013}, series = {Ecology and society : E\&S ; a journal of integrative science for resilience and sustainability}, volume = {21}, journal = {Ecology and society : E\&S ; a journal of integrative science for resilience and sustainability}, number = {2}, publisher = {Resilience Alliance}, address = {Wolfville, NS}, issn = {1708-3087}, doi = {10.5751/ES-08547-210251}, pages = {12}, year = {2016}, abstract = {Widespread flooding in June 2013 caused damage costs of €6 to 8 billion in Germany, and awoke many memories of the floods in August 2002, which resulted in total damage of €11.6 billion and hence was the most expensive natural hazard event in Germany up to now. The event of 2002 does, however, also mark a reorientation toward an integrated flood risk management system in Germany. Therefore, the flood of 2013 offered the opportunity to review how the measures that politics, administration, and civil society have implemented since 2002 helped to cope with the flood and what still needs to be done to achieve effective and more integrated flood risk management. The review highlights considerable improvements on many levels, in particular (1) an increased consideration of flood hazards in spatial planning and urban development, (2) comprehensive property-level mitigation and preparedness measures, (3) more effective flood warnings and improved coordination of disaster response, and (4) a more targeted maintenance of flood defense systems. In 2013, this led to more effective flood management and to a reduction of damage. Nevertheless, important aspects remain unclear and need to be clarified. This particularly holds for balanced and coordinated strategies for reducing and overcoming the impacts of flooding in large catchments, cross-border and interdisciplinary cooperation, the role of the general public in the different phases of flood risk management, as well as a transparent risk transfer system. Recurring flood events reveal that flood risk management is a continuous task. Hence, risk drivers, such as climate change, land-use changes, economic developments, or demographic change and the resultant risks must be investigated at regular intervals, and risk reduction strategies and processes must be reassessed as well as adapted and implemented in a dialogue with all stakeholders.}, language = {en} } @article{ZimmermannRaschkeEppetal.2017, author = {Zimmermann, Heike Hildegard and Raschke, Elena and Epp, Laura Saskia and Stoof-Leichsenring, Kathleen Rosemarie and Schwamborn, Georg and Schirrmeister, Lutz and Overduin, Pier Paul and Herzschuh, Ulrike}, title = {Sedimentary ancient DNA and pollen reveal the composition of plant organic matter in Late Quaternary permafrost sediments of the Buor Khaya Peninsula (north-eastern Siberia)}, series = {Biogeosciences}, volume = {14}, journal = {Biogeosciences}, number = {3}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1726-4170}, doi = {10.5194/bg-14-575-2017}, pages = {575 -- 596}, year = {2017}, abstract = {Organic matter deposited in ancient, ice-rich permafrost sediments is vulnerable to climate change and may contribute to the future release of greenhouse gases; it is thus important to get a better characterization of the plant organic matter within such sediments. From a Late Quaternary permafrost sediment core from the Buor Khaya Peninsula, we analysed plant-derived sedimentary ancient DNA (sedaDNA) to identify the taxonomic composition of plant organic matter, and undertook palynological analysis to assess the environmental conditions during deposition. Using sedaDNA, we identified 154 taxa and from pollen and non-pollen palynomorphs we identified 83 taxa. In the deposits dated between 54 and 51 kyr BP, sedaDNA records a diverse low-centred polygon plant community including recurring aquatic pond vegetation while from the pollen record we infer terrestrial open-land vegetation with relatively dry environmental conditions at a regional scale. A fluctuating dominance of either terrestrial or swamp and aquatic taxa in both proxies allowed the local hydrological development of the polygon to be traced. In deposits dated between 11.4 and 9.7 kyr BP (13.4-11.1 cal kyr BP), sedaDNA shows a taxonomic turnover to moist shrub tundra and a lower taxonomic richness compared to the older samples. Pollen also records a shrub tundra community, mostly seen as changes in relative proportions of the most dominant taxa, while a decrease in taxonomic richness was less pronounced compared to sedaDNA. Our results show the advantages of using sedaDNA in combination with palynological analyses when macrofossils are rarely preserved. The high resolution of the sedaDNA record provides a detailed picture of the taxonomic composition of plant-derived organic matter throughout the core, and palynological analyses prove valuable by allowing for inferences of regional environmental conditions.}, language = {en} } @misc{DommainAndamaMcDonoughetal.2020, author = {Dommain, Ren{\´e} and Andama, Morgan and McDonough, Molly M. and Prado, Natalia A. and Goldhammer, Tobias and Potts, Richard and Maldonado, Jes{\´u}s E. and Nkurunungi, John Bosco and Campana, Michael G.}, title = {The Challenges of Reconstructing Tropical Biodiversity With Sedimentary Ancient DNA}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {970}, issn = {1866-8372}, doi = {10.25932/publishup-47430}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-474305}, pages = {28}, year = {2020}, abstract = {Sedimentary ancient DNA has been proposed as a key methodology for reconstructing biodiversity over time. Yet, despite the concentration of Earth's biodiversity in the tropics, this method has rarely been applied in this region. Moreover, the taphonomy of sedimentary DNA, especially in tropical environments, is poorly understood. This study elucidates challenges and opportunities of sedimentary ancient DNA approaches for reconstructing tropical biodiversity. We present shotgun-sequenced metagenomic profiles and DNA degradation patterns from multiple sediment cores from Mubwindi Swamp, located in Bwindi Impenetrable Forest (Uganda), one of the most diverse forests in Africa. We describe the taxonomic composition of the sediments covering the past 2200 years and compare the sedimentary DNA data with a comprehensive set of environmental and sedimentological parameters to unravel the conditions of DNA degradation. Consistent with the preservation of authentic ancient DNA in tropical swamp sediments, DNA concentration and mean fragment length declined exponentially with age and depth, while terminal deamination increased with age. DNA preservation patterns cannot be explained by any environmental parameter alone, but age seems to be the primary driver of DNA degradation in the swamp. Besides degradation, the presence of living microbial communities in the sediment also affects DNA quantity. Critically, 92.3\% of our metagenomic data of a total 81.8 million unique, merged reads cannot be taxonomically identified due to the absence of genomic references in public databases. Of the remaining 7.7\%, most of the data (93.0\%) derive from Bacteria and Archaea, whereas only 0-5.8\% are from Metazoa and 0-6.9\% from Viridiplantae, in part due to unbalanced taxa representation in the reference data. The plant DNA record at ordinal level agrees well with local pollen data but resolves less diversity. Our animal DNA record reveals the presence of 41 native taxa (16 orders) including Afrotheria, Carnivora, and Ruminantia at Bwindi during the past 2200 years. Overall, we observe no decline in taxonomic richness with increasing age suggesting that several-thousand-year-old information on past biodiversity can be retrieved from tropical sediments. However, comprehensive genomic surveys of tropical biota need prioritization for sedimentary DNA to be a viable methodology for future tropical biodiversity studies.}, language = {en} } @article{DommainAndamaMcDonoughetal.2020, author = {Dommain, Ren{\´e} and Andama, Morgan and McDonough, Molly M. and Prado, Natalia A. and Goldhammer, Tobias and Potts, Richard and Maldonado, Jes{\´u}s E. and Nkurunungi, John Bosco and Campana, Michael G.}, title = {The Challenges of Reconstructing Tropical Biodiversity With Sedimentary Ancient DNA}, series = {Frontiers in Ecology and Evolution}, volume = {8}, journal = {Frontiers in Ecology and Evolution}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-701X}, doi = {10.3389/fevo.2020.00218}, pages = {26}, year = {2020}, abstract = {Sedimentary ancient DNA has been proposed as a key methodology for reconstructing biodiversity over time. Yet, despite the concentration of Earth's biodiversity in the tropics, this method has rarely been applied in this region. Moreover, the taphonomy of sedimentary DNA, especially in tropical environments, is poorly understood. This study elucidates challenges and opportunities of sedimentary ancient DNA approaches for reconstructing tropical biodiversity. We present shotgun-sequenced metagenomic profiles and DNA degradation patterns from multiple sediment cores from Mubwindi Swamp, located in Bwindi Impenetrable Forest (Uganda), one of the most diverse forests in Africa. We describe the taxonomic composition of the sediments covering the past 2200 years and compare the sedimentary DNA data with a comprehensive set of environmental and sedimentological parameters to unravel the conditions of DNA degradation. Consistent with the preservation of authentic ancient DNA in tropical swamp sediments, DNA concentration and mean fragment length declined exponentially with age and depth, while terminal deamination increased with age. DNA preservation patterns cannot be explained by any environmental parameter alone, but age seems to be the primary driver of DNA degradation in the swamp. Besides degradation, the presence of living microbial communities in the sediment also affects DNA quantity. Critically, 92.3\% of our metagenomic data of a total 81.8 million unique, merged reads cannot be taxonomically identified due to the absence of genomic references in public databases. Of the remaining 7.7\%, most of the data (93.0\%) derive from Bacteria and Archaea, whereas only 0-5.8\% are from Metazoa and 0-6.9\% from Viridiplantae, in part due to unbalanced taxa representation in the reference data. The plant DNA record at ordinal level agrees well with local pollen data but resolves less diversity. Our animal DNA record reveals the presence of 41 native taxa (16 orders) including Afrotheria, Carnivora, and Ruminantia at Bwindi during the past 2200 years. Overall, we observe no decline in taxonomic richness with increasing age suggesting that several-thousand-year-old information on past biodiversity can be retrieved from tropical sediments. However, comprehensive genomic surveys of tropical biota need prioritization for sedimentary DNA to be a viable methodology for future tropical biodiversity studies.}, language = {en} } @article{KornherKalkuhl2019, author = {Kornher, Lukas and Kalkuhl, Matthias}, title = {The gains of coordination - When does regional cooperation for food security make sense?}, series = {Global Food Security - AGRICULTURE POLICY ECONOMICS AND ENVIRONMENT}, volume = {22}, journal = {Global Food Security - AGRICULTURE POLICY ECONOMICS AND ENVIRONMENT}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2211-9124}, doi = {10.1016/j.gfs.2019.09.004}, pages = {37 -- 45}, year = {2019}, abstract = {With the onset of the global food crisis, the discussion about the use and misuse of agricultural market interventions regained academic attention. As a result of economies of scale, centralized policy implementation at the regional level has the potential to reduce the budgetary costs of policies. Borrowing from the literature on international unions and international policy coordination, we develop a conceptual framework to analyze when regional policy implementation makes sense. This is the case whenever spill-overs from centralization are large and policy preferences, driven by country-specific characteristics, are homogeneous. Subsequently, we examine the advantageousness of centralized policy implementation for the West African region regarding the most common food security policies. We show that centralization of trade policies and emergency food reserves is beneficial, while buffer stocks, safety net policies, and producer support policies should be implemented at the national level.}, language = {en} } @article{StuenziKruseBoikeetal.2022, author = {Stuenzi, Simone Maria and Kruse, Stefan and Boike, Julia and Herzschuh, Ulrike and Oehme, Alexander and Pestryakova, Luidmila A. and Westermann, Sebastian and Langer, Moritz}, title = {Thermohydrological impact of forest disturbances on ecosystem-protected permafrost}, series = {Journal of geophysical research : Biogeosciences}, volume = {127}, journal = {Journal of geophysical research : Biogeosciences}, number = {5}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-8953}, doi = {10.1029/2021JG006630}, pages = {24}, year = {2022}, abstract = {Boreal forests cover over half of the global permafrost area and protect underlying permafrost. Boreal forest development, therefore, has an impact on permafrost evolution, especially under a warming climate. Forest disturbances and changing climate conditions cause vegetation shifts and potentially destabilize the carbon stored within the vegetation and permafrost. Disturbed permafrost-forest ecosystems can develop into a dry or swampy bush- or grasslands, shift toward broadleaf- or evergreen needleleaf-dominated forests, or recover to the pre-disturbance state. An increase in the number and intensity of fires, as well as intensified logging activities, could lead to a partial or complete ecosystem and permafrost degradation. We study the impact of forest disturbances (logging, surface, and canopy fires) on the thermal and hydrological permafrost conditions and ecosystem resilience. We use a dynamic multilayer canopy-permafrost model to simulate different scenarios at a study site in eastern Siberia. We implement expected mortality, defoliation, and ground surface changes and analyze the interplay between forest recovery and permafrost. We find that forest loss induces soil drying of up to 44\%, leading to lower active layer thicknesses and abrupt or steady decline of a larch forest, depending on disturbance intensity. Only after surface fires, the most common disturbances, inducing low mortality rates, forests can recover and overpass pre-disturbance leaf area index values. We find that the trajectory of larch forests after surface fires is dependent on the precipitation conditions in the years after the disturbance. Dryer years can drastically change the direction of the larch forest development within the studied period.}, language = {en} } @article{SmithRheinwaltBookhagen2021, author = {Smith, Taylor and Rheinwalt, Aljoscha and Bookhagen, Bodo}, title = {Topography and climate in the upper Indus Basin}, series = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, volume = {786}, journal = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0048-9697}, doi = {10.1016/j.scitotenv.2021.147363}, pages = {11}, year = {2021}, abstract = {The Upper Indus Basin (UIB), which covers a wide range of climatic and topographic settings, provides an ideal venue to explore the relationship between climate and topography. While the distribution of snow and glaciers is spatially and temporally heterogeneous, there exist regions with similar elevation-snow relationships. In this work, we construct elevation-binned snow-cover statistics to analyze 3415 watersheds and 7357 glaciers in the UIB region. We group both glaciers and watersheds using a hierarchical clustering approach and find that (1) watershed clusters mirror large-scale moisture transport patterns and (2) are highly dependent on median watershed elevation. (3) Glacier clusters are spatially heterogeneous and are less strongly controlled by elevation, but rather by local topographic parameters that modify solar insolation. Our clustering approach allows us to clearly define self-similar snow-topographic regions. Eastern watersheds in the UIB show a steep snow cover-elevation relationship whereas watersheds in the central and western UIB have moderately sloped relationships, but cluster in distinct groups. We highlight this snow-cover-topographic transition zone and argue that these watersheds have different hydrologic responses than other regions. Our hierarchical clustering approach provides a potential new framework to use in defining climatic zones in the cyrosphere based on empirical data.}, language = {en} } @misc{LaraNitzeGrosseetal.2018, author = {Lara, Mark J. and Nitze, Ingmar and Große, Guido and McGuire, David}, title = {Tundra landform and vegetation productivity trend maps for the Arctic Coastal Plain of northern Alaska}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1035}, issn = {1866-8372}, doi = {10.25932/publishup-45987}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-459875}, pages = {12}, year = {2018}, abstract = {Arctic tundra landscapes are composed of a complex mosaic of patterned ground features, varying in soil moisture, vegetation composition, and surface hydrology over small spatial scales (10-100 m). The importance of microtopography and associated geomorphic landforms in influencing ecosystem structure and function is well founded, however, spatial data products describing local to regional scale distribution of patterned ground or polygonal tundra geomorphology are largely unavailable. Thus, our understanding of local impacts on regional scale processes (e.g., carbon dynamics) may be limited. We produced two key spatiotemporal datasets spanning the Arctic Coastal Plain of northern Alaska (similar to 60,000 km(2)) to evaluate climate-geomorphological controls on arctic tundra productivity change, using (1) a novel 30m classification of polygonal tundra geomorphology and (2) decadal-trends in surface greenness using the Landsat archive (1999-2014). These datasets can be easily integrated and adapted in an array of local to regional applications such as (1) upscaling plot-level measurements (e.g., carbon/energy fluxes), (2) mapping of soils, vegetation, or permafrost, and/or (3) initializing ecosystem biogeochemistry, hydrology, and/or habitat modeling.}, language = {en} }