@phdthesis{Schaefer2024, author = {Sch{\"a}fer, Marj{\"a}nn Helena}, title = {Untersuchungen zur Evolution der 15-Lipoxygenase (ALOX15) bei S{\"a}ugetieren und funktionelle Charakterisierung von Knock-in-M{\"a}usen mit humanisierter Reaktionsspezifit{\"a}t der 15-Lipoxygenase-2 (Alox15b)}, doi = {10.25932/publishup-62034}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-620340}, school = {Universit{\"a}t Potsdam}, pages = {XVII, 280}, year = {2024}, abstract = {Arachidons{\"a}urelipoxygenasen (ALOX-Isoformen) sind Lipid-peroxidierenden Enzyme, die bei der Zelldifferenzierung und bei der Pathogenese verschiedener Erkrankungen bedeutsam sind. Im menschlichen Genom gibt es sechs funktionelle ALOX-Gene, die als Einzelkopiegene vorliegen. F{\"u}r jedes humane ALOX-Gen gibt es ein orthologes Mausgen. Obwohl sich die sechs humanen ALOX-Isoformen strukturell sehr {\"a}hnlich sind, unterscheiden sich ihre funktionellen Eigenschaften deutlich voneinander. In der vorliegenden Arbeit wurden vier unterschiedliche Fragestellungen zum Vorkommen, zur biologischen Rolle und zur Evolutionsabh{\"a}ngigkeit der enzymatischen Eigenschaften von S{\"a}ugetier-ALOX-Isoformen untersucht: 1) Spitzh{\"o}rnchen (Tupaiidae) sind evolution{\"a}r n{\"a}her mit dem Menschen verwandt als Nagetiere und wurden deshalb als Alternativmodelle f{\"u}r die Untersuchung menschlicher Erkrankungen vorgeschlagen. In dieser Arbeit wurde erstmals der Arachidons{\"a}urestoffwechsel von Spitzh{\"o}rnchen untersucht. Dabei wurde festgestellt, dass im Genom von Tupaia belangeri vier unterschiedliche ALOX15-Gene vorkommen und die Enzyme sich hinsichtlich ihrer katalytischen Eigenschaften {\"a}hneln. Diese genomische Vielfalt, die weder beim Menschen noch bei M{\"a}usen vorhanden ist, erschwert die funktionellen Untersuchungen zur biologischen Rolle des ALOX15-Weges. Damit scheint Tupaia belangeri kein geeigneteres Tiermodel f{\"u}r die Untersuchung des ALOX15-Weges des Menschen zu sein. 2) Entsprechend der Evolutionshypothese k{\"o}nnen S{\"a}ugetier-ALOX15-Orthologe in Arachidons{\"a}ure-12-lipoxygenierende- und Arachidons{\"a}ure-15-lipoxygenierende Enzyme eingeteilt werden. Dabei exprimieren S{\"a}ugetierspezies, die einen h{\"o}heren Evolutionsgrad als Gibbons aufweisen, Arachidons{\"a}ure-15-lipoxygenierende ALOX15-Orthologe, w{\"a}hrend evolution{\"a}r weniger weit entwickelte S{\"a}ugetiere Arachidons{\"a}ure-12 lipoxygenierende Enzyme besitzen. In dieser Arbeit wurden elf neue ALOX15-Orthologe als rekombinante Proteine exprimiert und funktionell charakterisiert. Die erhaltenen Ergebnisse f{\"u}gen sich widerspruchsfrei in die Evolutionshypothese ein und verbreitern deren experimentelle Basis. Die experimentellen Daten best{\"a}tigen auch das Triadenkonzept. 3) Da humane und murine ALOX15B-Orthologe unterschiedliche funktionelle Eigenschaften aufweisen, k{\"o}nnen Ergebnisse aus murinen Krankheitsmodellen zur biologischen Rolle der ALOX15B nicht direkt auf den Menschen {\"u}bertragen werden. Um die ALOX15B-Orthologen von Maus und Mensch funktionell einander anzugleichen, wurden im Rahmen der vorliegenden Arbeit Knock-in M{\"a}use durch die In vivo Mutagenese mittels CRISPR/Cas9-Technik hergestellt. Diese exprimieren eine humanisierte Mutante (Doppelmutation von Tyrosin603Asparagins{\"a}ure+Histidin604Valin) der murinen Alox15b. Diese M{\"a}use waren lebens- und fortpflanzungsf{\"a}hig, zeigten aber geschlechtsspezifische Unterschiede zu ausgekreuzten Wildtyp-Kontrolltieren im Rahmen ihre Individualentwicklung. 4) In vorhergehenden Untersuchungen zur Rolle der ALOX15B in Rahmen der Entz{\"u}ndungsreaktion wurde eine antiinflammatorische Wirkung des Enzyms postuliert. In der vorliegenden Arbeit wurde untersucht, ob eine Humanisierung der murinen Alox15b die Entz{\"u}ndungsreaktion in zwei verschiedenen murinen Entz{\"u}ndungsmodellen beeinflusst. Eine Humanisierung der murinen Alox15b f{\"u}hrte zu einer verst{\"a}rkten Ausbildung von Entz{\"u}ndungssymptomen im induzierten Dextran-Natrium-Sulfat-Kolitismodell. Im Gegensatz dazu bewirkte die Humanisierung der Alox15b eine Abschw{\"a}chung der Entz{\"u}ndungssymptome im Freund'schen Adjuvans Pfoten{\"o}demmodell. Diese Daten deuten darauf hin, dass sich die Rolle der ALOX15B in verschiedenen Entz{\"u}ndungsmodellen unterscheidet.}, language = {de} } @phdthesis{Rinne2024, author = {Rinne, Theresa Charlotte}, title = {The effects of nutrients on bone stem cell function and regeneration}, school = {Universit{\"a}t Potsdam}, pages = {V, 134}, year = {2024}, abstract = {Aging is associated with bone loss, which can lead to osteoporosis and high fracture risk. This coincides with the enhanced formation of bone marrow adipose tissue (BMAT), suggesting a negative effect of bone marrow adipocytes on skeletal health. Increased BMAT formation is also observed in pathologies such as obesity, type 2 diabetes and osteoporosis. However, a subset of bone marrow adipocytes forming the constitutive BMAT (cBMAT), arise early in life in the distal skeleton, contain high levels of unsaturated fatty acids and are thought to provide a physiological function. Regulated BMAT (rBMAT) forms during aging and obesity in proximal regions of the bone and contain a large proportion of saturated fatty acids. Paradoxically, BMAT accumulation is also enhanced during caloric restriction (CR), a life-span extending dietary intervention. This indicates, that different types of BMAT can form in response to opposing nutritional stimuli with potentially different functions. To this end, two types of nutritional interventions, CR and high fat diet (HFD), that are both described to induce BMAT accumulation were carried out. CR markedly increased BMAT formation in the proximal tibia and led to a higher proportion of unsaturated fatty acids, making it similar to the physiological cBMAT. Additionally, proximal and diaphyseal tibia regions displayed higher adiponectin expression. In aged mice, CR was associated with an improved trabecular bone structure. Taken together, these findings demonstrate, that the type of BMAT that forms during CR might provide beneficial effects for local bone stem/progenitor cells and metabolic health. The HFD intervention performed in this thesis showed no effect on BMAT accumulation and bone microstructure. RNA Seq analysis revealed alterations in the composition of the collagen-containing extracellular matrix (ECM). In order to investigate the effects of glucose homeostasis on osteogenesis, differentiation capacity of immortalized multipotent mesenchymal stromal cells (MSCs) and osteochondrogenic progenitor cells (OPCs) was analyzed. Insulin improved differentiation in both cell types, however, combination of with a high glucose concentration led to an impaired mineralization of the ECM. In the MSCs, this was accompanied by the formation of adipocytes, indicating negative effects of the adipocytes formed during hyperglycemic conditions on mineralization processes. However, the altered mineralization pattern and structure of the ECM was also observed in OPCs, which did not form any adipocytes, suggesting further negative effects of a hyperglycemic environment on osteogenic differentiation. In summary, the work provided in this thesis demonstrated that differentiation commitment of bone-resident stem cells can be altered through nutrient availability, specifically glucose. Surprisingly, both high nutrient supply, e.g. the hyperglycemic cell culture conditions, and low nutrient supply, e.g. CR, can induce adipogenic differentiation. However, while CR-induced adipocyte formation was associated with improved trabecular bone structure, adipocyte formation in a hyperglycemic cell-culture environment hampered mineralization. This thesis provides further evidence for the existence of different types of BMAT with specific functions.}, language = {en} } @phdthesis{Arend2024, author = {Arend, Marius}, title = {Comparing genome-scale models of protein-constrained metabolism in heterotrophic and photosynthetic microorganisms}, doi = {10.25932/publishup-65147}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-651470}, school = {Universit{\"a}t Potsdam}, pages = {150}, year = {2024}, abstract = {Genome-scale metabolic models are mathematical representations of all known reactions occurring in a cell. Combined with constraints based on physiological measurements, these models have been used to accurately predict metabolic fluxes and effects of perturbations (e.g. knock-outs) and to inform metabolic engineering strategies. Recently, protein-constrained models have been shown to increase predictive potential (especially in overflow metabolism), while alleviating the need for measurement of nutrient uptake rates. The resulting modelling frameworks quantify the upkeep cost of a certain metabolic flux as the minimum amount of enzyme required for catalysis. These improvements are based on the use of in vitro turnover numbers or in vivo apparent catalytic rates of enzymes for model parameterization. In this thesis several tools for the estimation and refinement of these parameters based on in vivo proteomics data of Escherichia coli, Saccharomyces cerevisiae, and Chlamydomonas reinhardtii have been developed and applied. The difference between in vitro and in vivo catalytic rate measures for the three microorganisms was systematically analyzed. The results for the facultatively heterotrophic microalga C. reinhardtii considerably expanded the apparent catalytic rate estimates for photosynthetic organisms. Our general finding pointed at a global reduction of enzyme efficiency in heterotrophy compared to other growth scenarios. Independent of the modelled organism, in vivo estimates were shown to improve accuracy of predictions of protein abundances compared to in vitro values for turnover numbers. To further improve the protein abundance predictions, machine learning models were trained that integrate features derived from protein-constrained modelling and codon usage. Combining the two types of features outperformed single feature models and yielded good prediction results without relying on experimental transcriptomic data. The presented work reports valuable advances in the prediction of enzyme allocation in unseen scenarios using protein constrained metabolic models. It marks the first successful application of this modelling framework in the biotechnological important taxon of green microalgae, substantially increasing our knowledge of the enzyme catalytic landscape of phototrophic microorganisms.}, language = {en} } @phdthesis{Kiss2024, author = {Kiss, Andrea}, title = {Moss-associated bacterial and archaeal communities of northern peatlands: key taxa, environmental drivers and potential functions}, doi = {10.25932/publishup-63064}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-630641}, school = {Universit{\"a}t Potsdam}, pages = {XX, 139, liv}, year = {2024}, abstract = {Moss-microbe associations are often characterised by syntrophic interactions between the microorganisms and their hosts, but the structure of the microbial consortia and their role in peatland development remain unknown. In order to study microbial communities of dominant peatland mosses, Sphagnum and brown mosses, and the respective environmental drivers, four study sites representing different successional stages of natural northern peatlands were chosen on a large geographical scale: two brown moss-dominated, circumneutral peatlands from the Arctic and two Sphagnum-dominated, acidic peat bogs from subarctic and temperate zones. The family Acetobacteraceae represented the dominant bacterial taxon of Sphagnum mosses from various geographical origins and displayed an integral part of the moss core community. This core community was shared among all investigated bryophytes and consisted of few but highly abundant prokaryotes, of which many appear as endophytes of Sphagnum mosses. Moreover, brown mosses and Sphagnum mosses represent habitats for archaea which were not studied in association with peatland mosses so far. Euryarchaeota that are capable of methane production (methanogens) displayed the majority of the moss-associated archaeal communities. Moss-associated methanogenesis was detected for the first time, but it was mostly negligible under laboratory conditions. Contrarily, substantial moss-associated methane oxidation was measured on both, brown mosses and Sphagnum mosses, supporting that methanotrophic bacteria as part of the moss microbiome may contribute to the reduction of methane emissions from pristine and rewetted peatlands of the northern hemisphere. Among the investigated abiotic and biotic environmental parameters, the peatland type and the host moss taxon were identified to have a major impact on the structure of moss-associated bacterial communities, contrarily to archaeal communities whose structures were similar among the investigated bryophytes. For the first time it was shown that different bog development stages harbour distinct bacterial communities, while at the same time a small core community is shared among all investigated bryophytes independent of geography and peatland type. The present thesis displays the first large-scale, systematic assessment of bacterial and archaeal communities associated both with brown mosses and Sphagnum mosses. It suggests that some host-specific moss taxa have the potential to play a key role in host moss establishment and peatland development.}, language = {en} } @article{OgunkolaGuiraudieCaprazFeronetal.2023, author = {Ogunkola, Moses Olalekan and Guiraudie-Capraz, Gaelle and F{\´e}ron, Fran{\c{c}}ois and Leimk{\"u}hler, Silke}, title = {The Human Mercaptopyruvate Sulfurtransferase TUM1 Is Involved in Moco Biosynthesis, Cytosolic tRNA Thiolation and Cellular Bioenergetics in Human Embryonic Kidney Cells}, series = {Biomolecules}, volume = {13}, journal = {Biomolecules}, edition = {1}, publisher = {MDPI}, address = {Basel, Schweiz}, issn = {2218-273X}, doi = {10.3390/biom13010144}, pages = {1 -- 23}, year = {2023}, abstract = {Sulfur is an important element that is incorporated into many biomolecules in humans. The incorporation and transfer of sulfur into biomolecules is, however, facilitated by a series of different sulfurtransferases. Among these sulfurtransferases is the human mercaptopyruvate sulfurtransferase (MPST) also designated as tRNA thiouridine modification protein (TUM1). The role of the human TUM1 protein has been suggested in a wide range of physiological processes in the cell among which are but not limited to involvement in Molybdenum cofactor (Moco) biosynthesis, cytosolic tRNA thiolation and generation of H2S as signaling molecule both in mitochondria and the cytosol. Previous interaction studies showed that TUM1 interacts with the L-cysteine desulfurase NFS1 and the Molybdenum cofactor biosynthesis protein 3 (MOCS3). Here, we show the roles of TUM1 in human cells using CRISPR/Cas9 genetically modified Human Embryonic Kidney cells. Here, we show that TUM1 is involved in the sulfur transfer for Molybdenum cofactor synthesis and tRNA thiomodification by spectrophotometric measurement of the activity of sulfite oxidase and liquid chromatography quantification of the level of sulfur-modified tRNA. Further, we show that TUM1 has a role in hydrogen sulfide production and cellular bioenergetics.}, language = {en} } @article{MarggrafLindeckeVoigtetal.2023, author = {Marggraf, Lara Christin and Lindecke, Oliver and Voigt, Christian C. and Pētersons, Gunārs and Voigt-Heucke, Silke Luise}, title = {Nathusius' bats, Pipistrellus nathusii, bypass mating opportunities of their own species, but respond to foraging heterospecifics on migratory transit flights}, series = {Frontiers in Ecology and Evolution}, journal = {Frontiers in Ecology and Evolution}, publisher = {Frontiers}, address = {Lausanne, Schweiz}, issn = {2296-701X}, doi = {10.3389/fevo.2022.908560}, pages = {1 -- 10}, year = {2023}, abstract = {In late summer, migratory bats of the temperate zone face the challenge of accomplishing two energy-demanding tasks almost at the same time: migration and mating. Both require information and involve search efforts, such as localizing prey or finding potential mates. In non-migrating bat species, playback studies showed that listening to vocalizations of other bats, both con-and heterospecifics, may help a recipient bat to find foraging patches and mating sites. However, we are still unaware of the degree to which migrating bats depend on con-or heterospecific vocalizations for identifying potential feeding or mating opportunities during nightly transit flights. Here, we investigated the vocal responses of Nathusius' pipistrelle bats, Pipistrellus nathusii, to simulated feeding and courtship aggregations at a coastal migration corridor. We presented migrating bats either feeding buzzes or courtship calls of their own or a heterospecific migratory species, the common noctule, Nyctalus noctula. We expected that during migratory transit flights, simulated feeding opportunities would be particularly attractive to bats, as well as simulated mating opportunities which may indicate suitable roosts for a stopover. However, we found that when compared to the natural silence of both pre-and post-playback phases, bats called indifferently during the playback of conspecific feeding sounds, whereas P. nathusii echolocation call activity increased during simulated feeding of N. noctula. In contrast, the call activity of P. nathusii decreased during the playback of conspecific courtship calls, while no response could be detected when heterospecific call types were broadcasted. Our results suggest that while on migratory transits, P. nathusii circumnavigate conspecific mating aggregations, possibly to save time or to reduce the risks associated with social interactions where aggression due to territoriality might be expected. This avoidance behavior could be a result of optimization strategies by P. nathusii when performing long-distance migratory flights, and it could also explain the lack of a response to simulated conspecific feeding. However, the observed increase of activity in response to simulated feeding of N. noctula, suggests that P. nathusii individuals may be eavesdropping on other aerial hawking insectivorous species during migration, especially if these occupy a slightly different foraging niche.}, language = {en} } @phdthesis{Rolo2023, author = {Rolo, David}, title = {Assembly of photosystem I in thylakoid membranes}, school = {Universit{\"a}t Potsdam}, pages = {177}, year = {2023}, abstract = {The light reactions of photosynthesis are carried out by a series of multiprotein complexes embedded in thylakoid membranes. Among them, photosystem I (PSI), acting as plastocyanin-ferderoxin oxidoreductase, catalyzes the final reaction. Together with light-harvesting antenna I, PSI forms a high-molecular-weight supercomplex of ~600 kDa, consisting of eighteen subunits and nearly two hundred co-factors. Assembly of the various components into a functional thylakoid membrane complex requires precise coordination, which is provided by the assembly machinery. Although this includes a small number of proteins (PSI assembly factors) that have been shown to play a role in the formation of PSI, the process as a whole, as well as the intricacy of its members, remains largely unexplored. In the present work, two approaches were used to find candidate PSI assembly factors. First, EnsembleNet was used to select proteins thought to be functionally related to known PSI assembly factors in Arabidopsis thaliana (approach I), and second, co-immunoprecipitation (Co-IP) of tagged PSI assembly factors in Nicotiana tabacum was performed (approach II). Here, the novel PSI assembly factors designated CO-EXPRESSED WITH PSI ASSEMBLY 1 (CEPA1) and Ycf4-INTERACTING PROTEIN 1 (Y4IP1) were identified. A. thaliana null mutants for CEPA1 and Y4IP1 showed a growth phenotype and pale leaves compared with the wild type. Biophysical experiments using pulse amplitude modulation (PAM) revealed insufficient electron transport on the PSII acceptor side. Biochemical analyses revealed that both CEPA1 and Y4IP1 are specifically involved in PSI accumulation in A. thaliana at the post-translational level but are not essential. Consistent with their roles as factors in the assembly of a thylakoid membrane protein complex, the two proteins localize to thylakoid membranes. Remarkably, cepa1 y4ip1 double mutants exhibited lethal phenotypes in early developmental stages under photoautotrophic growth. Finally, co-IP and native gel experiments supported a possible role for CEPA1 and Y4IP1 in mediating PSI assembly in conjunction with other PSI assembly factors (e.g., PPD1- and PSA3-CEPA1 and Ycf4-Y4IP1). The fact that CEPA1 and Y4IP1 are found exclusively in green algae and higher plants suggests eukaryote-specific functions. Although the specific mechanisms need further investigation, CEPA1 and Y4IP1 are two novel assembly factors that contribute to PSI formation.}, language = {en} } @phdthesis{Drobyshev2023, author = {Drobyshev, Evgenii}, title = {Toxic or beneficial? What is the role of food-relevant selenium species selenoneine?}, doi = {10.25932/publishup-57379}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-573794}, school = {Universit{\"a}t Potsdam}, pages = {xiv, 100}, year = {2023}, abstract = {Selenium (Se) is an essential trace element that is ubiquitously present in the environment in small concentrations. Essential functions of Se in the human body are manifested through the wide range of proteins, containing selenocysteine as their active center. Such proteins are called selenoproteins which are found in multiple physiological processes like antioxidative defense and the regulation of thyroid hormone functions. Therefore, Se deficiency is known to cause a broad spectrum of physiological impairments, especially in endemic regions with low Se content. Nevertheless, being an essential trace element, Se could exhibit toxic effects, if its intake exceeds tolerable levels. Accordingly, this range between deficiency and overexposure represents optimal Se supply. However, this range was found to be narrower than for any other essential trace element. Together with significantly varying Se concentrations in soil and the presence of specific bioaccumulation factors, this represents a noticeable difficulty in the assessment of Se epidemiological status. While Se is acting in the body through multiple selenoproteins, its intake occurs mainly in form of small organic or inorganic molecular mass species. Thus, Se exposure not only depends on daily intake but also on the respective chemical form, in which it is present. The essential functions of selenium have been known for a long time and its primary forms in different food sources have been described. Nevertheless, analytical capabilities for a comprehensive investigation of Se species and their derivatives have been introduced only in the last decades. A new Se compound was identified in 2010 in the blood and tissues of bluefin tuna. It was called selenoneine (SeN) since it is an isologue of naturally occurring antioxidant ergothioneine (ET), where Se replaces sulfur. In the following years, SeN was identified in a number of edible fish species and attracted attention as a new dietary Se source and potentially strong antioxidant. Studies in populations whose diet largely relies on fish revealed that SeN represents the main non-protein bound Se pool in their blood. First studies, conducted with enriched fish extracts, already demonstrated the high antioxidative potential of SeN and its possible function in the detoxification of methylmercury in fish. Cell culture studies demonstrated, that SeN can utilize the same transporter as ergothioneine, and SeN metabolite was found in human urine. Until recently, studies on SeN properties were severely limited due to the lack of ways to obtain the pure compound. As a predisposition to this work was firstly a successful approach to SeN synthesis in the University of Graz, utilizing genetically modified yeasts. In the current study, by use of HepG2 liver carcinoma cells, it was demonstrated, that SeN does not cause toxic effectsup to 100 μM concentration in hepatocytes. Uptake experiments showed that SeN is not bioavailable to the used liver cells. In the next part a blood-brain barrier (BBB) model, based on capillary endothelial cells from the porcine brain, was used to describe the possible transfer of SeN into the central nervous system (CNS). The assessment of toxicity markers in these endothelial cells and monitoring of barrier conditions during transfer experiments demonstrated the absence of toxic effects from SeN on the BBB endothelium up to 100 μM concentration. Transfer data for SeN showed slow but substantial transfer. A statistically significant increase was observed after 48 hours following SeN incubation from the blood-facing side of the barrier. However, an increase in Se content was clearly visible already after 6 hours of incubation with 1 μM of SeN. While the transfer rate of SeN after application of 0.1 μM dose was very close to that for 1 μM, incubation with 10 μM of SeN resulted in a significantly decreased transfer rate. Double-sided application of SeN caused no side-specific transfer of SeN, thus suggesting a passive diffusion mechanism of SeN across the BBB. This data is in accordance with animal studies, where ET accumulation was observed in the rat brain, even though rat BBB does not have the primary ET transporter - OCTN1. Investigation of capillary endothelial cell monolayers after incubation with SeN and reference selenium compounds showed no significant increase of intracellular selenium concentration. Speciesspecific Se measurements in medium samples from apical and basolateral compartments, as good as in cell lysates, showed no SeN metabolization. Therefore, it can be concluded that SeN may reach the brain without significant transformation. As the third part of this work, the assessment of SeN antioxidant properties was performed in Caco-2 human colorectal adenocarcinoma cells. Previous studies demonstrated that the intestinal epithelium is able to actively transport SeN from the intestinal lumen to the blood side and accumulate SeN. Further investigation within current work showed a much higher antioxidant potential of SeN compared to ET. The radical scavenging activity after incubation with SeN was close to the one observed for selenite and selenomethionine. However, the SeN effect on the viability of intestinal cells under oxidative conditions was close to the one caused by ET. To answer the question if SeN is able to be used as a dietary Se source and induce the activity of selenoproteins, the activity of glutathione peroxidase (GPx) and the secretion of selenoprotein P (SelenoP) were measured in Caco-2 cells, additionally. As expected, reference selenium compounds selenite and selenomethionine caused efficient induction of GPx activity. In contrast to those SeN had no effect on GPx activity. To examine the possibility of SeN being embedded into the selenoproteome, SelenoP was measured in a culture medium. Even though Caco-2 cells effectively take up SeN in quantities much higher than selenite or selenomethionine, no secretion of SelenoP was observed after SeN incubation. Summarizing, we can conclude that SeN can hardly serve as a Se source for selenoprotein synthesis. However, SeN exhibit strong antioxidative properties, which appear when sulfur in ET is exchanged by Se. Therefore, SeN is of particular interest for research not as part of Se metabolism, but important endemic dietary antioxidant.}, language = {en} } @phdthesis{Stanke2023, author = {Stanke, Sandra}, title = {AC electrokinetic immobilization of influenza viruses and antibodies on nanoelectrode arrays for on-chip immunoassays}, doi = {10.25932/publishup-61716}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-617165}, school = {Universit{\"a}t Potsdam}, pages = {x, 115}, year = {2023}, abstract = {In the present thesis, AC electrokinetic forces, like dielectrophoresis and AC electroosmosis, were demonstrated as a simple and fast method to functionalize the surface of nanoelectrodes with submicrometer sized biological objects. These nanoelectrodes have a cylindrical shape with a diameter of 500 nm arranged in an array of 6256 electrodes. Due to its medical relevance influenza virus as well as anti-influenza antibodies were chosen as a model organism. Common methods to bring antibodies or proteins to biosensor surfaces are complex and time-consuming. In the present work, it was demonstrated that by applying AC electric fields influenza viruses and antibodies can be immobilized onto the nanoelectrodes within seconds without any prior chemical modification of neither the surface nor the immobilized biological object. The distribution of these immobilized objects is not uniform over the entire array, it exhibits a decreasing gradient from the outer row to the inner ones. Different causes for this gradient have been discussed, such as the vortex-shaped fluid motion above the nanoelectrodes generated by, among others, electrothermal fluid flow. It was demonstrated that parts of the accumulated material are permanently immobilized to the electrodes. This is a unique characteristic of the presented system since in the literature the AC electrokinetic immobilization is almost entirely presented as a method just for temporary immobilization. The spatial distribution of the immobilized viral material or the anti-influenza antibodies at the electrodes was observed by either the combination of fluorescence microscopy and deconvolution or by super-resolution microscopy (STED). On-chip immunoassays were performed to examine the suitability of the functionalized electrodes as a potential affinity-based biosensor. Two approaches were pursued: A) the influenza virus as the bio-receptor or B) the influenza virus as the analyte. Different sources of error were eliminated by ELISA and passivation experiments. Hence, the activity of the immobilized object was inspected by incubation with the analyte. This resulted in the successful detection of anti-influenza antibodies by the immobilized viral material. On the other hand, a detection of influenza virus particles by the immobilized anti-influenza antibodies was not possible. The latter might be due to lost activity or wrong orientation of the antibodies. Thus, further examinations on the activity of by AC electric fields immobilized antibodies should follow. When combined with microfluidics and an electrical read-out system, the functionalized chips possess the potential to serve as a rapid, portable, and cost-effective point-of-care (POC) device. This device can be utilized as a basis for diverse applications in diagnosing and treating influenza, as well as various other pathogens.}, language = {en} } @article{Pandey2023, author = {Pandey, Yogesh}, title = {Enriched cell-free and cell-based native membrane derived vesicles (nMV) enabling rapid in-vitro electrophysiological analysis of the voltage-gated sodium channel 1.5.}, series = {Biochimica et Biophysica Acta (BBA) - Biomembranes}, volume = {1865}, journal = {Biochimica et Biophysica Acta (BBA) - Biomembranes}, number = {5}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1879-2642}, doi = {10.1016/j.bbamem.2023.184144}, year = {2023}, abstract = {Here, we demonstrate the utility of native membrane derived vesicles (nMVs) as tools for expeditious electrophysiological analysis of membrane proteins. We used a cell-free (CF) and a cell-based (CB) approach for preparing protein-enriched nMVs. We utilized the Chinese Hamster Ovary (CHO) lysate-based cell-free protein synthesis (CFPS) system to enrich ER-derived microsomes in the lysate with the primary human cardiac voltage-gated sodium channel 1.5 (hNaV1.5; SCN5A) in 3 h. Subsequently, CB-nMVs were isolated from fractions of nitrogen-cavitated CHO cells overexpressing the hNaV1.5. In an integrative approach, nMVs were micro-transplanted into Xenopus laevis oocytes. CB-nMVs expressed native lidocaine-sensitive hNaV1.5 currents within 24 h; CF-nMVs did not elicit any response. Both the CB- and CF-nMV preparations evoked single-channel activity on the planar lipid bilayer while retaining sensitivity to lidocaine application. Our findings suggest a high usability of the quick-synthesis CF-nMVs and maintenance-free CB-nMVs as ready-to-use tools for in-vitro analysis of electrogenic membrane proteins and large, voltage-gated ion channels.}, language = {en} } @article{HermanussenSchefflerPulunganetal.2023, author = {Hermanussen, Michael and Scheffler, Christiane and Pulungan, Aman B. and Bandyopadhyay, Arup Ratan and Ghosh, Jyoti Ratan and {\"O}zdemir, Ay{\c{s}}eg{\"u}l and Koca {\"O}zer, Ba{\c{s}}ak and Musalek, Martin and Lebedeva, Lidia and Godina, Elena and Bogin, Barry and Tutkuviene, Janina and Budrytė, Milda and Gervickaite, Simona and Limony, Yehuda and Kirchengast, Sylvia and Buston, Peter and Groth, Detlef and R{\"o}sler, Antonia and Gasparatos, Nikolaos and Erofeev, Sergei and Novine, Masiar and Navazo, B{\´a}rbara and Dahinten, Silvia and Gomuła, Aleksandra and Nowak-Szczepańska, Natalia and Kozieł, Sławomir}, title = {Environment, social behavior, and growth}, series = {Human biology and public health}, volume = {1}, journal = {Human biology and public health}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2748-9957}, doi = {10.52905/hbph2023.1.59}, pages = {14}, year = {2023}, abstract = {Twenty-four scientists met for the annual Auxological conference held at Krobielowice castle, Poland, to discuss the diverse influences of the environment and of social behavior on growth following last year's focus on growth and public health concerns (Hermanussen et al., 2022b). Growth and final body size exhibit marked plastic responses to ecological conditions. Among the shortest are the pygmoid people of Rampasasa, Flores, Indonesia, who still live under most secluded insular conditions. Genetics and nutrition are usually considered responsible for the poor growth in many parts of this world, but evidence is accumulating on the prominent impact of social embedding on child growth. Secular trends not only in the growth of height, but also in body proportions, accompany the secular changes in the social, economic and political conditions, with major influences on the emotional and educational circumstances under which the children grow up (Bogin, 2021). Aspects of developmental tempo and aspects of sports were discussed, and the impact of migration by the example of women from Bangladesh who grew up in the UK. Child growth was considered in particular from the point of view of strategic adjustments of individual size within the network of its social group. Theoretical considerations on network characteristics were presented and related to the evolutionary conservation of growth regulating hypothalamic neuropeptides that have been shown to link behavior and physical growth in the vertebrate species. New statistical approaches were presented for the evaluation of short term growth measurements that permit monitoring child growth at intervals of a few days and weeks.}, language = {en} } @article{GasparatosSchefflerHermanussen2023, author = {Gasparatos, Nikolaos and Scheffler, Christiane and Hermanussen, Michael}, title = {Assessing the applicability of changepoint analysis to analyse short-term growth}, series = {Human biology and public health}, volume = {1}, journal = {Human biology and public health}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2748-9957}, doi = {10.52905/hbph2023.1.62}, pages = {15}, year = {2023}, abstract = {Background: Assessing short-term growth in humans is still fraught with difficulties. Especially when looking for small variations and increments, such as mini growth spurts, high precision instruments or frequent measurements are necessary. Daily measurements however require a lot of effort, both for anthropologists and for the subjects. Therefore, new sophisticated approaches are needed that reduce fluctuations and reveal underlying patterns. Objectives: Changepoints are abrupt variations in the properties of time series data. In the context of growth, such variations could be variation in mean height. By adjusting the variance and using different growth models, we assessed the ability of changepoint analysis to analyse short-term growth and detect mini growth spurts. Sample and Methods: We performed Bayesian changepoint analysis on simulated growth data using the bcp package in R. Simulated growth patterns included stasis, linear growth, catch-up growth, and mini growth spurts. Specificity and a normalised variant of the Matthews correlation coefficient (MCC) were used to assess the algorithm's performance. Welch's t-test was used to compare differences of the mean. Results: First results show that changepoint analysis can detect mini growth spurts. However, the ability to detect mini growth spurts is highly dependent on measurement error. Data preparation, such as ranking and rotating time series data, showed negligible improvements. Missing data was an issue and may affect the prediction quality of the classification metrics. Conclusion: Changepoint analysis is a promising tool to analyse short-term growth. However, further optimisation and analysis of real growth data is needed to make broader generalisations.}, language = {en} } @article{GrothSchefflerHermanussen2023, author = {Groth, Detlef and Scheffler, Christiane and Hermanussen, Michael}, title = {Human growth data analysis and statistics - the 5th G{\"u}lpe International Student Summer School}, series = {Human biology and public health}, volume = {1}, journal = {Human biology and public health}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2748-9957}, doi = {10.52905/hbph2023.1.70}, pages = {5}, year = {2023}, abstract = {The Summer School in G{\"u}lpe (Ecological Station of the University of Potsdam) offers an exceptional learning opportunity for students to apply their knowledge and skills to real-world problems. With the guidance of experienced human biologists, statisticians, and programmers, students have the unique chance to analyze their own data and gain valuable insights. This interdisciplinary setting not only bridges different research areas but also leads to highly valuable outputs. The progress of students within just a few days is truly remarkable, especially when they are motivated and receive immediate feedback on their questions, problems, and results. The Summer School covers a wide range of topics, with this year's focus mainly on two areas: understanding the impact of socioeconomic and physiological factors on human development and mastering statistical techniques for analyzing data such as changepoint analysis and the St. Nicolas House Analysis (SNHA) to visualize interacting variables. The latter technique, born out of the Summer School's emphasis on gaining comprehensive data insights and understanding major relationships, has proven to be a valuable tool for researchers in the field. The articles in this special issue demonstrate that the Summer School in G{\"u}lpe stands as a testament to the power of practical learning and collaboration. Students who attend not only gain hands-on experience but also benefit from the expertise of professionals and the opportunity to engage with peers from diverse disciplines.}, language = {en} } @article{RoeslerSchefflerHermanussen2023, author = {R{\"o}sler, Antonia and Scheffler, Christiane and Hermanussen, Michael}, title = {No evidence of growth impairment after forced migration in Polish school children after World War II}, series = {Human biology and public health}, volume = {1}, journal = {Human biology and public health}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2748-9957}, doi = {10.52905/hbph2023.1.68}, pages = {8}, year = {2023}, abstract = {Background: Migration is omnipresent. It can come hand in hand with emotional stress which is known to influence the growth of children. Objective: The aim of this study was to analyse whether type of migration (forced or voluntary) and the geographic direction had influenced the growth of Polish children after World War II. Sample and Methods: A sub dataset of 2,208 individuals between the ages of 2-20, created from data of the 2nd Polish Anthropological Survey carried out in 1966-1969, including anthropometrical data and social and demographic information based on questionnaire, was used to analyse migration effects. Results: No association could be found between the direction of migration and the height of the children. The confidence intervals of the means of all classified migration categories overlap significantly and the effect size of the influence of migration category on height is ds=.140, which is too low to see any effects, even if there were one. Conclusion: Neither forced nor voluntary migration in Poland after World War II led to a change in height in children of migrating families.}, language = {en} } @article{HermanussenScheffler2023, author = {Hermanussen, Michael and Scheffler, Christiane}, title = {Nutrition, size, and tempo}, series = {Human biology and public health}, volume = {2022}, journal = {Human biology and public health}, number = {3}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2748-9957}, doi = {10.52905/hbph2022.3.37}, pages = {11}, year = {2023}, abstract = {Nutrition is a prerequisite, but not a regulator of growth. Growth is defined as increase in size over time. The understanding of growth includes an understanding of the binary concept of physical time and individual tempo. Excess food causes tempo acceleration. Food restriction delays tempo. Tempo reflects the pace of life. It is a dynamic physical response to a broad spectrum of social, economic, political, and emotional (SEPE) factors and can affect life expectancy. Variations in tempo create distortions of the z-score patterns of height and weight. Illness or intermediate food shortage lead to intermediate halts in development and create short dips in the z-score patterns. Children who develop throughout life at delayed pace usually run at lower z-scores for height and weight, and show a characteristic adolescent trough; children who develop throughout life at faster than average pace usually run at higher z-scores and show a characteristic adolescent peak in their z-score patterns. During adolescence, almost half of the height variance is due to tempo variation. There is not one tempo for the whole body. Different organ systems grow and mature at different pace.}, language = {en} } @article{SchefflerHermanussen2023, author = {Scheffler, Christiane and Hermanussen, Michael}, title = {What does stunting tell us?}, series = {Human biology and public health}, volume = {2022}, journal = {Human biology and public health}, number = {3}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2748-9957}, doi = {10.52905/hbph2022.3.36}, pages = {1 -- 15}, year = {2023}, abstract = {Stunting is commonly linked with undernutrition. Yet, already after World War I, German pediatricians questioned this link and stated that no association exists between nutrition and height. Recent analyses within different populations of Low- and middle-income countries with high rates of stunted children failed to support the assumption that stunted children have a low BMI and skinfold sickness as signs of severe caloric deficiency. So, stunting is not a synonym of malnutrition. Parental education level has a positive influence on body height in stunted populations, e.g., in India and in Indonesia. Socially disadvantaged children tend to be shorter and lighter than children from affluent families. Humans are social mammals; they regulate growth similar to other social mammals. Also in humans, body height is strongly associated with the position within the social hierarchy, reflecting the personal and group-specific social, economic, political, and emotional environment. These non-nutritional impact factors on growth are summarized by the concept of SEPE (Social-Economic-Political-Emotional) factors. SEPE reflects on prestige, dominance-subordination, social identity, and ego motivation of individuals and social groups.}, language = {en} } @article{StoneNicenboimVasishthetal.2023, author = {Stone, Kate and Nicenboim, Bruno and Vasishth, Shravan and R{\"o}sler, Frank}, title = {Understanding the effects of constraint and predictability in ERP}, series = {Neurobiology of language}, volume = {4}, journal = {Neurobiology of language}, number = {2}, publisher = {MIT Press}, address = {Cambridge, MA, USA}, issn = {2641-4368}, doi = {10.1162/nol_a_00094}, pages = {221 -- 256}, year = {2023}, abstract = {Intuitively, strongly constraining contexts should lead to stronger probabilistic representations of sentences in memory. Encountering unexpected words could therefore be expected to trigger costlier shifts in these representations than expected words. However, psycholinguistic measures commonly used to study probabilistic processing, such as the N400 event-related potential (ERP) component, are sensitive to word predictability but not to contextual constraint. Some research suggests that constraint-related processing cost may be measurable via an ERP positivity following the N400, known as the anterior post-N400 positivity (PNP). The PNP is argued to reflect update of a sentence representation and to be distinct from the posterior P600, which reflects conflict detection and reanalysis. However, constraint-related PNP findings are inconsistent. We sought to conceptually replicate Federmeier et al. (2007) and Kuperberg et al. (2020), who observed that the PNP, but not the N400 or the P600, was affected by constraint at unexpected but plausible words. Using a pre-registered design and statistical approach maximising power, we demonstrated a dissociated effect of predictability and constraint: strong evidence for predictability but not constraint in the N400 window, and strong evidence for constraint but not predictability in the later window. However, the constraint effect was consistent with a P600 and not a PNP, suggesting increased conflict between a strong representation and unexpected input rather than greater update of the representation. We conclude that either a simple strong/weak constraint design is not always sufficient to elicit the PNP, or that previous PNP constraint findings could be an artifact of smaller sample size.}, language = {en} } @article{ReegStriglJeltsch2022, author = {Reeg, Jette and Strigl, Lea and Jeltsch, Florian}, title = {Agricultural buffer zone thresholds to safeguard functional bee diversity}, series = {Ecology and Evolution}, volume = {12}, journal = {Ecology and Evolution}, edition = {3}, publisher = {Wiley Online Library}, address = {Hoboken, New Jersey, USA}, issn = {2045-7758}, doi = {10.1002/ece3.8748}, pages = {1 -- 17}, year = {2022}, abstract = {Wild bee species are important pollinators in agricultural landscapes. However, population decline was reported over the last decades and is still ongoing. While agricultural intensification is a major driver of the rapid loss of pollinating species, transition zones between arable fields and forest or grassland patches, i.e., agricultural buffer zones, are frequently mentioned as suitable mitigation measures to support wild bee populations and other pollinator species. Despite the reported general positive effect, it remains unclear which amount of buffer zones is needed to ensure a sustainable and permanent impact for enhancing bee diversity and abundance. To address this question at a pollinator community level, we implemented a process-based, spatially explicit simulation model of functional bee diversity dynamics in an agricultural landscape. More specifically, we introduced a variable amount of agricultural buffer zones (ABZs) at the transition of arable to grassland, or arable to forest patches to analyze the impact on bee functional diversity and functional richness. We focused our study on solitary bees in a typical agricultural area in the Northeast of Germany. Our results showed positive effects with at least 25\% of virtually implemented agricultural buffer zones. However, higher amounts of ABZs of at least 75\% should be considered to ensure a sufficient increase in Shannon diversity and decrease in quasi-extinction risks. These high amounts of ABZs represent effective conservation measures to safeguard the stability of pollination services provided by solitary bee species. As the model structure can be easily adapted to other mobile species in agricultural landscapes, our community approach offers the chance to compare the effectiveness of conservation measures also for other pollinator communities in future.}, language = {en} } @article{WeithoffBell2022, author = {Weithoff, Guntram and Bell, Elanor Margaret}, title = {Complex Trophic Interactions in an Acidophilic Microbial Community}, series = {Microorganisms}, volume = {10}, journal = {Microorganisms}, edition = {7}, publisher = {MDPI}, address = {Basel, Schweiz}, issn = {2076-2607}, doi = {10.3390/microorganisms10071340}, pages = {1 -- 10}, year = {2022}, abstract = {Extreme habitats often harbor specific communities that differ substantially from non-extreme habitats. In many cases, these communities are characterized by archaea, bacteria and protists, whereas the number of species of metazoa and higher plants is relatively low. In extremely acidic habitats, mostly prokaryotes and protists thrive, and only very few metazoa thrive, for example, rotifers. Since many studies have investigated the physiology and ecology of individual species, there is still a gap in research on direct, trophic interactions among extremophiles. To fill this gap, we experimentally studied the trophic interactions between a predatory protist (Actinophrys sol, Heliozoa) and its prey, the rotifers Elosa woralli and Cephalodella sp., the ciliate Urosomoida sp. and the mixotrophic protist Chlamydomonas acidophila (a green phytoflagellate, Chlorophyta). We found substantial predation pressure on all animal prey. High densities of Chlamydomonas acidophila reduced the predation impact on the rotifers by interfering with the feeding behaviour of A. sol. These trophic relations represent a natural case of intraguild predation, with Chlamydomonas acidophila being the common prey and the rotifers/ciliate and A. sol being the intraguild prey and predator, respectively. We further studied this intraguild predation along a resource gradient using Cephalodella sp. as the intraguild prey. The interactions among the three species led to an increase in relative rotifer abundance with increasing resource (Chlamydomonas) densities. By applying a series of laboratory experiments, we revealed the complexity of trophic interactions within a natural extremophilic community.}, language = {en} } @article{DordevicHoelzerRussoetal.2022, author = {Dordevic, Milos and H{\"o}lzer, Sonja and Russo, Augusta and Garc{\´i}a Alanis, Jos{\´e} Carlos and M{\"u}ller, Notger Germar}, title = {The Role of the Precuneus in Human Spatial Updating in a Real Environment Setting—A cTBS Study}, series = {Life}, volume = {12}, journal = {Life}, edition = {8}, publisher = {MDPI}, address = {Basel, Schweiz}, issn = {2075-1729}, doi = {10.3390/life12081239}, pages = {1 -- 13}, year = {2022}, abstract = {As we move through an environment, we update positions of our body relative to other objects, even when some objects temporarily or permanently leave our field of view—this ability is termed egocentric spatial updating and plays an important role in everyday life. Still, our knowledge about its representation in the brain is still scarce, with previous studies using virtual movements in virtual environments or patients with brain lesions suggesting that the precuneus might play an important role. However, whether this assumption is also true when healthy humans move in real environments where full body-based cues are available in addition to the visual cues typically used in many VR studies is unclear. Therefore, in this study we investigated the role of the precuneus in egocentric spatial updating in a real environment setting in 20 healthy young participants who underwent two conditions in a cross-over design: (a) stimulation, achieved through applying continuous theta-burst stimulation (cTBS) to inhibit the precuneus and (b) sham condition (activated coil turned upside down). In both conditions, participants had to walk back with blindfolded eyes to objects they had previously memorized while walking with open eyes. Simplified trials (without spatial updating) were used as control condition, to make sure the participants were not affected by factors such as walking blindfolded, vestibular or working memory deficits. A significant interaction was found, with participants performing better in the sham condition compared to real stimulation, showing smaller errors both in distance and angle. The results of our study reveal evidence of an important role of the precuneus in a real-environment egocentric spatial updating; studies on larger samples are necessary to confirm and further investigate this finding.}, language = {en} }