@article{ZhengToenjesPikovskij2021, author = {Zheng, Chunming and Toenjes, Ralf and Pikovskij, Arkadij}, title = {Transition to synchrony in a three-dimensional swarming model with helical trajectories}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {104}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {1}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.104.014216}, pages = {7}, year = {2021}, abstract = {We investigate the transition from incoherence to global collective motion in a three-dimensional swarming model of agents with helical trajectories, subject to noise and global coupling. Without noise this model was recently proposed as a generalization of the Kuramoto model and it was found that alignment of the velocities occurs discontinuously for arbitrarily small attractive coupling. Adding noise to the system resolves this singular limit and leads to a continuous transition, either to a directed collective motion or to center-of-mass rotations.}, language = {en} } @article{YildizLeimkuehler2021, author = {Yildiz, Tugba and Leimk{\"u}hler, Silke}, title = {TusA is a versatile protein that links translation efficiency to cell division in Escherichia coli}, series = {Journal of bacteriology}, volume = {203}, journal = {Journal of bacteriology}, number = {7}, publisher = {American Society for Microbiology}, address = {Washington}, issn = {1098-5530}, doi = {10.1128/JB.00659-20}, pages = {20}, year = {2021}, abstract = {To enable accurate and efficient translation, sulfur modifications are introduced posttranscriptionally into nucleosides in tRNAs. The biosynthesis of tRNA sulfur modifications involves unique sulfur trafficking systems for the incorporation of sulfur atoms in different nucleosides of tRNA. One of the proteins that is involved in inserting the sulfur for 5-methylaminomethyl-2-thiouridine (mnm(5)s(2)U34) modifications in tRNAs is the TusA protein. TusA, however, is a versatile protein that is also involved in numerous other cellular pathways. Despite its role as a sulfur transfer protein for the 2-thiouridine formation in tRNA, a fundamental role of TusA in the general physiology of Escherichia coli has also been discovered. Poor viability, a defect in cell division, and a filamentous cell morphology have been described previously for tusA-deficient cells. In this report, we aimed to dissect the role of TusA for cell viability. We were able to show that the lack of the thiolation status of wobble uridine (U-34) nucleotides present on Lys, Gln, or Glu in tRNAs has a major consequence on the translation efficiency of proteins; among the affected targets are the proteins RpoS and Fis. Both proteins are major regulatory factors, and the deregulation of their abundance consequently has a major effect on the cellular regulatory network, with one consequence being a defect in cell division by regulating the FtsZ ring formation.
IMPORTANCE More than 100 different modifications are found in RNAs. One of these modifications is the mnm(5)s(2)U modification at the wobble position 34 of tRNAs for Lys, Gln, and Glu. The functional significance of U34 modifications is substantial since it restricts the conformational flexibility of the anticodon, thus providing translational fidelity. We show that in an Escherichia coli TusA mutant strain, involved in sulfur transfer for the mnm(5)s(2)U34 thio modifications, the translation efficiency of RpoS and Fis, two major cellular regulatory proteins, is altered. Therefore, in addition to the transcriptional regulation and the factors that influence protein stability, tRNA modifications that ensure the translational efficiency provide an additional crucial regulatory factor for protein synthesis.}, language = {en} } @article{XuNieWangetal.2021, author = {Xu, Xun and Nie, Yan and Wang, Weiwei and Ullah, Imran and Tung, Wing Tai and Ma, Nan and Lendlein, Andreas}, title = {Generation of 2.5D lung bud organoids from human induced pluripotent stem cells}, series = {Clinical hemorheology and microcirculation : blood flow and vessels}, volume = {79}, journal = {Clinical hemorheology and microcirculation : blood flow and vessels}, number = {1}, publisher = {IOS Press}, address = {Amsterdam}, issn = {1386-0291}, doi = {10.3233/CH-219111}, pages = {217 -- 230}, year = {2021}, abstract = {Human induced pluripotent stem cells (hiPSCs) are a promising cell source to generate the patient-specific lung organoid given their superior differentiation potential. However, the current 3D cell culture approach is tedious and time-consuming with a low success rate and high batch-to-batch variability. Here, we explored the establishment of lung bud organoids by systematically adjusting the initial confluence levels and homogeneity of cell distribution. The efficiency of single cell seeding and clump seeding was compared. Instead of the traditional 3D culture, we established a 2.5D organoid culture to enable the direct monitoring of the internal structure via microscopy. It was found that the cell confluence and distribution prior to induction were two key parameters, which strongly affected hiPSC differentiation trajectories. Lung bud organoids with positive expression of NKX 2.1, in a single-cell seeding group with homogeneously distributed hiPSCs at 70\% confluence (SC 70\% hom) or a clump seeding group with heterogeneously distributed cells at 90\% confluence (CL 90\% het), can be observed as early as 9 days post induction. These results suggest that a successful lung bud organoid formation with single-cell seeding of hiPSCs requires a moderate confluence and homogeneous distribution of cells, while high confluence would be a prominent factor to promote the lung organoid formation when seeding hiPSCs as clumps. 2.5D organoids generated with defined culture conditions could become a simple, efficient, and valuable tool facilitating drug screening, disease modeling and personalized medicine.}, language = {en} } @article{XuRazaghiMoghadamNikoloski2021, author = {Xu, Rudan and Razaghi-Moghadam, Zahra and Nikoloski, Zoran}, title = {Maximization of non-idle enzymes improves the coverage of the estimated maximal in vivo enzyme catalytic rates in Escherichia coli}, series = {Bioinformatics}, volume = {37}, journal = {Bioinformatics}, number = {21}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {1367-4803}, doi = {10.1093/bioinformatics/btab575}, pages = {3848 -- 3855}, year = {2021}, abstract = {Motivation: Constraint-based modeling approaches allow the estimation of maximal in vivo enzyme catalytic rates that can serve as proxies for enzyme turnover numbers. Yet, genome-scale flux profiling remains a challenge in deploying these approaches to catalogue proxies for enzyme catalytic rates across organisms. Results: Here, we formulate a constraint-based approach, termed NIDLE-flux, to estimate fluxes at a genome-scale level by using the principle of efficient usage of expressed enzymes. Using proteomics data from Escherichia coli, we show that the fluxes estimated by NIDLE-flux and the existing approaches are in excellent qualitative agreement (Pearson correlation > 0.9). We also find that the maximal in vivo catalytic rates estimated by NIDLE-flux exhibits a Pearson correlation of 0.74 with in vitro enzyme turnover numbers. However, NIDLE-flux results in a 1.4-fold increase in the size of the estimated maximal in vivo catalytic rates in comparison to the contenders. Integration of the maximum in vivo catalytic rates with publically available proteomics and metabolomics data provide a better match to fluxes estimated by NIDLE-flux. Therefore, NIDLE-flux facilitates more effective usage of proteomics data to estimate proxies for kcatomes.}, language = {en} } @article{WolffGastEversetal.2021, author = {Wolff, Martin and Gast, Klaus and Evers, Andreas and Kurz, Michael and Pfeiffer-Marek, Stefania and Sch{\"u}ler, Anja and Seckler, Robert and Thalhammer, Anja}, title = {A Conserved Hydrophobic Moiety and Helix-Helix Interactions Drive the Self-Assembly of the Incretin Analog Exendin-4}, series = {Biomolecules}, volume = {11}, journal = {Biomolecules}, number = {9}, publisher = {MDPI}, address = {Basel}, issn = {2218-273X}, doi = {10.3390/biom11091305}, pages = {20}, year = {2021}, abstract = {Exendin-4 is a pharmaceutical peptide used in the control of insulin secretion. Structural information on exendin-4 and related peptides especially on the level of quaternary structure is scarce. We present the first published association equilibria of exendin-4 directly measured by static and dynamic light scattering. We show that exendin-4 oligomerization is pH dependent and that these oligomers are of low compactness. We relate our experimental results to a structural hypothesis to describe molecular details of exendin-4 oligomers. Discussion of the validity of this hypothesis is based on NMR, circular dichroism and fluorescence spectroscopy, and light scattering data on exendin-4 and a set of exendin-4 derived peptides. The essential forces driving oligomerization of exendin-4 are helix-helix interactions and interactions of a conserved hydrophobic moiety. Our structural hypothesis suggests that key interactions of exendin-4 monomers in the experimentally supported trimer take place between a defined helical segment and a hydrophobic triangle constituted by the Phe22 residues of the three monomeric subunits. Our data rationalize that Val19 might function as an anchor in the N-terminus of the interacting helix-region and that Trp25 is partially shielded in the oligomer by C-terminal amino acids of the same monomer. Our structural hypothesis suggests that the Trp25 residues do not interact with each other, but with C-terminal Pro residues of their own monomers.}, language = {en} } @article{WojcikCeulemansGaedke2021, author = {Wojcik, Laurie Anne and Ceulemans, Ruben and Gaedke, Ursula}, title = {Functional diversity buffers the effects of a pulse perturbation on the dynamics of tritrophic food webs}, series = {Ecology and Evolution}, volume = {11}, journal = {Ecology and Evolution}, number = {22}, publisher = {John Wiley \& Sons, Inc.}, address = {Hoboken (New Jersey)}, issn = {2045-7758}, doi = {10.1002/ece3.8214}, pages = {15639 -- 15663}, year = {2021}, abstract = {Biodiversity decline causes a loss of functional diversity, which threatens ecosystems through a dangerous feedback loop: This loss may hamper ecosystems' ability to buffer environmental changes, leading to further biodiversity losses. In this context, the increasing frequency of human-induced excessive loading of nutrients causes major problems in aquatic systems. Previous studies investigating how functional diversity influences the response of food webs to disturbances have mainly considered systems with at most two functionally diverse trophic levels. We investigated the effects of functional diversity on the robustness, that is, resistance, resilience, and elasticity, using a tritrophic—and thus more realistic—plankton food web model. We compared a non-adaptive food chain with no diversity within the individual trophic levels to a more diverse food web with three adaptive trophic levels. The species fitness differences were balanced through trade-offs between defense/growth rate for prey and selectivity/half-saturation constant for predators. We showed that the resistance, resilience, and elasticity of tritrophic food webs decreased with larger perturbation sizes and depended on the state of the system when the perturbation occurred. Importantly, we found that a more diverse food web was generally more resistant and resilient but its elasticity was context-dependent. Particularly, functional diversity reduced the probability of a regime shift toward a non-desirable alternative state. The basal-intermediate interaction consistently determined the robustness against a nutrient pulse despite the complex influence of the shape and type of the dynamical attractors. This relationship was strongly influenced by the diversity present and the third trophic level. Overall, using a food web model of realistic complexity, this study confirms the destructive potential of the positive feedback loop between biodiversity loss and robustness, by uncovering mechanisms leading to a decrease in resistance, resilience, and potentially elasticity as functional diversity declines.}, language = {en} } @article{WitteLinnemannstoensHonemannCapitoetal.2021, author = {Witte, Leonie and Linnemannstoens, Karen and Honemann-Capito, Mona and Groß, Julia Christina}, title = {Visualization and quantitation of Wg trafficking in the Drosophila wing imaginal epithelium}, series = {Bio-protocol}, volume = {11}, journal = {Bio-protocol}, number = {11}, publisher = {bio-protocol.org}, address = {Sunnyvale, CA}, issn = {2331-8325}, doi = {10.21769/BioProtoc.4040}, pages = {16}, year = {2021}, abstract = {Secretory Wnt trafficking can be studied in the polarized epithelial monolayer of Drosophila wing imaginal discs (WID). In this tissue, Wg (Drosophila Wnt-I) is presented on the apical surface of its source cells before being internalized into the endosomal pathway. Long-range Wg secretion and spread depend on secondary secretion from endosomal compartments, but the exact post-endocytic fate of Wg is poorly understood. Here, we summarize and present three protocols for the immunofluorescencebased visualization and quantitation of different pools of intracellular and extracellular Wg in WID: (1) steady-state extracellular Wg; (2) dynamic Wg trafficking inside endosomal compartments; and (3) dynamic Wg release to the cell surface. Using a genetic driver system for gene manipulation specifically at the posterior part of the WID (EnGal4) provides a robust internal control that allows for direct comparison of signal intensities of control and manipulated compartments of the same WID. Therefore, it also circumvents the high degree of staining variability usually associated with whole-tissue samples. In combination with the genetic manipulation of Wg pathway components that is easily feasible in Drosophila, these methods provide a tool-set for the dissection of secretory Wg trafficking and can help us to understand how Wnt proteins travel along endosomal compartments for short-and long-range signal secretion.}, language = {en} } @article{WittStibollerRaschkeetal.2021, author = {Witt, Barbara and Stiboller, Michael and Raschke, Stefanie and Friese, Sharleen and Ebert, Franziska and Schwerdtle, Tanja}, title = {Characterizing effects of excess copper levels in a human astrocytic cell line with focus on oxidative stress markers}, series = {Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements, GMS}, volume = {65}, journal = {Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements, GMS}, publisher = {Elsevier}, address = {M{\"u}nchen}, issn = {1878-3252}, doi = {10.1016/j.jtemb.2021.126711}, pages = {9}, year = {2021}, abstract = {Background: Being an essential trace element, copper is involved in diverse physiological processes. However, excess levels might lead to adverse effects. Disrupted copper homeostasis, particularly in the brain, has been associated with human diseases including the neurodegenerative disorders Wilson and Alzheimer?s disease. In this context, astrocytes play an important role in the regulation of the copper homeostasis in the brain and likely in the prevention against neuronal toxicity, consequently pointing them out as a potential target for the neurotoxicity of copper. Major toxic mechanisms are discussed to be directed against mitochondria probably via oxidative stress. However, the toxic potential and mode of action of copper in astrocytes is poorly understood, so far. Methods: In this study, excess copper levels affecting human astrocytic cell model and their involvement in the neurotoxic mode of action of copper, as well as, effects on the homeostasis of other trace elements (Mn, Fe, Ca and Mg) were investigated. Results: Copper induced substantial cytotoxic effects in the human astrocytic cell line following 48 h incubation (EC30: 250 ?M) and affected mitochondrial function, as observed via reduction of mitochondrial membrane potential and increased ROS production, likely originating from mitochondria. Moreover, cellular GSH metabolism was altered as well. Interestingly, not only cellular copper levels were affected, but also the homeostasis of other elements (Ca, Fe and Mn) were disrupted. Conclusion: One potential toxic mode of action of copper seems to be effects on the mitochondria along with induction of oxidative stress in the human astrocytic cell model. Moreover, excess copper levels seem to interact with the homeostasis of other essential elements such as Ca, Fe and Mn. Disrupted element homeostasis might also contribute to the induction of oxidative stress, likely involved in the onset and progression of neurodegenerative disorders. These insights in the toxic mechanisms will help to develop ideas and approaches for therapeutic strategies against copper-mediated diseases.}, language = {en} } @article{WilhelmiNeumannJaehnertetal.2021, author = {Wilhelmi, Ilka and Neumann, Alexander and J{\"a}hnert, Markus and Ouni, Meriem and Sch{\"u}rmann, Annette}, title = {Enriched alternative splicing in islets of diabetes-susceptible mice}, series = {International journal of molecular sciences}, volume = {22}, journal = {International journal of molecular sciences}, number = {16}, publisher = {Molecular Diversity Preservation International}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms22168597}, pages = {16}, year = {2021}, abstract = {Dysfunctional islets of Langerhans are a hallmark of type 2 diabetes (T2D). We hypothesize that differences in islet gene expression alternative splicing which can contribute to altered protein function also participate in islet dysfunction. RNA sequencing (RNAseq) data from islets of obese diabetes-resistant and diabetes-susceptible mice were analyzed for alternative splicing and its putative genetic and epigenetic modulators. We focused on the expression levels of chromatin modifiers and SNPs in regulatory sequences. We identified alternative splicing events in islets of diabetes-susceptible mice amongst others in genes linked to insulin secretion, endocytosis or ubiquitin-mediated proteolysis pathways. The expression pattern of 54 histones and chromatin modifiers, which may modulate splicing, were markedly downregulated in islets of diabetic animals. Furthermore, diabetes-susceptible mice carry SNPs in RNA-binding protein motifs and in splice sites potentially responsible for alternative splicing events. They also exhibit a larger exon skipping rate, e.g., in the diabetes gene Abcc8, which might affect protein function. Expression of the neuronal splicing factor Srrm4 which mediates inclusion of microexons in mRNA transcripts was markedly lower in islets of diabetes-prone compared to diabetes-resistant mice, correlating with a preferential skipping of SRRM4 target exons. The repression of Srrm4 expression is presumably mediated via a higher expression of miR-326-3p and miR-3547-3p in islets of diabetic mice. Thus, our study suggests that an altered splicing pattern in islets of diabetes-susceptible mice may contribute to an elevated T2D risk.}, language = {en} } @article{WiggerSchumacherSchneiderSchauliesetal.2021, author = {Wigger, Dominik and Schumacher, Fabian and Schneider-Schaulies, Sibylle and Kleuser, Burkhard}, title = {Sphingosine 1-phosphate metabolism and insulin signaling}, series = {Cellular signalling}, volume = {82}, journal = {Cellular signalling}, publisher = {Elsevier Science}, address = {Amsterdam [u.a.]}, issn = {0898-6568}, doi = {10.1016/j.cellsig.2021.109959}, pages = {16}, year = {2021}, abstract = {Insulin is the main anabolic hormone secreted by 13-cells of the pancreas stimulating the assimilation and storage of glucose in muscle and fat cells. It modulates the postprandial balance of carbohydrates, lipids and proteins via enhancing lipogenesis, glycogen and protein synthesis and suppressing glucose generation and its release from the liver. Resistance to insulin is a severe metabolic disorder related to a diminished response of peripheral tissues to the insulin action and signaling. This leads to a disturbed glucose homeostasis that precedes the onset of type 2 diabetes (T2D), a disease reaching epidemic proportions. A large number of studies reported an association between elevated circulating fatty acids and the development of insulin resistance. The increased fatty acid lipid flux results in the accumulation of lipid droplets in a variety of tissues. However, lipid intermediates such as diacylglycerols and ceramides are also formed in response to elevated fatty acid levels. These bioactive lipids have been associated with the pathogenesis of insulin resistance. More recently, sphingosine 1-phosphate (S1P), another bioactive sphingolipid derivative, has also been shown to increase in T2D and obesity. Although many studies propose a protective role of S1P metabolism on insulin signaling in peripheral tissues, other studies suggest a causal role of S1P on insulin resistance. In this review, we critically summarize the current state of knowledge of S1P metabolism and its modulating role on insulin resistance. A particular emphasis is placed on S1P and insulin signaling in hepatocytes, skeletal muscle cells, adipocytes and pancreatic 13-cells. In particular, modulation of receptors and enzymes that regulate S1P metabolism can be considered as a new therapeutic option for the treatment of insulin resistance and T2D.}, language = {en} } @article{WetzelScholtkaSchumacheretal.2021, author = {Wetzel, Alexandra Nicole and Scholtka, Bettina and Schumacher, Fabian and Rawel, Harshadrai Manilal and Geisend{\"o}rfer, Birte and Kleuser, Burkhard}, title = {Epigenetic DNA methylation of EBI3 modulates human interleukin-35 formation via NFkB signaling}, series = {International journal of molecular sciences}, volume = {22}, journal = {International journal of molecular sciences}, number = {10}, publisher = {MDPI}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms22105329}, pages = {21}, year = {2021}, abstract = {Ulcerative colitis (UC), a severe chronic disease with unclear etiology that is associated with increased risk for colorectal cancer, is accompanied by dysregulation of cytokines. Epstein-Barr virus-induced gene 3 (EBI3) encodes a subunit in the unique heterodimeric IL-12 cytokine family of either pro- or anti-inflammatory function. After having recently demonstrated that upregulation of EBI3 by histone acetylation alleviates disease symptoms in a dextran sulfate sodium (DSS)-treated mouse model of chronic colitis, we now aimed to examine a possible further epigenetic regulation of EBI3 by DNA methylation under inflammatory conditions. Treatment with the DNA methyltransferase inhibitor (DNMTi) decitabine (DAC) and TNF alpha led to synergistic upregulation of EBI3 in human colon epithelial cells (HCEC). Use of different signaling pathway inhibitors indicated NF kappa B signaling was necessary and proportional to the synergistic EBI3 induction. MALDI-TOF/MS and HPLC-ESIMS/MS analysis of DAC/TNF alpha-treated HCEC identified IL-12p35 as the most probable binding partner to form a functional protein. EBI3/IL-12p35 heterodimers (IL-35) induce their own gene upregulation, something that was indeed observed in HCEC cultured with media from previously DAC/TNF alpha-treated HCEC. These results suggest that under inflammatory and demethylating conditions the upregulation of EBI3 results in the formation of anti-inflammatory IL-35, which might be considered as a therapeutic target in colitis.}, language = {en} } @article{WendtSenftlebenGrosetal.2021, author = {Wendt, Martin and Senftleben, Nele and Gros, Patrick and Schmitt, Thomas}, title = {Coping with environmental extremes}, series = {Insects : open access journal}, volume = {12}, journal = {Insects : open access journal}, number = {10}, publisher = {MDPI}, address = {Basel}, issn = {2075-4450}, doi = {10.3390/insects12100896}, pages = {12}, year = {2021}, abstract = {Simple Summary:\& nbsp;High alpine meadows are home to numerous endemic butterfly species. A combination of climate change and changes in agricultural practices has led to a severe decline in many species. A seemingly unaffected representative of this habitat is Erebia pronoe. We studied the behaviour, resource use and population structure of this species to explain its resilience and estimate its future survival potential. This species shows pronounced protandry in combination with serial eclosion. Males were significantly more active and mobile and were also caught significantly more often than females, resulting in a pronounced shift in sex ratio in the predicted population structure. The adults use a wide range of nectar plants and establish homeranges in areas of high habitat quality. Thus, Erebia pronoe adults use a wide array of resources combined with a slight specialisation to avoid niche overlap with closely related species. The resulting ecological flexibility seems to be an adaptation to unpredictable environmental conditions, which should be the result of a long-lasting adaptation process. Moreover, the combination of opportunism and modest specialisation should also be a good basis for coping with future changes caused by climate and land-use change.




A mark-recapture study of the nominotypical Erebia pronoe in the Alps was conducted to survey its ecological demands and characteristics. Population structure analysis revealed a combination of protandry (one-week earlier eclosion of males) and serial eclosion. Significant differences between both sexes were found in population density (males: 580/ha \& PLUSMN; 37 SE; females: 241/ha \& PLUSMN; 66 SE), sex-ratio (2.4) and behaviour (57.7 vs. 11.9\% flying). Both sexes used a wide range of nectar plants (Asteraceae, 77.3\%; Dipsacaceae, 12.3\%; Gentianaceae, 9.7\%). The use of nectar plants shows a non-specific spectrum, which, however, completely avoids overlap with the locally co-occurring species Erebia nivalis. Movement patterns show the establishment of homeranges, which significantly limits the migration potential. Due to its broad ecological niche, E. pronoe will probably be able to react plastically to the consequences of climate change. The formation of high population densities, the unconcerned endangerment status, the unspecific resource spectrum and the sedentary character of the species make E. pronoe a potential indicator of the quality and general resource occurrence of alpine rupicolous grasslands.}, language = {en} } @article{WehrhanPuppeKaczoreketal.2021, author = {Wehrhan, Marc and Puppe, Daniel and Kaczorek, Danuta and Sommer, Michael}, title = {Spatial patterns of aboveground phytogenic Si stocks in a grass-dominated catchment}, series = {Biogeosciences : BG}, volume = {18}, journal = {Biogeosciences : BG}, number = {18}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1726-4170}, doi = {10.5194/bg-18-5163-2021}, pages = {5163 -- 5183}, year = {2021}, abstract = {Various studies have been performed to quantify silicon (Si) stocks in plant biomass and related Si fluxes in terrestrial biogeosystems. Most studies are deliberately designed on the plot scale to ensure low heterogeneity in soils and plant composition, hence similar environmental conditions. Due to the immanent spatial soil variability, the transferability of results to larger areas, such as catchments, is therefore limited. However, the emergence of new technical features and increasing knowledge on details in Si cycling lead to a more complex picture at landscape and catchment scales. Dynamic and static soil properties change along the soil continuum and might influence not only the species composition of natural vegetation but also its biomass distribution and related Si stocks. Maximum likelihood (ML) classification was applied to multispectral imagery captured by an unmanned aerial system (UAS) aiming at the identification of land cover classes (LCCs). Subsequently, the normalized difference vegetation index (NDVI) and ground-based measurements of biomass were used to quantify aboveground Si stocks in two Si-accumulating plants (Calamagrostis epige-jos and Phragmites australis) in a heterogeneous catchment and related corresponding spatial patterns of these stocks to soil properties. We found aboveground Si stocks of C. epige-jos and P. australis to be surprisingly high (maxima of Si stocks reach values up to 98 g Sim(-2)), i.e. comparable to or markedly exceeding reported values for the Si storage in aboveground vegetation of various terrestrial ecosystems. We further found spatial patterns of plant aboveground Si stocks to reflect spatial heterogeneities in soil properties. From our results, we concluded that (i) aboveground biomass of plants seems to be the main factor of corresponding phytogenic Si stock quantities, and (ii) a detection of biomass heterogeneities via UAS-based remote sensing represents a promising tool for the quantification of lifelike phytogenic Si pools at landscape scales.}, language = {en} } @article{WardelmannRathCastroetal.2021, author = {Wardelmann, Kristina and Rath, Michaela and Castro, Jos{\´e} Pedro and Bl{\"u}mel, Sabine and Schell, Mareike and Hauffe, Robert and Schumacher, Fabian and Flore, Tanina and Ritter, Katrin and Wernitz, Andreas and Hosoi, Toru and Ozawa, Koichiro and Kleuser, Burkhard and Weiß, J{\"u}rgen and Sch{\"u}rmann, Annette and Kleinridders, Andr{\´e}}, title = {Central acting Hsp10 regulates mitochondrial function, fatty acid metabolism and insulin sensitivity in the hypothalamus}, series = {Antioxidants}, volume = {10}, journal = {Antioxidants}, number = {5}, publisher = {MDPI}, address = {Basel}, issn = {2076-3921}, doi = {10.3390/antiox10050711}, pages = {22}, year = {2021}, abstract = {Mitochondria are critical for hypothalamic function and regulators of metabolism. Hypothalamic mitochondrial dysfunction with decreased mitochondrial chaperone expression is present in type 2 diabetes (T2D). Recently, we demonstrated that a dysregulated mitochondrial stress response (MSR) with reduced chaperone expression in the hypothalamus is an early event in obesity development due to insufficient insulin signaling. Although insulin activates this response and improves metabolism, the metabolic impact of one of its members, the mitochondrial chaperone heat shock protein 10 (Hsp10), is unknown. Thus, we hypothesized that a reduction of Hsp10 in hypothalamic neurons will impair mitochondrial function and impact brain insulin action. Therefore, we investigated the role of chaperone Hsp10 by introducing a lentiviral-mediated Hsp10 knockdown (KD) in the hypothalamic cell line CLU-183 and in the arcuate nucleus (ARC) of C57BL/6N male mice. We analyzed mitochondrial function and insulin signaling utilizing qPCR, Western blot, XF96 Analyzer, immunohistochemistry, and microscopy techniques. We show that Hsp10 expression is reduced in T2D mice brains and regulated by leptin in vitro. Hsp10 KD in hypothalamic cells induced mitochondrial dysfunction with altered fatty acid metabolism and increased mitochondria-specific oxidative stress resulting in neuronal insulin resistance. Consequently, the reduction of Hsp10 in the ARC of C57BL/6N mice caused hypothalamic insulin resistance with acute liver insulin resistance.}, language = {en} } @article{WangCherstvyKantzetal.2021, author = {Wang, Wei and Cherstvy, Andrey G. and Kantz, Holger and Metzler, Ralf and Sokolov, Igor M.}, title = {Time averaging and emerging nonergodicity upon resetting of fractional Brownian motion and heterogeneous diffusion processes}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {104}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {2}, publisher = {American Institute of Physics}, address = {Woodbury, NY}, issn = {2470-0045}, doi = {10.1103/PhysRevE.104.024105}, pages = {27}, year = {2021}, abstract = {How different are the results of constant-rate resetting of anomalous-diffusion processes in terms of their ensemble-averaged versus time-averaged mean-squared displacements (MSDs versus TAMSDs) and how does stochastic resetting impact nonergodicity? We examine, both analytically and by simulations, the implications of resetting on the MSD- and TAMSD-based spreading dynamics of particles executing fractional Brownian motion (FBM) with a long-time memory, heterogeneous diffusion processes (HDPs) with a power-law space-dependent diffusivity D(x) = D0|x|gamma and their "combined" process of HDP-FBM. We find, inter alia, that the resetting dynamics of originally ergodic FBM for superdiffusive Hurst exponents develops disparities in scaling and magnitudes of the MSDs and mean TAMSDs indicating weak ergodicity breaking. For subdiffusive HDPs we also quantify the nonequivalence of the MSD and TAMSD and observe a new trimodal form of the probability density function. For reset FBM, HDPs and HDP-FBM we compute analytically and verify by simulations the short-time MSD and TAMSD asymptotes and long-time plateaus reminiscent of those for processes under confinement. We show that certain characteristics of these reset processes are functionally similar despite a different stochastic nature of their nonreset variants. Importantly, we discover nonmonotonicity of the ergodicitybreaking parameter EB as a function of the resetting rate r. For all reset processes studied we unveil a pronounced resetting-induced nonergodicity with a maximum of EB at intermediate r and EB similar to(1/r )-decay at large r. Alongside the emerging MSD-versus-TAMSD disparity, this r-dependence of EB can be an experimentally testable prediction. We conclude by discussing some implications to experimental systems featuring resetting dynamics.}, language = {en} } @article{WangDanielsConnellyetal.2021, author = {Wang, Ningzhen and Daniels, Robert and Connelly, Liam and Sotzing, Michael and Wu, Chao and Gerhard, Reimund and Sotzing, Gregory A. and Cao, Yang}, title = {All-organic flexible ferroelectret nanogenerator with fabric-based electrodes for self-powered body area networks}, series = {Small : nano micro}, volume = {17}, journal = {Small : nano micro}, number = {33}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1613-6810}, doi = {10.1002/smll.202103161}, pages = {11}, year = {2021}, abstract = {Due to their electrically polarized air-filled internal pores, optimized ferroelectrets exhibit a remarkable piezoelectric response, making them suitable for energy harvesting. Expanded polytetrafluoroethylene (ePTFE) ferroelectret films are laminated with two fluorinated-ethylene-propylene (FEP) copolymer films and internally polarized by corona discharge. Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)-coated spandex fabric is employed for the electrodes to assemble an all-organic ferroelectret nanogenerator (FENG). The outer electret-plus-electrode double layers form active device layers with deformable electric dipoles that strongly contribute to the overall piezoelectric response in the proposed concept of wearable nanogenerators. Thus, the FENG with spandex electrodes generates a short-circuit current which is twice as high as that with aluminum electrodes. The stacking sequence spandex/FEP/ePTFE/FEP/ePTFE/FEP/spandex with an average pore size of 3 mu m in the ePTFE films yields the best overall performance, which is also demonstrated by the displacement-versus-electric-field loop results. The all-organic FENGs are stable up to 90 degrees C and still perform well 9 months after being polarized. An optimized FENG makes three light emitting diodes (LEDs) blink twice with the energy generated during a single footstep. The new all-organic FENG can thus continuously power wearable electronic devices and is easily integrated, for example, with clothing, other textiles, or shoe insoles.}, language = {en} } @article{WangLiMaetal.2021, author = {Wang, Meng and Li, Panpan and Ma, Yao and Nie, Xiang and Grebe, Markus and Men, Shuzhen}, title = {Membrane sterol composition in Arabidopsis thaliana affects root elongation via auxin biosynthesis}, series = {International journal of molecular sciences}, volume = {22}, journal = {International journal of molecular sciences}, number = {1}, publisher = {MDPI}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms22010437}, pages = {20}, year = {2021}, abstract = {Plant membrane sterol composition has been reported to affect growth and gravitropism via polar auxin transport and auxin signaling. However, as to whether sterols influence auxin biosynthesis has received little attention. Here, by using the sterol biosynthesis mutant cyclopropylsterol isomerase1-1 (cpi1-1) and sterol application, we reveal that cycloeucalenol, a CPI1 substrate, and sitosterol, an end-product of sterol biosynthesis, antagonistically affect auxin biosynthesis. The short root phenotype of cpi1-1 was associated with a markedly enhanced auxin response in the root tip. Both were neither suppressed by mutations in polar auxin transport (PAT) proteins nor by treatment with a PAT inhibitor and responded to an auxin signaling inhibitor. However, expression of several auxin biosynthesis genes TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS1 (TAA1) was upregulated in cpi1-1. Functionally, TAA1 mutation reduced the auxin response in cpi1-1 and partially rescued its short root phenotype. In support of this genetic evidence, application of cycloeucalenol upregulated expression of the auxin responsive reporter DR5:GUS (beta-glucuronidase) and of several auxin biosynthesis genes, while sitosterol repressed their expression. Hence, our combined genetic, pharmacological, and sterol application studies reveal a hitherto unexplored sterol-dependent modulation of auxin biosynthesis during Arabidopsis root elongation.}, language = {en} } @article{WandtWinkelbeinerBornhorstetal.2021, author = {Wandt, Viktoria Klara Veronika and Winkelbeiner, Nicola Lisa and Bornhorst, Julia and Witt, Barbara and Raschke, Stefanie and Simon, Luise and Ebert, Franziska and Kipp, Anna Patricia and Schwerdtle, Tanja}, title = {A matter of concern}, series = {Redox Biology}, volume = {41}, journal = {Redox Biology}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.redox.2021.101877}, pages = {13}, year = {2021}, abstract = {Neurons are post-mitotic cells in the brain and their integrity is of central importance to avoid neurodegeneration. Yet, the inability of self-replenishment of post-mitotic cells results in the need to withstand challenges from numerous stressors during life. Neurons are exposed to oxidative stress due to high oxygen consumption during metabolic activity in the brain. Accordingly, DNA damage can occur and accumulate, resulting in genome instability. In this context, imbalances in brain trace element homeostasis are a matter of concern, especially regarding iron, copper, manganese, zinc, and selenium. Although trace elements are essential for brain physiology, excess and deficient conditions are considered to impair neuronal maintenance. Besides increasing oxidative stress, DNA damage response and repair of oxidative DNA damage are affected by trace elements. Hence, a balanced trace element homeostasis is of particular importance to safeguard neuronal genome integrity and prevent neuronal loss. This review summarises the current state of knowledge on the impact of deficient, as well as excessive iron, copper, manganese, zinc, and selenium levels on neuronal genome stability}, language = {en} } @phdthesis{Verbancic2021, author = {Verbancic, Jana}, title = {Carbon supply and the regulation of primary cell wall synthesis in Arabidopsis thaliana}, school = {Universit{\"a}t Potsdam}, pages = {x, 179}, year = {2021}, abstract = {Cellulose is the most abundant biopolymer on Earth and cell wall (CW) synthesis is one of the major carbon consumers in the plant cell. Structure and several interaction partners of plasma membrane (PM)-bound cellulose synthase (CESA) complexes, CSCs, have been studied extensively, but much less is understood about the signals that activate and translocate CESAs to the PM and how exactly cellulose synthesis is being regulated during the diel cycle. The literature describes CSC regulation possibilities through interactions with accessory proteins upon stress conditions (e.g. CC1), post-translational modifications that regulate CSC speed and their possible anchoring in the PM (e.g. with phosphorylation and S-acylation, respectively). In this thesis, 13CO2 labeling and imaging techniques were employed in the same Arabidopsis seedling growth system to elucidate how and when new carbon is incorporated into cell wall (CW) sugars and UDP-glucose, and to follow CSC behavior during the diel cycle. Additionally, an ubiquitination analysis was performed to investigate a possible mechanism to affect CSC trafficking to and/or from the PM. Carbon is being incorporated into CW glucose at a 3-fold higher rate during the light period in comparison to the night in wild-type seedlings. Furthermore, CSC density at the PM, as an indication of active cellulose synthesizing machinery, is increasing in the light and falling during the night, showing that CW biosynthesis is more active in the light. Therefore, CW synthesis might be regulated by the carbon status of the cell. This regulation is broken in the starchless pgm mutant where light and dark carbon incorporation rates into CW glucose are similar, possibly due to the high soluble sugar content in pgm during the first part of the night. Strikingly, pgm CSC abundance at the PM is constantly low during the whole diel cycle, indicating little or no cellulose synthesis, but can be restored with exogenous sucrose or a longer photoperiod. Ubiquitination was explored as a possible regulating mechanism for translocation of primary CW CSCs from the PM and several potential ubiquitination sites have been identified.. The approach in this thesis enabled to study cellulose/CW synthesis from different angles but in the same growth system, allowing direct comparison of those methodologies, which could help understand the relationship between the amount of available carbon in a plant cell and the cells capacity to synthesize cellulose/CW. Understanding which factors contribute to cellulose synthesis regulation and addressing those fundamental questions can provide essential knowledge to manage the need for increased crop production.}, language = {en} } @phdthesis{Uflewski2021, author = {Uflewski, Michal}, title = {Characterizing the regulation of proton antiport across the thylakoid membrane}, school = {Universit{\"a}t Potsdam}, pages = {122}, year = {2021}, abstract = {Die Energie, die zum Antrieb photochemischer Reaktionen ben{\"o}tigt wird, stammt aus der Ladungstrennung an der Thylakoidmembran. Aufrgrund des Unterschieds in der Protonenkonzentration zwischen dem Stroma der Chloroplasten und dem Thylakoidlumen wird eine Protonenmotorische Kraft (pmf) erzeugt. Die pmf setzt sich aus dem Protonengradienten (ΔpH) und dem Membranpotential (ΔΨ) zusammen, die gemeinsam die ATP-Synthese antreiben. In der Natur schwankt die Energiemenge, die die Photosynthese antreibt, aufgrund h{\"a}ufiger {\"A}nderungen der Lichtintensit{\"a}t. Der Thylakoid-Ionentransport kann den Energiefluss durch einen Photosyntheseapparat an die Lichtverf{\"u}gbarkeit anpassen, indem er die pmf-Zusammensetzung ver{\"a}ndert. Die Dissipation von ΔΨ verringert die Ladungsrekombination am Photosystem II, so dass ein Anstieg der ΔpH-Komponente eine R{\"u}ckkopplung zur Herabregulierung der Photosynthese ausl{\"o}sen kann. Der durch den K+-Austausch-Antiporter 3 (KEA3) gesteuerte K+/H+-Antiport reduziert den ΔpH-Anteil von pmf und d{\"a}mpft dadurch das nicht-photochemische Quenching (NPQ). Infolgedessen erh{\"o}ht sich die Photosyntheseeffizienz beim {\"U}bergang zu geringerer Lichtintensit{\"a}t. Ziel dieser Arbeit war es, Antworten auf Fragen zur Regulierung der KEA3-Aktivit{\"a}t und ihrer Rolle in der Pflanzenentwicklung zu finden. Die vorgestellten Daten zeigen, dass KEA3 in Pflanzen, denen der Chloroplasten-ATP-Synthase-Assembly-Faktor CGL160 fehlt und die eine verminderte ATP-Synthase-Aktivit{\"a}t aufweisen, eine zentrale Rolle bei der Regulierung der Photosynthese und des Pflanzenwachstums unter station{\"a}ren Bedingungen spielt. Das Fehlen von KEA3 in der cgl160-Mutante f{\"u}hrt zu einer starken Beeintr{\"a}chtigung des Wachstums, da die Photosynthese aufgrund des erh{\"o}hten pH-abh{\"a}ngigen NPQs und des verringerten Elektronenflusses durch den Cytochrom b6f-Komplex eingeschr{\"a}nkt ist. Die {\"U}berexpression von KEA3 in der cgl160-Mutante erh{\"o}ht die Ladungsrekombination im Photosystem II und f{\"o}rdert die Photosynthese. In Zeiten geringer ATP-Synthase-Aktivit{\"a}t profitieren die Pflanzen also von der KEA3-Aktivit{\"a}t. KEA3 unterliegt einer Dimerisierung {\"u}ber seinen regulatorischen C-Terminus (RCT). Der RCT reagiert auf Ver{\"a}nderungen der Lichtintensit{\"a}t, da die Pflanzen, die KEA3 ohne diese Dom{\"a}ne exprimieren, einen reduzierten Lichtschutzmechanismus bei Lichtintensit{\"a}tsschwankungen aufweisen. Allerdings fixieren diese Pflanzen w{\"a}hrend der Photosynthese-Induktionsphase mehr Kohlenstoff als Gegenleistung f{\"u}r einen langfristigen Photoprotektor, was die regulierende Rolle von KEA3 in der Pflanzenentwicklung zeigt. Der KEA3-RCT ist dem Thylakoidstroma zugewandt, so dass seine Regulierung von lichtinduzierten Ver{\"a}nderungen in der Stroma-Umgebung abh{\"a}ngt. Die Regulierung der KEA3-Aktivit{\"a}t {\"u}berschneidet sich mit den pH-{\"A}nderungen im Stroma, die bei Lichtschwankungen auftreten. Es hat sich gezeigt, dass ATP und ADP eine Affinit{\"a}t zum heterolog exprimierten KEA3 RCT haben. Eine solche Wechselwirkung verursacht Konformations{\"a}nderungen in der RCT-Struktur. Die Faltung der RCT-Liganden-Interaktion h{\"a}ngt vom pH-Wert der Umgebung ab. Mit einer Kombination aus Bioinformatik und In-vitro-Ansatz wurde die ATP-Bindungsstelle am RCT lokalisiert. Das Einf{\"u}gen einer Punktmutation in der KEA3-RCT Bindungsstelle in planta f{\"u}hrte zu einer Deregulierung der Antiporteraktivit{\"a}t beim {\"U}bergang zu wenig Licht. Die in dieser Arbeit vorgestellten Daten erm{\"o}glichten es uns, die Rolle von KEA3 bei der Anpassung der Photosynthese umfassender zu bewerten und Modelle zur Regulierung der KEA3-Aktivit{\"a}t w{\"a}hrend des {\"U}bergangs zwischen verschiedenen Lichtintensit{\"a}ten vorzuschlagen.}, language = {en} } @article{TungSunWangetal.2021, author = {Tung, Wing Tai and Sun, Xianlei and Wang, Weiwei and Xu, Xun and Ma, Nan and Lendlein, Andreas}, title = {Structure, mechanical properties and degradation behavior of electrospun PEEU fiber meshes and films}, series = {MRS advances : a journal of the Materials Research Society (MRS)}, volume = {6}, journal = {MRS advances : a journal of the Materials Research Society (MRS)}, number = {10}, publisher = {Springer Nature Switzerland AG}, address = {Cham}, issn = {2059-8521}, doi = {10.1557/s43580-020-00001-0}, pages = {276 -- 282}, year = {2021}, abstract = {The capability of a degradable implant to provide mechanical support depends on its degradation behavior. Hydrolytic degradation was studied for a polyesteretherurethane (PEEU70), which consists of poly(p-dioxanone) (PPDO) and poly(epsilon-caprolactone) (PCL) segments with a weight ratio of 70:30 linked by diurethane junction units. PEEU70 samples prepared in the form of meshes with average fiber diameters of 1.5 mu m (mesh1.5) and 1.2 mu m (mesh1.2), and films were sterilized and incubated in PBS at 37 degrees C with 5 vol\% CO2 supply for 1 to 6 weeks. Degradation features, such as cracks or wrinkles, became apparent from week 4 for all samples. Mass loss was found to be 11 wt\%, 6 wt\%, and 4 wt\% for mesh1.2, mesh1.5, and films at week 6. The elongation at break decreased to under 20\% in two weeks for mesh1.2. In case of the other two samples, this level of degradation was achieved after 4 weeks. The weight average molecular weight of both PEEU70 mesh and film samples decreased to below 30 kg/mol when elongation at break dropped below 20\%. The time period of sustained mechanical stability of PEEU70-based meshes depends on the fiber diameter and molecular weight.}, language = {en} } @phdthesis{Tung2021, author = {Tung, Wing Tai}, title = {Polymeric fibrous scaffold on macro/microscale towards tissue regeneration}, school = {Universit{\"a}t Potsdam}, year = {2021}, language = {en} } @article{TongKuekenRazaghiMoghadametal.2021, author = {Tong, Hao and K{\"u}ken, Anika and Razaghi-Moghadam, Zahra and Nikoloski, Zoran}, title = {Characterization of effects of genetic variants via genome-scale metabolic modelling}, series = {Cellular and molecular life sciences : CMLS}, volume = {78}, journal = {Cellular and molecular life sciences : CMLS}, number = {12}, publisher = {Springer International Publishing AG}, address = {Cham}, issn = {1420-682X}, doi = {10.1007/s00018-021-03844-4}, pages = {5123 -- 5138}, year = {2021}, abstract = {Genome-scale metabolic networks for model plants and crops in combination with approaches from the constraint-based modelling framework have been used to predict metabolic traits and design metabolic engineering strategies for their manipulation. With the advances in technologies to generate large-scale genotyping data from natural diversity panels and other populations, genome-wide association and genomic selection have emerged as statistical approaches to determine genetic variants associated with and predictive of traits. Here, we review recent advances in constraint-based approaches that integrate genetic variants in genome-scale metabolic models to characterize their effects on reaction fluxes. Since some of these approaches have been applied in organisms other than plants, we provide a critical assessment of their applicability particularly in crops. In addition, we further dissect the inferred effects of genetic variants with respect to reaction rate constants, abundances of enzymes, and concentrations of metabolites, as main determinants of reaction fluxes and relate them with their combined effects on complex traits, like growth. Through this systematic review, we also provide a roadmap for future research to increase the predictive power of statistical approaches by coupling them with mechanistic models of metabolism.}, language = {en} } @phdthesis{Ting2021, author = {Ting, Michael Kien Yin}, title = {Circadian-regulated dynamics of translation in Arabidopsis thaliana}, school = {Universit{\"a}t Potsdam}, pages = {130}, year = {2021}, language = {en} } @article{TchewonpiSaguLandgraeberHenkeletal.2021, author = {Tchewonpi Sagu, Sorel and Landgr{\"a}ber, Eva and Henkel, Ina M. and Huschek, Gerd and Homann, Thomas and Bußler, Sara and Schl{\"u}ter, Oliver and Rawel, Harshadrai Manilal}, title = {Effect of cereal α-amylase/trypsin inhibitors on developmental characteristics and abundance of digestive enzymes of mealworm larvae (Tenebrio molitor L.)}, series = {Insects : open access journal}, volume = {12}, journal = {Insects : open access journal}, number = {5}, publisher = {MDPI}, address = {Basel}, issn = {2075-4450}, doi = {10.3390/insects12050454}, pages = {16}, year = {2021}, abstract = {The objective of this work was to investigate the potential effect of cereal α-amylase/trypsin inhibitors (ATIs) on growth parameters and selective digestive enzymes of Tenebrio molitor L. larvae. The approach consisted of feeding the larvae with wheat, sorghum and rice meals containing different levels and composition of α-amylase/trypsin inhibitors. The developmental and biochemical characteristics of the larvae were assessed over feeding periods of 5 h, 5 days and 10 days, and the relative abundance of α-amylase and selected proteases in larvae were determined using liquid chromatography tandem mass spectrometry. Overall, weight gains ranged from 21\% to 42\% after five days of feeding. The larval death rate significantly increased in all groups after 10 days of feeding (p < 0.05), whereas the pupation rate was about 25\% among larvae fed with rice (Oryza sativa L.) and Siyazan/Esperya wheat meals, and only 8\% and 14\% among those fed with Damougari and S35 sorghum meals. As determined using the Lowry method, the protein contents of the sodium phosphate extracts ranged from 7.80 ± 0.09 to 9.42 ± 0.19 mg/mL and those of the ammonium bicarbonate/urea reached 19.78 ± 0.16 to 37.47 ± 1.38 mg/mL. The total protein contents of the larvae according to the Kjeldahl method ranged from 44.0 and 49.9 g/100 g. The relative abundance of α-amylase, CLIP domain-containing serine protease, modular serine protease zymogen and C1 family cathepsin significantly decreased in the larvae, whereas dipeptidylpeptidase I and chymotrypsin increased within the first hours after feeding (p < 0.05). Trypsin content was found to be constant independently of time or feed material. Finally, based on the results we obtained, it was difficult to substantively draw conclusions on the likely effects of meal ATI composition on larval developmental characteristics, but their effects on the digestive enzyme expression remain relevant.}, language = {en} } @article{TadjoungWaffoMitrovaTiedemannetal.2021, author = {Tadjoung Waffo, Armel Franklin and Mitrova, Biljana and Tiedemann, Kim and Iobbi-Nivol, Chantal and Leimk{\"u}hler, Silke and Wollenberger, Ulla}, title = {Electrochemical trimethylamine n-oxide biosensor with enzyme-based oxygen-scavenging membrane for long-term operation under ambient air}, series = {Biosensors : open access journal}, volume = {11}, journal = {Biosensors : open access journal}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {2079-6374}, doi = {10.3390/bios11040098}, pages = {17}, year = {2021}, abstract = {An amperometric trimethylamine N-oxide (TMAO) biosensor is reported, where TMAO reductase (TorA) and glucose oxidase (GOD) and catalase (Cat) were immobilized on the electrode surface, enabling measurements of mediated enzymatic TMAO reduction at low potential under ambient air conditions. The oxygen anti-interference membrane composed of GOD, Cat and polyvinyl alcohol (PVA) hydrogel, together with glucose concentration, was optimized until the O-2 reduction current of a Clark-type electrode was completely suppressed for at least 3 h. For the preparation of the TMAO biosensor, Escherichia coli TorA was purified under anaerobic conditions and immobilized on the surface of a carbon electrode and covered by the optimized O-2 scavenging membrane. The TMAO sensor operates at a potential of -0.8 V vs. Ag/AgCl (1 M KCl), where the reduction of methylviologen (MV) is recorded. The sensor signal depends linearly on TMAO concentrations between 2 mu M and 15 mM, with a sensitivity of 2.75 +/- 1.7 mu A/mM. The developed biosensor is characterized by a response time of about 33 s and an operational stability over 3 weeks. Furthermore, measurements of TMAO concentration were performed in 10\% human serum, where the lowest detectable concentration is of 10 mu M TMAO.}, language = {en} } @article{StieglerKiemelEccardetal.2021, author = {Stiegler, Jonas and Kiemel, Katrin and Eccard, Jana and Fischer, Christina and Hering, Robert and Ortmann, Sylvia and Strigl, Lea and Tiedemann, Ralph and Ullmann, Wiebke and Blaum, Niels}, title = {Seed traits matter}, series = {Ecology and evolution}, volume = {11}, journal = {Ecology and evolution}, number = {24}, publisher = {Wiley}, address = {Hoboken}, issn = {2045-7758}, doi = {10.1002/ece3.8440}, pages = {18477 -- 18491}, year = {2021}, abstract = {Although many plants are dispersed by wind and seeds can travel long distances across unsuitable matrix areas, a large proportion relies on co-evolved zoochorous seed dispersal to connect populations in isolated habitat islands. Particularly in agricultural landscapes, where remaining habitat patches are often very small and highly isolated, mobile linkers as zoochorous seed dispersers are critical for the population dynamics of numerous plant species. However, knowledge about the quali- or quantification of such mobile link processes, especially in agricultural landscapes, is still limited. In a controlled feeding experiment, we recorded the seed intake and germination success after complete digestion by the European brown hare (Lepus europaeus) and explored its mobile link potential as an endozoochoric seed disperser. Utilizing a suite of common, rare, and potentially invasive plant species, we disentangled the effects of seed morphological traits on germination success while controlling for phylogenetic relatedness. Further, we measured the landscape connectivity via hares in two contrasting agricultural landscapes (simple: few natural and semi-natural structures, large fields; complex: high amount of natural and semi-natural structures, small fields) using GPS-based movement data. With 34,710 seeds of 44 plant species fed, one of 200 seeds (0.51\%) with seedlings of 33 species germinated from feces. Germination after complete digestion was positively related to denser seeds with comparatively small surface area and a relatively slender and elongated shape, suggesting that, for hares, the most critical seed characteristics for successful endozoochorous seed dispersal minimize exposure of the seed to the stomach and the associated digestive system. Furthermore, we could show that a hare's retention time is long enough to interconnect different habitats, especially grasslands and fields. Thus, besides other seed dispersal mechanisms, this most likely allows hares to act as effective mobile linkers contributing to ecosystem stability in times of agricultural intensification, not only in complex but also in simple landscapes.}, language = {en} } @article{StieglerKiemelEccardetal.2021, author = {Stiegler, Jonas and Kiemel, Katrin and Eccard, Jana and Fischer, Christina and Hering, Robert and Ortmann, Sylvia and Strigl, Lea and Tiedemann, Ralph}, title = {Seed traits matter}, series = {Ecology and Evolution}, volume = {11}, journal = {Ecology and Evolution}, number = {24}, publisher = {John Wiley \& Sons, Inc.}, issn = {2045-7758}, doi = {10.1002/ece3.8440}, pages = {18477 -- 18491}, year = {2021}, abstract = {Although many plants are dispersed by wind and seeds can travel long distances across unsuitable matrix areas, a large proportion relies on co-evolved zoochorous seed dispersal to connect populations in isolated habitat islands. Particularly in agricultural landscapes, where remaining habitat patches are often very small and highly isolated, mobile linkers as zoochorous seed dispersers are critical for the population dynamics of numerous plant species. However, knowledge about the quali- or quantification of such mobile link processes, especially in agricultural landscapes, is still limited. In a controlled feeding experiment, we recorded the seed intake and germination success after complete digestion by the European brown hare (Lepus europaeus) and explored its mobile link potential as an endozoochoric seed disperser. Utilizing a suite of common, rare, and potentially invasive plant species, we disentangled the effects of seed morphological traits on germination success while controlling for phylogenetic relatedness. Further, we measured the landscape connectivity via hares in two contrasting agricultural landscapes (simple: few natural and semi-natural structures, large fields; complex: high amount of natural and semi-natural structures, small fields) using GPS-based movement data. With 34,710 seeds of 44 plant species fed, one of 200 seeds (0.51\%) with seedlings of 33 species germinated from feces. Germination after complete digestion was positively related to denser seeds with comparatively small surface area and a relatively slender and elongated shape, suggesting that, for hares, the most critical seed characteristics for successful endozoochorous seed dispersal minimize exposure of the seed to the stomach and the associated digestive system. Furthermore, we could show that a hare's retention time is long enough to interconnect different habitats, especially grasslands and fields. Thus, besides other seed dispersal mechanisms, this most likely allows hares to act as effective mobile linkers contributing to ecosystem stability in times of agricultural intensification, not only in complex but also in simple landscapes.}, language = {en} } @article{SteppertSchoenfelderSchultzetal.2021, author = {Steppert, Isabel and Sch{\"o}nfelder, Jessy and Schultz, Carolyn and Kuhlmeier, Dirk}, title = {Rapid in vitro differentiation of bacteria by ion mobility spectrometry}, series = {Applied Microbiology and Biotechnology}, volume = {105}, journal = {Applied Microbiology and Biotechnology}, number = {10}, publisher = {Springer}, address = {New York}, issn = {0175-7598}, doi = {10.1007/s00253-021-11315-w}, pages = {4297 -- 4307}, year = {2021}, abstract = {Rapid screening of infected people plays a crucial role in interrupting infection chains. However, the current methods for identification of bacteria are very tedious and labor intense. Fast on-site screening for pathogens based on volatile organic compounds (VOCs) by ion mobility spectrometry (IMS) could help to differentiate between healthy and potentially infected subjects. As a first step towards this, the feasibility of differentiating between seven different bacteria including resistant strains was assessed using IMS coupled to multicapillary columns (MCC-IMS). The headspace above bacterial cultures was directly drawn and analyzed by MCC-IMS after 90 min of incubation. A cluster analysis software and statistical methods were applied to select discriminative VOC clusters. As a result, 63 VOC clusters were identified, enabling the differentiation between all investigated bacterial strains using canonical discriminant analysis. These 63 clusters were reduced to 7 discriminative VOC clusters by constructing a hierarchical classification tree. Using this tree, all bacteria including resistant strains could be classified with an AUC of 1.0 by receiver-operating characteristic analysis. In conclusion, MCC-IMS is able to differentiate the tested bacterial species, even the non-resistant and their corresponding resistant strains, based on VOC patterns after 90 min of cultivation. Although this result is very promising, in vivo studies need to be performed to investigate if this technology is able to also classify clinical samples. With a short analysis time of 5 min, MCC-IMS is quite attractive for a rapid screening for possible infections in various locations from hospitals to airports. Key Points center dot Differentiation of bacteria by MCC-IMS is shown after 90-min cultivation. center dot Non-resistant and resistant strains can be distinguished. center dot Classification of bacteria is possible based on metabolic features.}, language = {en} } @inproceedings{StephanBarbirzRobinsonetal.2021, author = {Stephan, Mareike Sophia and Barbirz, Stefanie and Robinson, Tom and Yandrapalli, Naresh and Dimova, Rumiana}, title = {Bacterial mimetic systems for studying bacterial inactivation and infection}, series = {Biophysical journal : BJ / ed. by the Biophysical Society}, volume = {120}, booktitle = {Biophysical journal : BJ / ed. by the Biophysical Society}, number = {3}, publisher = {Cell Press}, address = {Cambridge}, issn = {0006-3495}, doi = {10.1016/j.bpj.2020.11.1087}, pages = {148A -- 148A}, year = {2021}, language = {en} } @article{StarkBachGuill2021, author = {Stark, Markus and Bach, Moritz and Guill, Christian}, title = {Patch isolation and periodic environmental disturbances have idiosyncratic effects on local and regional population variabilities in meta-food chains}, series = {Theoretical ecology}, volume = {14}, journal = {Theoretical ecology}, number = {3}, publisher = {Springer}, address = {Dordrecht}, issn = {1874-1738}, doi = {10.1007/s12080-021-00510-0}, pages = {489 -- 500}, year = {2021}, abstract = {While habitat loss is a known key driver of biodiversity decline, the impact of other landscape properties, such as patch isolation, is far less clear. When patch isolation is low, species may benefit from a broader range of foraging opportunities, but are at the same time adversely affected by higher predation pressure from mobile predators. Although previous approaches have successfully linked such effects to biodiversity, their impact on local and metapopulation dynamics has largely been ignored. Since population dynamics may also be affected by environmental disturbances that temporally change the degree of patch isolation, such as periodic changes in habitat availability, accurate assessment of its link with isolation is highly challenging. To analyze the effect of patch isolation on the population dynamics on different spatial scales, we simulate a three-species meta-food chain on complex networks of habitat patches and assess the average variability of local populations and metapopulations, as well as the level of synchronization among patches. To evaluate the impact of periodic environmental disturbances, we contrast simulations of static landscapes with simulations of dynamic landscapes in which 30 percent of the patches periodically become unavailable as habitat. We find that increasing mean patch isolation often leads to more asynchronous population dynamics, depending on the parameterization of the food chain. However, local population variability also increases due to indirect effects of increased dispersal mortality at high mean patch isolation, consequently destabilizing metapopulation dynamics and increasing extinction risk. In dynamic landscapes, periodic changes of patch availability on a timescale much slower than ecological interactions often fully synchronize the dynamics. Further, these changes not only increase the variability of local populations and metapopulations, but also mostly overrule the effects of mean patch isolation. This may explain the often small and inconclusive impact of mean patch isolation in natural ecosystems.}, language = {en} } @article{SpikesRodriguezSilvaBennettetal.2021, author = {Spikes, Montrai and Rodr{\´i}guez-Silva, Rodet and Bennett, Kerri-Ann and Br{\"a}ger, Stefan and Josaphat, James and Torres-Pineda, Patricia and Ernst, Anja and Havenstein, Katja and Schlupp, Ingo and Tiedemann, Ralph}, title = {A phylogeny of the genus Limia (Teleostei: Poeciliidae) suggests a single-lake radiation nested in a Caribbean-wide allopatric speciation scenario}, series = {BMC Research Notes}, volume = {14}, journal = {BMC Research Notes}, publisher = {BMC Research Notes / Biomed Central}, address = {London}, issn = {1756-0500}, doi = {10.1186/s13104-021-05843-x}, pages = {1 -- 8}, year = {2021}, abstract = {Objective The Caribbean is an important global biodiversity hotspot. Adaptive radiations there lead to many speciation events within a limited period and hence are particularly prominent biodiversity generators. A prime example are freshwater fish of the genus Limia, endemic to the Greater Antilles. Within Hispaniola, nine species have been described from a single isolated site, Lake Mirago{\^a}ne, pointing towards extraordinary sympatric speciation. This study examines the evolutionary history of the Limia species in Lake Mirago{\^a}ne, relative to their congeners throughout the Caribbean. Results For 12 Limia species, we obtained almost complete sequences of the mitochondrial cytochrome b gene, a well-established marker for lower-level taxonomic relationships. We included sequences of six further Limia species from GenBank (total N  = 18 species). Our phylogenies are in concordance with other published phylogenies of Limia. There is strong support that the species found in Lake Mirago{\^a}ne in Haiti are monophyletic, confirming a recent local radiation. Within Lake Mirago{\^a}ne, speciation is likely extremely recent, leading to incomplete lineage sorting in the mtDNA. Future studies using multiple unlinked genetic markers are needed to disentangle the relationships within the Lake Mirago{\^a}ne clade.}, language = {en} } @article{SoeriyadiOngleyKehretal.2021, author = {Soeriyadi, Angela H. and Ongley, Sarah E. and Kehr, Jan-Christoph and Pickford, Russel and Dittmann, Elke and Neilan, Brett A.}, title = {Tailoring enzyme stringency masks the multispecificity of a lyngbyatoxin (indolactam alkaloid) nonribosomal peptide synthetase}, series = {ChemBioChem}, volume = {23}, journal = {ChemBioChem}, number = {3}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1439-4227}, doi = {10.1002/cbic.202100574}, pages = {6}, year = {2021}, abstract = {Indolactam alkaloids are activators of protein kinase C (PKC) and are of pharmacological interest for the treatment of pathologies involving PKC dysregulation. The marine cyanobacterial nonribosomal peptide synthetase (NRPS) pathway for lyngbyatoxin biosynthesis, which we previously expressed in E. coli, was studied for its amenability towards the biosynthesis of indolactam variants. Modification of culture conditions for our E. coli heterologous expression host and analysis of pathway products suggested the native lyngbyatoxin pathway NRPS does possess a degree of relaxed specificity. Site-directed mutagenesis of two positions within the adenylation domain (A-domain) substrate-binding pocket was performed, resulting in an alteration of substrate preference between valine, isoleucine, and leucine. We observed relative congruence of in vitro substrate activation by the LtxA NRPS to in vivo product formation. While there was a preference for isoleucine over leucine, the substitution of alternative tailoring domains may unveil the true in vivo effects of the mutations introduced herein.}, language = {en} } @article{SmithRheinwaltBookhagen2021, author = {Smith, Taylor and Rheinwalt, Aljoscha and Bookhagen, Bodo}, title = {Topography and climate in the upper Indus Basin}, series = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, volume = {786}, journal = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0048-9697}, doi = {10.1016/j.scitotenv.2021.147363}, pages = {11}, year = {2021}, abstract = {The Upper Indus Basin (UIB), which covers a wide range of climatic and topographic settings, provides an ideal venue to explore the relationship between climate and topography. While the distribution of snow and glaciers is spatially and temporally heterogeneous, there exist regions with similar elevation-snow relationships. In this work, we construct elevation-binned snow-cover statistics to analyze 3415 watersheds and 7357 glaciers in the UIB region. We group both glaciers and watersheds using a hierarchical clustering approach and find that (1) watershed clusters mirror large-scale moisture transport patterns and (2) are highly dependent on median watershed elevation. (3) Glacier clusters are spatially heterogeneous and are less strongly controlled by elevation, but rather by local topographic parameters that modify solar insolation. Our clustering approach allows us to clearly define self-similar snow-topographic regions. Eastern watersheds in the UIB show a steep snow cover-elevation relationship whereas watersheds in the central and western UIB have moderately sloped relationships, but cluster in distinct groups. We highlight this snow-cover-topographic transition zone and argue that these watersheds have different hydrologic responses than other regions. Our hierarchical clustering approach provides a potential new framework to use in defining climatic zones in the cyrosphere based on empirical data.}, language = {en} } @article{SmirnovBolotovOsipovetal.2021, author = {Smirnov, Lev A. and Bolotov, Maxim I. and Osipov, Grigorij V. and Pikovskij, Arkadij}, title = {Disorder fosters chimera in an array of motile particles}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {104}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {3}, publisher = {American Physical Society}, address = {Melville, NY}, issn = {2470-0045}, doi = {10.1103/PhysRevE.104.034205}, pages = {8}, year = {2021}, abstract = {We consider an array of nonlocally coupled oscillators on a ring, which for equally spaced units possesses a Kuramoto-Battogtokh chimera regime and a synchronous state. We demonstrate that disorder in oscillators positions leads to a transition from the synchronous to the chimera state. For a static (quenched) disorder we find that the probability of synchrony survival depends on the number of particles, from nearly zero at small populations to one in the thermodynamic limit. Furthermore, we demonstrate how the synchrony gets destroyed for randomly (ballistically or diffusively) moving oscillators. We show that, depending on the number of oscillators, there are different scalings of the transition time with this number and the velocity of the units.}, language = {en} } @misc{SenBoginMondaletal.2021, author = {Sen, Jaydip and Bogin, Barry and Mondal, Nitish and Dey, Sima and Roy, Shreysai}, title = {Groundwater arsenic contamination in the Bengal Delta Plain is an important public health issue}, series = {Human Biology and Public Health}, volume = {2021}, journal = {Human Biology and Public Health}, number = {1}, editor = {Scheffler, Christiane and Koziel, Slawomir and Hermanussen, Michael and Bogin, Barry}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2748-9957}, doi = {10.52905/hbph.v1.7}, pages = {1 -- 31}, year = {2021}, abstract = {There is a close association between human biology, epidemiology and public health. Exposure to toxic elements is one area of such associations and global concerns. The Bengal Delta Plain (BDP) is a region where contamination of ground water by arsenic has assumed epidemic proportions. Apart from dermatological manifestations, chronic exposure to arsenic causes a heavy toll through several carcinogenic and non-carcinogenic disorders. This article provides a global overview of groundwater arsenic contamination in the BDP region, especially the sources, speciation, and mobility of arsenic, and critically reviews the effects of arsenic on human health. The present review also provides a summary of comprehensive knowledge on various measures required for mitigation and social consequences of the problem of arsenic contaminated groundwater in the BDP region.}, language = {en} } @article{SchoenemannKocKarthaeuseretal.2021, author = {Sch{\"o}nemann, Eric and Koc, Julian and Karth{\"a}user, Jana and {\"O}zcan, Onur and Schanzenbach, Dirk and Schardt, Lisa and Rosenhahn, Axel and Laschewsky, Andr{\´e}}, title = {Sulfobetaine methacrylate polymers of unconventional polyzwitterion architecture and their antifouling properties}, series = {Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences}, volume = {22}, journal = {Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences}, number = {4}, publisher = {American Chemical Society}, address = {Washington}, issn = {1525-7797}, doi = {10.1021/acs.biomac.0c01705}, pages = {1494 -- 1508}, year = {2021}, abstract = {Combining high hydrophilicity with charge neutrality, polyzwitterions are intensely explored for their high biocompatibility and low-fouling properties. Recent reports indicated that in addition to charge neutrality, the zwitterion's segmental dipole orientation is an important factor for interacting with the environment. Accordingly, a series of polysulfobetaines with a novel architecture was designed, in which the cationic and anionic groups of the zwitterionic moiety are placed at equal distances from the backbone. They were investigated by in vitro biofouling assays, covering proteins of different charges and model marine organisms. All polyzwitterion coatings reduced the fouling effectively compared to model polymer surfaces of poly(butyl methacrylate), with a nearly equally good performance as the reference polybetaine poly(3-(N-(2-(methacryloyloxy)ethyl)-N,N-dimethylammonio)propanesulfonate). The specific fouling resistance depended on the detailed chemical structure of the polyzwitterions. Still, while clearly affecting the performance, the precise dipole orientation of the sulfobetaine group in the polyzwitterions seems overall to be only of secondary importance for their antifouling behavior.}, language = {en} } @article{SchneebergerSchulzeScheffleretal.2021, author = {Schneeberger, Karin and Schulze, Michael and Scheffler, Ingo and Caspers, Barbara A.}, title = {Evidence of female preference for odor of distant over local males in a bat with female dispersal}, series = {Behavioral ecology : the official journal of the International Society for Behavioral Ecology}, volume = {32}, journal = {Behavioral ecology : the official journal of the International Society for Behavioral Ecology}, number = {4}, publisher = {Oxford University Press}, address = {Oxford}, issn = {1045-2249}, doi = {10.1093/beheco/arab003}, pages = {657 -- 661}, year = {2021}, abstract = {Geographic variation of sexually selected male traits is common in animals. Female choice also varies geographically and several studies found female preference for local males, which is assumed to lead to local adaptation and, therefore, increases fitness. As females are the nondispersing sex in most mammalian taxa, this preference for local males might be explained by the learning of male characteristics. Studies on the preference of females in female-dispersing species are lacking so far. To find out whether such females would also show preferences for local males, we conducted a study on greater sac-winged bats (Saccopteryx bilineata), a species where females disperse and males stay in their natal colony. Male greater sac-winged bats possess a wing pouch that is filled with odoriferous secretion and fanned toward females during courtship display. In a combination of chemical analysis and behavioral preference tests, we analyzed whether the composition of wing sac secretion varies between two geographically distinct populations (300 km), and whether females show a preference for local or distant male scent. Using gas chromatography, we found significant differences in the composition of the wing sac odors between the two geographically distinct populations. In addition, the behavioral preference experiments revealed that females of both populations preferred the scent of geographically distant males over local males. The wing sac odor might thus be used to guarantee optimal outbreeding when dispersing to a new colony. This is-to our knowledge-the first study on odor preference of females of a species with female-biased dispersal.}, language = {en} } @article{SchirrmannLandwehrGiebeletal.2021, author = {Schirrmann, Michael and Landwehr, Niels and Giebel, Antje and Garz, Andreas and Dammer, Karl-Heinz}, title = {Early detection of stripe rust in winter wheat using deep residual neural networks}, series = {Frontiers in plant science : FPLS}, volume = {12}, journal = {Frontiers in plant science : FPLS}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2021.469689}, pages = {14}, year = {2021}, abstract = {Stripe rust (Pst) is a major disease of wheat crops leading untreated to severe yield losses. The use of fungicides is often essential to control Pst when sudden outbreaks are imminent. Sensors capable of detecting Pst in wheat crops could optimize the use of fungicides and improve disease monitoring in high-throughput field phenotyping. Now, deep learning provides new tools for image recognition and may pave the way for new camera based sensors that can identify symptoms in early stages of a disease outbreak within the field. The aim of this study was to teach an image classifier to detect Pst symptoms in winter wheat canopies based on a deep residual neural network (ResNet). For this purpose, a large annotation database was created from images taken by a standard RGB camera that was mounted on a platform at a height of 2 m. Images were acquired while the platform was moved over a randomized field experiment with Pst-inoculated and Pst-free plots of winter wheat. The image classifier was trained with 224 x 224 px patches tiled from the original, unprocessed camera images. The image classifier was tested on different stages of the disease outbreak. At patch level the image classifier reached a total accuracy of 90\%. To test the image classifier on image level, the image classifier was evaluated with a sliding window using a large striding length of 224 px allowing for fast test performance. At image level, the image classifier reached a total accuracy of 77\%. Even in a stage with very low disease spreading (0.5\%) at the very beginning of the Pst outbreak, a detection accuracy of 57\% was obtained. Still in the initial phase of the Pst outbreak with 2 to 4\% of Pst disease spreading, detection accuracy with 76\% could be attained. With further optimizations, the image classifier could be implemented in embedded systems and deployed on drones, vehicles or scanning systems for fast mapping of Pst outbreaks.}, language = {en} } @article{SchindlerMoldenhawerStangeetal.2021, author = {Schindler, Daniel and Moldenhawer, Ted and Stange, Maike and Lepro, Valentino and Beta, Carsten and Holschneider, Matthias and Huisinga, Wilhelm}, title = {Analysis of protrusion dynamics in amoeboid cell motility by means of regularized contour flows}, series = {PLoS Computational Biology : a new community journal}, volume = {17}, journal = {PLoS Computational Biology : a new community journal}, number = {8}, publisher = {PLoS}, address = {San Fransisco}, issn = {1553-734X}, doi = {10.1371/journal.pcbi.1009268}, pages = {33}, year = {2021}, abstract = {Amoeboid cell motility is essential for a wide range of biological processes including wound healing, embryonic morphogenesis, and cancer metastasis. It relies on complex dynamical patterns of cell shape changes that pose long-standing challenges to mathematical modeling and raise a need for automated and reproducible approaches to extract quantitative morphological features from image sequences. Here, we introduce a theoretical framework and a computational method for obtaining smooth representations of the spatiotemporal contour dynamics from stacks of segmented microscopy images. Based on a Gaussian process regression we propose a one-parameter family of regularized contour flows that allows us to continuously track reference points (virtual markers) between successive cell contours. We use this approach to define a coordinate system on the moving cell boundary and to represent different local geometric quantities in this frame of reference. In particular, we introduce the local marker dispersion as a measure to identify localized membrane expansions and provide a fully automated way to extract the properties of such expansions, including their area and growth time. The methods are available as an open-source software package called AmoePy, a Python-based toolbox for analyzing amoeboid cell motility (based on time-lapse microscopy data), including a graphical user interface and detailed documentation. Due to the mathematical rigor of our framework, we envision it to be of use for the development of novel cell motility models. We mainly use experimental data of the social amoeba Dictyostelium discoideum to illustrate and validate our approach.
Author summary Amoeboid motion is a crawling-like cell migration that plays an important key role in multiple biological processes such as wound healing and cancer metastasis. This type of cell motility results from expanding and simultaneously contracting parts of the cell membrane. From fluorescence images, we obtain a sequence of points, representing the cell membrane, for each time step. By using regression analysis on these sequences, we derive smooth representations, so-called contours, of the membrane. Since the number of measurements is discrete and often limited, the question is raised of how to link consecutive contours with each other. In this work, we present a novel mathematical framework in which these links are described by regularized flows allowing a certain degree of concentration or stretching of neighboring reference points on the same contour. This stretching rate, the so-called local dispersion, is used to identify expansions and contractions of the cell membrane providing a fully automated way of extracting properties of these cell shape changes. We applied our methods to time-lapse microscopy data of the social amoeba Dictyostelium discoideum.}, language = {en} } @article{ScharnweberChaguacedaEkloev2021, author = {Scharnweber, Inga Kristin and Chaguaceda, Fernando and Ekl{\"o}v, Peter}, title = {Fatty acid accumulation in feeding types of a natural freshwater fish population}, series = {Oecologia / in cooperation with the International Association for Ecology, Intecol}, volume = {196}, journal = {Oecologia / in cooperation with the International Association for Ecology, Intecol}, number = {1}, publisher = {Springer}, address = {Berlin ; Heidelberg [u.a.]}, issn = {0029-8549}, doi = {10.1007/s00442-021-04913-y}, pages = {53 -- 63}, year = {2021}, abstract = {Fatty acids are widely used to study trophic interactions in food web assemblages. Generally, it is assumed that there is a very small modification of fatty acids from one trophic step to another, making them suitable as trophic biomarkers. However, recent literature provides evidence that many fishes possess genes encoding enzymes with a role in bioconversion, thus the capability for bioconversion might be more widespread than previously assumed. Nonetheless, empirical evidence for biosynthesis occurring in natural populations remains scarce. In this study, we investigated different feeding types of perch (Perca fluviatilis) that are specialized on specific resources with different levels of highly unsaturated fatty acids (HUFAs), and analyzed the change between HUFA proportions in perch muscle tissue compared to their resources. Perch showed matching levels to their resources for EPA, but ARA and especially DHA were accumulated. Compound-specific stable isotope analyses helped us to identify the origin of HUFA carbon. Our results suggest that perch obtain a substantial amount of DHA via bioconversion when feeding on DHA-poor benthic resources. Thus, our data indicate the capability of bioconversion of HUFAs in a natural freshwater fish population.}, language = {en} } @article{ScharnweberAnderssonChaguacedaetal.2021, author = {Scharnweber, Inga Kristin and Andersson, Matilda L. and Chaguaceda, Fernando and Ekl{\"o}v, Peter}, title = {Intraspecific differences in metabolic rates shape carbon stable isotope trophic discrimination factors of muscle tissue in the common teleost Eurasian perch (Perca fluviatilis)}, series = {Ecology and evolution}, volume = {11}, journal = {Ecology and evolution}, number = {14}, publisher = {John Wiley \& Sons, Inc.}, address = {New Jersey}, issn = {2045-7758}, pages = {9804 -- 9814}, year = {2021}, abstract = {Stable isotopes represent a unique approach to provide insights into the ecology of organisms. δ13C and δ15N have specifically been used to obtain information on the trophic ecology and food-web interactions. Trophic discrimination factors (TDF, Δ13C and Δ15N) describe the isotopic fractionation occurring from diet to consumer tissue, and these factors are critical for obtaining precise estimates within any application of δ13C and δ15N values. It is widely acknowledged that metabolism influences TDF, being responsible for different TDF between tissues of variable metabolic activity (e.g., liver vs. muscle tissue) or species body size (small vs. large). However, the connection between the variation of metabolism occurring within a single species during its ontogeny and TDF has rarely been considered. Here, we conducted a 9-month feeding experiment to report Δ13C and Δ15N of muscle and liver tissues for several weight classes of Eurasian perch (Perca fluviatilis), a widespread teleost often studied using stable isotopes, but without established TDF for feeding on a natural diet. In addition, we assessed the relationship between the standard metabolic rate (SMR) and TDF by measuring the oxygen consumption of the individuals. Our results showed a significant negative relationship of SMR with Δ13C, and a significant positive relationship of SMR with Δ15N of muscle tissue, but not with TDF of liver tissue. SMR varies inversely with size, which translated into a significantly different TDF of muscle tissue between size classes. In summary, our results emphasize the role of metabolism in shaping-specific TDF (i.e., Δ13C and Δ15N of muscle tissue) and especially highlight the substantial differences between individuals of different ontogenetic stages within a species. Our findings thus have direct implications for the use of stable isotope data and the applications of stable isotopes in food-web studies.}, language = {en} } @article{SauerGrebe2021, author = {Sauer, Michael and Grebe, Markus}, title = {Plant cell biology}, series = {Current biology : CB}, volume = {31}, journal = {Current biology : CB}, number = {9}, publisher = {Cell Press}, address = {Cambridge}, issn = {0960-9822}, doi = {10.1016/j.cub.2021.03.070}, pages = {R449 -- R451}, year = {2021}, abstract = {PIN-FORMED (PIN) polar protein localization directs transport of the growth and developmental regulator auxin in plants. Once established after cytokinesis, PIN polarity requires maintenance. Now, direct interactions between PIN, MAB4/MEL and PID proteins suggest self-reinforced maintenance of PIN polarity through limiting lateral diffusion.}, language = {en} } @article{SantamansCordobaFrancoetal.2021, author = {Santamans, Carla Daniela and Cordoba, Francisco E. and Franco, Mar{\´i}a G. and Vignoni, Paula and Lupo, Liliana C.}, title = {Hydro-climatological variability in Lagunas de Vilama System, Argentinean Altiplano-Puna Plateau, Southern Tropical Andes (22 degrees S) and its response to large-scale climate forcings}, series = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, volume = {767}, journal = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0048-9697}, doi = {10.1016/j.scitotenv.2020.144926}, pages = {19}, year = {2021}, abstract = {The Altiplano-Puna Plateau holds several shallow lakes, which are very sensitive to climate changes. This work is focused on a high-altitude lake system called Lagunas de Vilama (LVS), located in a complex climatic transition area with scarcity of continuous and homogeneous instrumental records. The objective of this study is to determine the regional spatial-temporal variability of precipitation and evaluate the seasonal and interannual lake responses. We use a lake-surfaces record derived from Landsat images to investigate links with regional precipitations and different climatic forcings. The results reveal that austral summer and autumn precipitations control the variability of the annual lake-surfaces. Also, we found intra-annual and interannual lags in the lake responses to precipitations, and identified several wet and dry stages. Our results show negative trends in precipitations and lake-surfaces, whose were strengthened by a shift to a warm phase of the Atlantic Multidecadal Oscillation in the 1990s. The El Nino Southern Oscillation, Pacific Decadal Oscillation, and Southern Annular Mode also exert a strong influence in the region. This study demonstrates that the variability of LVS lakes is strongly related to the South American Monsoon System dynamics and large-scale climate fordngs from the Pacific and Atlantic Oceans. This work provides novel indices which demonstrated to be good indicators of regional hydroclimatological variability for this region of South America.}, language = {en} } @article{SandhageHofmannLinstaedterKindermannetal.2021, author = {Sandhage-Hofmann, Alexandra and Linst{\"a}dter, Anja and Kindermann, Liana and Angombe, Simon and Amelung, Wulf}, title = {Conservation with elevated elephant densities sequesters carbon in soils despite losses of woody biomass}, series = {Global change biology}, volume = {27}, journal = {Global change biology}, number = {19}, publisher = {Blackwell Science}, address = {Oxford [u.a.]}, issn = {1354-1013}, doi = {10.1111/gcb.15779}, pages = {4601 -- 4614}, year = {2021}, abstract = {Nature conservation and restoration in terrestrial ecosystems is often focused on increasing the numbers of megafauna, expecting them to have positive impacts on ecological self-regulation processes and biodiversity. In sub-Saharan Africa, conservation efforts also aspire to protect and enhance biodiversity with particular focus on elephants. However, elephant browsing carries the risk of woody biomass losses. In this context, little is known about how increasing elephant numbers affects carbon stocks in soils, including the subsoils. We hypothesized that (1) increasing numbers of elephants reduce tree biomass, and thus the amount of C stored therein, resulting (2) in a loss of soil organic carbon (SOC). If true, a negative carbon footprint could limit the sustainability of elephant conservation from a global carbon perspective. To test these hypotheses, we selected plots of low, medium, and high elephant densities in two national parks and adjacent conservancies in the Namibian component of the Kavango Zambezi Transfrontier Area (KAZA), and quantified carbon storage in both woody vegetation and soils (1 m). Analyses were supplemented by the assessment of soil carbon isotopic composition. We found that increasing elephant densities resulted in a loss of tree carbon storage by 6.4 t ha(-1). However, and in contrast to our second hypothesis, SOC stocks increased by 4.7 t ha(-1) with increasing elephant densities. These higher SOC stocks were mainly found in the topsoil (0-30 cm) and were largely due to the formation of SOC from woody biomass. A second carbon input source into the soils was megaherbivore dung, which contributed with 0.02-0.323 t C ha(-1) year(-1) to ecosystem carbon storage in the low and high elephant density plots, respectively. Consequently, increasing elephant density does not necessarily lead to a negative C footprint, as soil carbon sequestration and transient C storage in dung almost compensate for losses in tree biomass.}, language = {en} } @article{RutschmannChenZhouetal.2021, author = {Rutschmann, Sereina and Chen, Ping and Zhou, Changfa and Monaghan, Michael T.}, title = {Three mitochondrial genomes of early-winged insects (Ephemeroptera: Baetidae and Leptophlebiidae)}, series = {Mitochondrial DNA Part B}, volume = {6}, journal = {Mitochondrial DNA Part B}, number = {10}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {2380-2359}, doi = {10.1080/23802359.2021.1974966}, pages = {2969 -- 2971}, year = {2021}, abstract = {Mayflies (Ephemeroptera) are a semi-aquatic insect order with comparatively few genomic data available despite their phylogenetic position at the root of the winged-insects and possession of ancestral traits. Here, we provide three mitochondrial genomes (mtgenomes) from representatives of the two most species-rich families, Baetis rutilocylindratus and Cloeon dipterum (Baetidae), and Habrophlebiodes zijinensis (Leptophlebiidae). All mtgenomes had a complete set of 13 protein-coding genes and a conserved orientation except for two inverted tRNAs in H. zijinensis. Phylogenetic reconstructions using 21 mayfly mtgenomes and representatives of seven additional orders recovered both Baetidae and Leptophlebiidae as well supported monophyletic clades, with Ephemeroptera as the sister-taxon to all other winged insects (i.e. Odonata and Neoptera).}, language = {en} } @article{RottlerVormoorFranckeetal.2021, author = {Rottler, Erwin and Vormoor, Klaus Josef and Francke, Till and Bronstert, Axel}, title = {Hydro Explorer}, series = {River research and applications}, volume = {37}, journal = {River research and applications}, number = {4}, publisher = {Wiley}, address = {New York}, issn = {1535-1459}, doi = {10.1002/rra.3772}, pages = {544 -- 554}, year = {2021}, abstract = {Climatic changes and anthropogenic modifications of the river basin or river network have the potential to fundamentally alter river runoff. In the framework of this study, we aim to analyze and present historic changes in runoff timing and runoff seasonality observed at river gauges all over the world. In this regard, we develop the Hydro Explorer, an interactive web app, which enables the investigation of >7,000 daily resolution discharge time series from the Global Runoff Data Centre (GRDC). The interactive nature of the developed web app allows for a quick comparison of gauges, regions, methods, and time frames. We illustrate the available analytical tools by investigating changes in runoff timing and runoff seasonality in the Rhine River Basin. Since we provide the source code of the application, existing analytical approaches can be modified, new methods added, and the tool framework can be re-used to visualize other data sets.}, language = {en} } @article{RomeroMujalliRochowKahletal.2021, author = {Romero-Mujalli, Daniel and Rochow, Markus and Kahl, Sandra M. and Paraskevopoulou, Sofia and Folkertsma, Remco and Jeltsch, Florian and Tiedemann, Ralph}, title = {Adaptive and nonadaptive plasticity in changing environments: Implications for sexual species with different life history strategies}, series = {Ecology and Evolution}, volume = {11}, journal = {Ecology and Evolution}, number = {11}, publisher = {John Wiley \& Sons, Inc.}, address = {New Jersey}, issn = {2045-7758}, pages = {17}, year = {2021}, abstract = {Populations adapt to novel environmental conditions by genetic changes or phenotypic plasticity. Plastic responses are generally faster and can buffer fitness losses under variable conditions. Plasticity is typically modeled as random noise and linear reaction norms that assume simple one-to- one genotype-phenotype maps and no limits to the phenotypic response. Most studies on plasticity have focused on its effect on population viability. However, it is not clear, whether the advantage of plasticity depends solely on environmental fluctuations or also on the genetic and demographic properties (life histories) of populations. Here we present an individual-based model and study the relative importance of adaptive and nonadaptive plasticity for populations of sexual species with different life histories experiencing directional stochastic climate change. Environmental fluctuations were simulated using differentially autocorrelated climatic stochasticity or noise color, and scenarios of directiona climate change. Nonadaptive plasticity was simulated as a random environmental effect on trait development, while adaptive plasticity as a linear, saturating, or sinusoidal reaction norm. The last two imposed limits to the plastic response and emphasized flexible interactions of the genotype with the environment. Interestingly, this assumption led to (a) smaller phenotypic than genotypic variance in the population (many-to- one genotype-phenotype map) and the coexistence of polymorphisms, and (b) the maintenance of higher genetic variation—compared to linear reaction norms and genetic determinism—even when the population was exposed to a constant environment for several generations. Limits to plasticity led to genetic accommodation, when costs were negligible, and to the appearance of cryptic variation when limits were exceeded. We found that adaptive plasticity promoted population persistence under red environmental noise and was particularly important for life histories with low fecundity. Populations produing more offspring could cope with environmental fluctuations solely by genetic changes or random plasticity, unless environmental change was too fast.}, language = {en} } @misc{Rogol2021, author = {Rogol, Alan D.}, title = {Settings Perspective}, series = {Human Biology and Public Health}, volume = {2021}, journal = {Human Biology and Public Health}, number = {1}, editor = {Scheffler, Christiane and Koziel, Slawomir and Hermanussen, Michael and Bogin, Barry}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2748-9957}, doi = {10.52905/hbph.v1.2}, pages = {1 -- 2}, year = {2021}, language = {en} } @article{RoeStreckBeachetal.2021, author = {Roe, Stephanie and Streck, Charlotte and Beach, Robert and Busch, Jonah and Chapman, Melissa and Daioglou, Vassilis and Deppermann, Andre and Doelman, Jonathan and Emmet-Booth, Jeremy and Engelmann, Jens and Fricko, Oliver and Frischmann, Chad and Funk, Jason and Grassi, Giacomo and Griscom, Bronson and Havlik, Petr and Hanssen, Steef and Humpen{\"o}der, Florian and Landholm, David and Lomax, Guy and Lehmann, Johannes and Mesnildrey, Leah and Nabuurs, Gert-Jan and Popp, Alexander and Rivard, Charlotte and Sanderman, Jonathan and Sohngen, Brent and Smith, Pete and Stehfest, Elke and Woolf, Dominic and Lawrence, Deborah}, title = {Land-based measures to mitigate climate change}, series = {Global change biology}, volume = {27}, journal = {Global change biology}, number = {23}, publisher = {Wiley-Blackwell}, address = {Oxford}, issn = {1365-2486}, doi = {10.1111/gcb.15873}, pages = {6025 -- 6058}, year = {2021}, abstract = {Land-based climate mitigation measures have gained significant attention and importance in public and private sector climate policies. Building on previous studies, we refine and update the mitigation potentials for 20 land-based measures in >200 countries and five regions, comparing "bottom-up" sectoral estimates with integrated assessment models (IAMs). We also assess implementation feasibility at the country level. Cost-effective (available up to \$100/tCO2eq) land-based mitigation is 8-13.8 GtCO2eq yr-1 between 2020 and 2050, with the bottom end of this range representing the IAM median and the upper end representing the sectoral estimate. The cost-effective sectoral estimate is about 40\% of available technical potential and is in line with achieving a 1.5°C pathway in 2050. Compared to technical potentials, cost-effective estimates represent a more realistic and actionable target for policy. The cost-effective potential is approximately 50\% from forests and other ecosystems, 35\% from agriculture, and 15\% from demand-side measures. The potential varies sixfold across the five regions assessed (0.75-4.8 GtCO2eq yr-1) and the top 15 countries account for about 60\% of the global potential. Protection of forests and other ecosystems and demand-side measures present particularly high mitigation efficiency, high provision of co-benefits, and relatively lower costs. The feasibility assessment suggests that governance, economic investment, and socio-cultural conditions influence the likelihood that land-based mitigation potentials are realized. A substantial portion of potential (80\%) is in developing countries and LDCs, where feasibility barriers are of greatest concern. Assisting countries to overcome barriers may result in significant quantities of near-term, low-cost mitigation while locally achieving important climate adaptation and development benefits. Opportunities among countries vary widely depending on types of land-based measures available, their potential co-benefits and risks, and their feasibility. Enhanced investments and country-specific plans that accommodate this complexity are urgently needed to realize the large global potential from improved land stewardship.}, language = {en} }