@misc{NeyeWallschlaegerTiedemann2006, author = {Neye, Gundula and Wallschl{\"a}ger, Hans-Dieter and Tiedemann, Ralph}, title = {Song dialect boundaries in the Yellowhammer: Do they restrict gene flow?}, series = {Journal of ornithology}, volume = {147}, journal = {Journal of ornithology}, number = {Supplement 1}, publisher = {Blackwell}, address = {New York}, issn = {0021-8375}, pages = {219 -- 219}, year = {2006}, language = {en} } @misc{TiedemannPfautsch2006, author = {Tiedemann, Ralph and Pfautsch, Simone}, title = {MHC evolution in ducks and allies}, series = {Journal of ornithology}, volume = {147}, journal = {Journal of ornithology}, number = {Supplement 1}, publisher = {Blackwell}, address = {New York}, issn = {0021-8375}, pages = {48 -- 48}, year = {2006}, language = {en} } @article{GessnerArndtTiedemannetal.2006, author = {Gessner, J{\"o}rn and Arndt, Gerd-Michael and Tiedemann, Ralph and Bartel, Ryszard and Kirschbaum, Frank}, title = {Remediation measures for the Baltic sturgeon: status review and perspectives}, series = {Journal of applied ichthyology}, volume = {22}, journal = {Journal of applied ichthyology}, number = {S1}, publisher = {Wiley-Blackwell}, address = {Oxford}, issn = {0175-8659}, doi = {10.1111/j.1439-0426.2007.00925.x}, pages = {23 -- 31}, year = {2006}, abstract = {More than one century ago, sturgeons were prevalent species in the fish communities of all major German rivers both in the North and the Baltic seas drainages. Since then, the populations declined rapidly due to river damming, overfishing and pollution. The last sturgeon catches in the Baltic drainage system occurred during the late 1960ies. Only a few individual captures have been reported during the last 30 years with the most recent records in the Lake Ladoga ( Russia), where the last confirmed catch was recorded in 1984, and a single individual caught off Estonia in 1996. Today, sturgeons are considered missing or extinct in German waters. First attempts for remediation of the species were undertaken in the mid 1990ies. Subsequently, phylogenetic and population genetic analyses of the species were carried out using mtDNA, microsatellites, and nuclear markers ( SNPs). These genetic analyses using recent and historic material have proven the existence of two different species in the Baltic Sea in what was previously considered to represent the European Atlantic sturgeon only. In the Baltic Sea, the American Atlantic sturgeon ( A. oxyrinchus) succeeded to colonize this brackish water system during the Middle Ages. In the North Sea, the European Atlantic sturgeon ( A. sturio) is considered to be the endemic species. These results led to the separation of the remediation activities in the North Sea and the Baltic Sea tributaries. Further studies on the mechanism that lead to the extinction of A. sturio in Germany and the subsequent succession of the A. oxyrinchus mtDNA haplotype are currently been carried out. Broodstock development using the northernmost populations of A. oxyrinchus is currently under way. As a further prerequisite to re-introduce this species into the Baltic, the evaluation of the status of critical habitats for the early life stages of the American Atlantic sturgeon in the River Odra has been performed in collaboration with the Institute for Inland Fisheries of Poland. Alternative fisheries techniques, based on the data of by-catch of exotic sturgeons in the fishery, are presently developed in close cooperation with the fishery to reduce fisheries related mortality in juvenile sturgeons upon release. Monitoring of habitat utilization and migration characteristics of juvenile fish upon experimental release will have to be carried out shortly, using acoustic telemetry, with the aim to follow the fate of the released fish and to determine the best time-size-release-window for future release programmes.}, language = {en} } @misc{BleidornPodsiadlowskiZhongetal.2009, author = {Bleidorn, Christoph and Podsiadlowski, Lars and Zhong, Min and Eeckhaut, Igor and Hartmann, Stefanie and Halanych, Kenneth M. and Tiedemann, Ralph}, title = {On the phylogenetic position of Myzostomida : can 77 genes get it wrong?}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-44893}, year = {2009}, abstract = {Background: Phylogenomic analyses recently became popular to address questions about deep metazoan phylogeny. Ribosomal proteins (RP) dominate many of these analyses or are, in some cases, the only genes included. Despite initial hopes, hylogenomic analyses including tens to hundreds of genes still fail to robustly place many bilaterian taxa. Results: Using the phylogenetic position of myzostomids as an example, we show that phylogenies derived from RP genes and mitochondrial genes produce incongruent results. Whereas the former support a position within a clade of platyzoan taxa, mitochondrial data recovers an annelid affinity, which is strongly supported by the gene order data and is congruent with morphology. Using hypothesis testing, our RP data significantly rejects the annelids affinity, whereas a platyzoan relationship is significantly rejected by the mitochondrial data. Conclusion: We conclude (i) that reliance of a set of markers belonging to a single class of macromolecular complexes might bias the analysis, and (ii) that concatenation of all available data might introduce conflicting signal into phylogenetic analyses. We therefore strongly recommend testing for data incongruence in phylogenomic analyses. Furthermore, judging all available data, we consider the annelid affinity hypothesis more plausible than a possible platyzoan affinity for myzostomids, and suspect long branch attraction is influencing the RP data. However, this hypothesis needs further confirmation by future analyses.}, language = {en} } @misc{ZiegeMahlowHennigeSulzetal.2009, author = {Ziege, Madlen and Mahlow, Kristin and Hennige-Sulz, Carmen and Kronmarck, Claudia and Tiedemann, Ralph and Streit, Bruno and Plath, Martin}, title = {Audience effects in the Atlantic molly (Poecilia mexicana) : prudent male mate choice in response to perceived sperm competition risk?}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-45171}, year = {2009}, abstract = {Background: Multidirectional interactions in social networks can have a profound effect on mate choice behavior; e.g., Poecilia mexicana males show weaker expression of mating preferences when being observed by a rival. This may be an adaptation to reduce sperm competition risk, which arises because commonly preferred female phenotypes will receive attention also from surrounding males, and/or because other males can copy the focal male's mate choice. Do P. mexicana males indeed respond to perceived sperm competition risk? We gave males a choice between two females and repeated the tests under one of the following conditions: (1) an empty transparent cylinder was presented (control); (2) another ("audience") male inside the cylinder observed the focal male throughout the 2nd part, or (3) the audience male was presented only before the tests, but could not eavesdrop during the actual choice tests (non-specific sperm competition risk treatments); (4) the focal male could see a rival male interact sexually with the previously preferred, or (5) with the non-preferred female before the 2nd part of the tests (specific sperm competition risk treatments). Results: The strength of individual male preferences declined slightly also during the control treatment (1). However, this decrease was more than two-fold stronger in audience treatment (2), i.e., with non-specific sperm competition risk including the possibility for visual eavesdropping by the audience male. No audience effect was found in treatments (3) and (5), but a weak effect was also observed when the focal male had seen the previously preferred female sexually interact with a rival male (treatment 4; specific sperm competition risk). Conclusion: When comparing the two 'non-specific sperm competition risk' treatments, a very strong effect was found only when the audience male could actually observe the focal male during mate choice [treatment (2)]. This suggests that focal males indeed attempt to conceal their mating preferences so as to prevent surrounding males from copying their mate choice. When there is no potential for eavesdropping [treatment (3)], non-specific specific sperm competition risk seems to play a minor or no role. Our results also show that P. mexicana males tend to share their mating effort more equally among females when the resource value of their previously preferred mate decreases after mating with a rival male (perceived specific sperm competition risk), but this effect is comparatively weak.}, language = {en} } @misc{PlathHermannSchroederetal.2010, author = {Plath, Martin and Hermann, Bernd and Schr{\"o}der, Christine and Riesch, R{\"u}diger and Tobler, Michael and Garc{\´i}a de Le{\´o}n, Francisco J. and Schlupp, Ingo and Tiedemann, Ralph}, title = {Locally adapted fish populations maintain small-scale genetic differentiation despite perturbation by a catastrophic flood event}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-48599}, year = {2010}, abstract = {Background: Local adaptation to divergent environmental conditions can promote population genetic differentiation even in the absence of geographic barriers and hence, lead to speciation. Perturbations by catastrophic events, however, can distort such parapatric ecological speciation processes. Here, we asked whether an exceptionally strong flood led to homogenization of gene pools among locally adapted populations of the Atlantic molly (Poecilia mexicana, Poeciliidae) in the Cueva del Azufre system in southern Mexico, where two strong environmental selection factors (darkness within caves and/or presence of toxic H2S in sulfidic springs) drive the diversification of P. mexicana. Nine nuclear microsatellites as well as heritable female life history traits (both as a proxy for quantitative genetics and for trait divergence) were used as markers to compare genetic differentiation, genetic diversity, and especially population mixing (immigration and emigration) before and after the flood. Results: Habitat type (i.e., non-sulfidic surface, sulfidic surface, or sulfidic cave), but not geographic distance was the major predictor of genetic differentiation. Before and after the flood, each habitat type harbored a genetically distinct population. Only a weak signal of individual dislocation among ecologically divergent habitat types was uncovered (with the exception of slightly increased dislocation from the Cueva del Azufre into the sulfidic creek, El Azufre). By contrast, several lines of evidence are indicative of increased flood-induced dislocation within the same habitat type, e.g., between different cave chambers of the Cueva del Azufre. Conclusions: The virtual absence of individual dislocation among ecologically different habitat types indicates strong natural selection against migrants. Thus, our current study exemplifies that ecological speciation in this and other systems, in which extreme environmental factors drive speciation, may be little affected by temporary perturbations, as adaptations to physico-chemical stressors may directly affect the survival probability in divergent habitat types.}, language = {en} } @misc{PavesiTiedemannDeMatthaeisetal.2013, author = {Pavesi, Laura and Tiedemann, Ralph and De Matthaeis, Elvira and Ketmaier, Valerio}, title = {Genetic connectivity between land and sea}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-401110}, pages = {19}, year = {2013}, abstract = {Introduction: We examined patterns of genetic divergence in 26 Mediterranean populations of the semi-terrestrial beachflea Orchestia montagui using mitochondrial (cytochrome oxidase subunit I), microsatellite (eight loci) and allozymic data. The species typically forms large populations within heaps of dead seagrass leaves stranded on beaches at the waterfront. We adopted a hierarchical geographic sampling to unravel population structure in a species living at the sea-land transition and, hence, likely subjected to dramatically contrasting forces. Results: Mitochondrial DNA showed historical phylogeographic breaks among Adriatic, Ionian and the remaining basins (Tyrrhenian, Western and Eastern Mediterranean Sea) likely caused by the geological and climatic changes of the Pleistocene. Microsatellites (and to a lesser extent allozymes) detected a further subdivision between and within the Western Mediterranean and the Tyrrhenian Sea due to present-day processes. A pattern of isolation by distance was not detected in any of the analyzed data set. Conclusions: We conclude that the population structure of O. montagui is the result of the interplay of two contrasting forces that act on the species population genetic structure. On one hand, the species semi-terrestrial life style would tend to determine the onset of local differences. On the other hand, these differences are partially counter-balanced by passive movements of migrants via rafting on heaps of dead seagrass leaves across sites by sea surface currents. Approximate Bayesian Computations support dispersal at sea as prevalent over terrestrial regionalism.}, language = {en} } @misc{SchedinaHartmannGrothetal.2014, author = {Schedina, Ina Maria and Hartmann, Stefanie and Groth, Detlef and Schlupp, Ingo and Tiedemann, Ralph}, title = {Comparative analysis of the gonadal transcriptomes of the all-female species Poecilia formosa and its maternal ancestor Poecilia mexicana}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-401420}, pages = {10}, year = {2014}, abstract = {Background The Amazon molly, Poecilia formosa (Teleostei: Poeciliinae) is an unisexual, all-female species. It evolved through the hybridisation of two closely related sexual species and exhibits clonal reproduction by sperm dependent parthenogenesis (or gynogenesis) where the sperm of a parental species is only used to activate embryogenesis of the apomictic, diploid eggs but does not contribute genetic material to the offspring. Here we provide and describe the first de novo assembled transcriptome of the Amazon molly in comparison with its maternal ancestor, the Atlantic molly Poecilia mexicana. The transcriptome data were produced through sequencing of single end libraries (100 bp) with the Illumina sequencing technique. Results 83,504,382 reads for the Amazon molly and 81,625,840 for the Atlantic molly were assembled into 127,283 and 78,961 contigs for the Amazon molly and the Atlantic molly, respectively. 63\% resp. 57\% of the contigs could be annotated with gene ontology terms after sequence similarity comparisons. Furthermore, we were able to identify genes normally involved in reproduction and especially in meiosis also in the transcriptome dataset of the apomictic reproducing Amazon molly. Conclusions We assembled and annotated the transcriptome of a non-model organism, the Amazon molly, without a reference genome (de novo). The obtained dataset is a fundamental resource for future research in functional and expression analysis. Also, the presence of 30 meiosis-specific genes within a species where no meiosis is known to take place is remarkable and raises new questions for future research.}, language = {en} } @misc{LamannaKirschbaumWauricketal.2015, author = {Lamanna, Francesco and Kirschbaum, Frank and Waurick, Isabelle and Dieterich, Christoph and Tiedemann, Ralph}, title = {Cross-tissue and cross-species analysis of gene expression in skeletal muscle and electric organ of African weakly-electric fish (Teleostei; Mormyridae)}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-86997}, year = {2015}, abstract = {Background African weakly-electric fishes of the family Mormyridae are able to produce and perceive weak electric signals (typically less than one volt in amplitude) owing to the presence of a specialized, muscle-derived electric organ (EO) in their tail region. Such electric signals, also known as Electric Organ Discharges (EODs), are used for objects/prey localization, for the identification of conspecifics, and in social and reproductive behaviour. This feature might have promoted the adaptive radiation of this family by acting as an effective pre-zygotic isolation mechanism. Despite the physiological and evolutionary importance of this trait, the investigation of the genetic basis of its function and modification has so far remained limited. In this study, we aim at: i) identifying constitutive differences in terms of gene expression between electric organ and skeletal muscle (SM) in two mormyrid species of the genus Campylomormyrus: C. compressirostris and C. tshokwe, and ii) exploring cross-specific patterns of gene expression within the two tissues among C. compressirostris, C. tshokwe, and the outgroup species Gnathonemus petersii. Results Twelve paired-end (100 bp) strand-specific RNA-seq Illumina libraries were sequenced, producing circa 330 M quality-filtered short read pairs. The obtained reads were assembled de novo into four reference transcriptomes. In silico cross-tissue DE-analysis allowed us to identify 271 shared differentially expressed genes between EO and SM in C. compressirostris and C.tshokwe. Many of these genes correspond to myogenic factors, ion channels and pumps, and genes involved in several metabolic pathways. Cross-species analysis has revealed that the electric organ transcriptome is more variable in terms of gene expression levels across species than the skeletal muscle transcriptome. Conclusions The data obtained indicate that: i) the loss of contractile activity and the decoupling of the excitation-contraction processes are reflected by the down-regulation of the corresponding genes in the electric organ's transcriptome; ii) the metabolic activity of the EO might be specialized towards the production and turn-over of membrane structures; iii) several ion channels are highly expressed in the EO in order to increase excitability; iv) several myogenic factors might be down-regulated by transcription repressors in the EO.}, language = {en} } @article{LamannaKirschbaumWauricketal.2015, author = {Lamanna, Francesco and Kirschbaum, Frank and Waurick, Isabelle and Dieterich, Christoph and Tiedemann, Ralph}, title = {Cross-tissue and cross-species analysis of gene expression in skeletal muscle and electric organ of African weakly-electric fish (Teleostei; Mormyridae)}, series = {BMC Genomics}, volume = {16}, journal = {BMC Genomics}, number = {668}, publisher = {Biomed Central}, address = {London}, issn = {1471-2164}, doi = {10.1186/s12864-015-1858-9}, year = {2015}, abstract = {Background African weakly-electric fishes of the family Mormyridae are able to produce and perceive weak electric signals (typically less than one volt in amplitude) owing to the presence of a specialized, muscle-derived electric organ (EO) in their tail region. Such electric signals, also known as Electric Organ Discharges (EODs), are used for objects/prey localization, for the identification of conspecifics, and in social and reproductive behaviour. This feature might have promoted the adaptive radiation of this family by acting as an effective pre-zygotic isolation mechanism. Despite the physiological and evolutionary importance of this trait, the investigation of the genetic basis of its function and modification has so far remained limited. In this study, we aim at: i) identifying constitutive differences in terms of gene expression between electric organ and skeletal muscle (SM) in two mormyrid species of the genus Campylomormyrus: C. compressirostris and C. tshokwe, and ii) exploring cross-specific patterns of gene expression within the two tissues among C. compressirostris, C. tshokwe, and the outgroup species Gnathonemus petersii. Results Twelve paired-end (100 bp) strand-specific RNA-seq Illumina libraries were sequenced, producing circa 330 M quality-filtered short read pairs. The obtained reads were assembled de novo into four reference transcriptomes. In silico cross-tissue DE-analysis allowed us to identify 271 shared differentially expressed genes between EO and SM in C. compressirostris and C.tshokwe. Many of these genes correspond to myogenic factors, ion channels and pumps, and genes involved in several metabolic pathways. Cross-species analysis has revealed that the electric organ transcriptome is more variable in terms of gene expression levels across species than the skeletal muscle transcriptome. Conclusions The data obtained indicate that: i) the loss of contractile activity and the decoupling of the excitation-contraction processes are reflected by the down-regulation of the corresponding genes in the electric organ's transcriptome; ii) the metabolic activity of the EO might be specialized towards the production and turn-over of membrane structures; iii) several ion channels are highly expressed in the EO in order to increase excitability; iv) several myogenic factors might be down-regulated by transcription repressors in the EO.}, language = {en} } @misc{SammlerBleidornTiedemann2017, author = {Sammler, Svenja and Bleidorn, Christoph and Tiedemann, Ralph}, title = {Full mitochondrial genome sequences of two endemic Philippine hornbill species (Aves: Bucerotidae) provide evidence for pervasive mitochondrial DNA recombination}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400889}, pages = {10}, year = {2017}, abstract = {Background: Although nowaday it is broadly accepted that mitochondrial DNA (mtDNA) may undergo recombination, the frequency of such recombination remains controversial. Its estimation is not straightforward, as recombination under homoplasmy (i.e., among identical mt genomes) is likely to be overlooked. In species with tandem duplications of large mtDNA fragments the detection of recombination can be facilitated, as it can lead to gene conversion among duplicates. Although the mechanisms for concerted evolution in mtDNA are not fully understood yet, recombination rates have been estimated from "one per speciation event" down to 850 years or even "during every replication cycle". Results: Here we present the first complete mt genome of the avian family Bucerotidae, i.e., that of two Philippine hornbills, Aceros waldeni and Penelopides panini. The mt genomes are characterized by a tandemly duplicated region encompassing part of cytochrome b, 3 tRNAs, NADH6, and the control region. The duplicated fragments are identical to each other except for a short section in domain I and for the length of repeat motifs in domain III of the control region. Due to the heteroplasmy with regard to the number of these repeat motifs, there is some size variation in both genomes; with around 21,657 bp (A. waldeni) and 22,737 bp (P. panini), they significantly exceed the hitherto longest known avian mt genomes, that of the albatrosses. We discovered concerted evolution between the duplicated fragments within individuals. The existence of differences between individuals in coding genes as well as in the control region, which are maintained between duplicates, indicates that recombination apparently occurs frequently, i. e., in every generation. Conclusions: The homogenised duplicates are interspersed by a short fragment which shows no sign of recombination. We hypothesize that this region corresponds to the so-called Replication Fork Barrier (RFB), which has been described from the chicken mitochondrial genome. As this RFB is supposed to halt replication, it offers a potential mechanistic explanation for frequent recombination in mitochondrial genomes.}, language = {en} } @misc{SammlerKetmaierHavensteinetal.2017, author = {Sammler, Svenja and Ketmaier, Valerio and Havenstein, Katja and Krause, Ulrike and Curio, Eberhard and Tiedemann, Ralph}, title = {Mitochondrial control region I and microsatellite analyses of endangered Philippine hornbill species (Aves; Bucerotidae) detect gene flow between island populations and genetic diversity loss}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-401108}, pages = {14}, year = {2017}, abstract = {Background: The Visayan Tarictic Hornbill (Penelopides panini) and the Walden's Hornbill (Aceros waldeni) are two threatened hornbill species endemic to the western islands of the Visayas that constitute - between Luzon and Mindanao - the central island group of the Philippine archipelago. In order to evaluate their genetic diversity and to support efforts towards their conservation, we analyzed genetic variation in similar to 600 base pairs (bp) of the mitochondrial control region I and at 12-19 nuclear microsatellite loci. The sampling covered extant populations, still occurring only on two islands (P. panini: Panay and Negros, A. waldeni: only Panay), and it was augmented with museum specimens of extinct populations from neighboring islands. For comparison, their less endangered (= more abundant) sister taxa, the Luzon Tarictic Hornbill (P. manillae) from the Luzon and Polillo Islands and the Writhed Hornbill (A. leucocephalus) from Mindanao Island, were also included in the study. We reconstructed the population history of the two Penelopides species and assessed the genetic population structure of the remaining wild populations in all four species. Results: Mitochondrial and nuclear data concordantly show a clear genetic separation according to the island of origin in both Penelopides species, but also unravel sporadic over-water movements between islands. We found evidence that deforestation in the last century influenced these migratory events. Both classes of markers and the comparison to museum specimens reveal a genetic diversity loss in both Visayan hornbill species, P. panini and A. waldeni, as compared to their more abundant relatives. This might have been caused by local extinction of genetically differentiated populations together with the dramatic decline in the abundance of the extant populations. Conclusions: We demonstrated a loss in genetic diversity of P. panini and A. waldeni as compared to their sister taxa P. manillae and A. leucocephalus. Because of the low potential for gene flow and population exchange across islands, saving of the remaining birds of almost extinct local populations - be it in the wild or in captivity - is particularly important to preserve the species' genetic potential.}, language = {en} } @article{NagelKirschbaumTiedemann2017, author = {Nagel, Rebecca and Kirschbaum, Frank and Tiedemann, Ralph}, title = {Electric organ discharge diversification in mormyrid weakly electric fish is associated with differential expression of voltage-gated ion channel genes}, series = {Journal of comparative physiology : A, Neuroethology, sensory, neural, and behavioral physiology}, volume = {203}, journal = {Journal of comparative physiology : A, Neuroethology, sensory, neural, and behavioral physiology}, publisher = {Springer}, address = {New York}, issn = {0340-7594}, doi = {10.1007/s00359-017-1151-2}, pages = {183 -- 195}, year = {2017}, abstract = {In mormyrid weakly electric fish, the electric organ discharge (EOD) is used for species recognition, orientation and prey localization. Produced in the muscle-derived adult electric organ, the EOD exhibits a wide diversity across species in both waveform and duration. While certain defining EOD characteristics can be linked to anatomical features of the electric organ, many factors underlying EOD differentiation are yet unknown. Here, we report the differential expression of 13 Kv1 voltage-gated potassium channel genes, two inwardly rectifying potassium channel genes, two previously studied sodium channel genes and an ATPase pump in two sympatric species of the genus Campylomormyrus in both the adult electric organ and skeletal muscle. Campylomormyrus compressirostris displays a basal EOD, largely unchanged during development, while C. tshokwe has an elongated, putatively derived discharge. We report an upregulation in all Kv1 genes in the electric organ of Campylomormyrus tshokwe when compared to both skeletal muscle and C. compressirostris electric organ. This pattern of upregulation in a species with a derived EOD form suggests that voltage-gated potassium channels are potentially involved in the diversification of the EOD signal among mormyrid weakly electric fish.}, language = {en} } @article{SchedinaGrothSchluppetal.2018, author = {Schedina, Ina Maria and Groth, Detlef and Schlupp, Ingo and Tiedemann, Ralph}, title = {The gonadal transcriptome of the unisexual Amazon molly Poecilia formosa in comparison to its sexual ancestors, Poecilia mexicana and Poecilia latipinna}, series = {BMC Genomics}, volume = {19}, journal = {BMC Genomics}, number = {12}, publisher = {BioMed Central}, address = {London}, issn = {1471-2164}, doi = {10.1186/s12864-017-4382-2}, pages = {1 -- 18}, year = {2018}, abstract = {Background The unisexual Amazon molly (Poecilia formosa) originated from a hybridization between two sexual species, the sailfin molly (Poecilia latipinna) and the Atlantic molly (Poecilia mexicana). The Amazon molly reproduces clonally via sperm-dependent parthenogenesis (gynogenesis), in which the sperm of closely related species triggers embryogenesis of the apomictic oocytes, but typically does not contribute genetic material to the next generation. We compare for the first time the gonadal transcriptome of the Amazon molly to those of both ancestral species, P. mexicana and P. latipinna. Results We sequenced the gonadal transcriptomes of the P. formosa and its parental species P. mexicana and P. latipinna using Illumina RNA-sequencing techniques (paired-end, 100 bp). De novo assembly of about 50 million raw read pairs for each species was performed using Trinity, yielding 106,922 transcripts for P. formosa, 115,175 for P. latipinna, and 133,025 for P. mexicana after eliminating contaminations. On the basis of sequence similarity comparisons to other teleost species and the UniProt databases, functional annotation, and differential expression analysis, we demonstrate the similarity of the transcriptomes among the three species. More than 40\% of the transcripts for each species were functionally annotated and about 70\% were assigned to orthologous genes of a closely related species. Differential expression analysis between the sexual and unisexual species uncovered 2035 up-regulated and 564 down-regulated genes in P. formosa. This was exemplary validated for six genes by qRT-PCR. Conclusions We identified more than 130 genes related to meiosis and reproduction within the apomictically reproducing P. formosa. Overall expression of these genes seems to be down-regulated in the P. formosa transcriptome compared to both ancestral species (i.e., 106 genes down-regulated, 29 up-regulated). A further 35 meiosis and reproduction related genes were not found in the P. formosa transcriptome, but were only expressed in the sexual species. Our data support the hypothesis of general down-regulation of meiosis-related genes in the apomictic Amazon molly. Furthermore, the obtained dataset and identified gene catalog will serve as a resource for future research on the molecular mechanisms behind the reproductive mode of this unisexual species.}, language = {en} } @article{SchererTiedemannSchlupp2018, author = {Scherer, Ulrike and Tiedemann, Ralph and Schlupp, Ingo}, title = {Male size, not female preferences influence female reproductive success in a poeciliid fish (Poecilia latipinna)}, series = {BMC Research Notes}, volume = {11}, journal = {BMC Research Notes}, number = {364}, publisher = {Biomed Central}, address = {London}, issn = {1756-0500}, doi = {10.1186/s13104-018-3487-2}, pages = {1 -- 5}, year = {2018}, abstract = {Objective We investigated the potential role of indirect benefits for female mate preferences in a highly promiscuous species of live-bearing fishes, the sailfin molly Poecilia latipinna using an integrative approach that combines methods from animal behavior, life-history evolution, and genetics. Males of this species solely contribute sperm for reproduction, and consequently females do not receive any direct benefits. Despite this, females typically show clear mate preferences. It has been suggested that females can increase their reproductive success through indirect benefits from choosing males of higher quality. Results Although preferences for large body size have been recorded as an honest signal for genetic quality, this particular study resulted in female preference being unaffected by male body size. Nonetheless, larger males did sire more offspring, but with no effect on offspring quality. This study presents a methodical innovation by combining preference testing with life history measurements—such as the determination of the dry weight of fish embryos—and paternity analyses on single fish embryos.}, language = {en} } @misc{RomeroMujalliJeltschTiedemann2018, author = {Romero-Mujalli, Daniel and Jeltsch, Florian and Tiedemann, Ralph}, title = {Individual-based modeling of eco-evolutionary dynamics}, series = {Regional environmental change}, volume = {19}, journal = {Regional environmental change}, number = {1}, publisher = {Springer}, address = {Heidelberg}, issn = {1436-3798}, doi = {10.1007/s10113-018-1406-7}, pages = {1 -- 12}, year = {2018}, abstract = {A challenge for eco-evolutionary research is to better understand the effect of climate and landscape changes on species and their distribution. Populations of species can respond to changes in their environment through local genetic adaptation or plasticity, dispersal, or local extinction. The individual-based modeling (IBM) approach has been repeatedly applied to assess organismic responses to environmental changes. IBMs simulate emerging adaptive behaviors from the basic entities upon which both ecological and evolutionary mechanisms act. The objective of this review is to summarize the state of the art of eco-evolutionary IBMs and to explore to what degree they already address the key responses of organisms to environmental change. In this, we identify promising approaches and potential knowledge gaps in the implementation of eco-evolutionary mechanisms to motivate future research. Using mainly the ISI Web of Science, we reveal that most of the progress in eco-evolutionary IBMs in the last decades was achieved for genetic adaptation to novel local environmental conditions. There is, however, not a single eco-evolutionary IBM addressing the three potential adaptive responses simultaneously. Additionally, IBMs implementing adaptive phenotypic plasticity are rare. Most commonly, plasticity was implemented as random noise or reaction norms. Our review further identifies a current lack of models where plasticity is an evolving trait. Future eco-evolutionary models should consider dispersal and plasticity as evolving traits with their associated costs and benefits. Such an integrated approach could help to identify conditions promoting population persistence depending on the life history strategy of organisms and the environment they experience.}, language = {en} } @article{SchnitzlerReckendorfPinzoneetal.2018, author = {Schnitzler, Joseph G. and Reckendorf, Anja and Pinzone, Marianna and Autenrieth, Marijke and Tiedemann, Ralph and Covaci, Adrian and Malarvannan, Govindan and Ruser, Andreas and Das, Krishna and Siebert, Ursula}, title = {Supporting evidence for PCB pollution threatening global killer whale population}, series = {Aquatic Toxicology}, volume = {206}, journal = {Aquatic Toxicology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0166-445X}, doi = {10.1016/j.aquatox.2018.11.008}, pages = {102 -- 104}, year = {2018}, abstract = {A recent Science report predicted the global killer whale population to collapse due to PCB pollution. Here we present empirical evidence, which supports and extends the reports' statement. In 2016, a neonate male killer whale stranded on the German island of Sylt. Neonatal attributes indicated an age of at least 3 days. The stomach contained ∼20 mL milk residue and no pathologies explaining the cause of death could be detected. Blubber samples presenting low lipid concentrations were analysed for persistent organic pollutants. Skin samples were collected for genotyping of the mitochondrial control region. The blubber PCB concentrations were very high [SPCBs, 225 mg/kg lipid weight (lw)], largely exceeding the PCB toxicity thresholds reported for the onset of immunosuppression [9 mg/kg lw ∑PCB] and for severe reproductive impairment [41 mg/kg lw ∑PCB] reported for marine mammals. Additionally, this individual showed equally high concentrations in p,p'-DDE [226 mg/kg lw], PBDEs [5 mg/kg lw] and liver mercury levels [1.1 μg/g dry weight dw]. These results suggest a high placental transfer of pollutants from mother to foetus. Consequently, blubber and plasma PCB concentrations and calf mortality rates are both high in primiparous females. With such high pollutant levels, this neonate had poor prerequisites for survival. The neonate belonged to Ecotype I (generalist feeder) and carried the mitochondrial haplotype 35 present in about 16\% of the North Atlantic killer whale from or close to the North Sea. The relevance of this data becomes apparent in the UK West Coast Community, the UK's only residentorca population, which is currently composed of only eight individuals (each four males and females) and no calves have been reported over the last 19 years.Despite worldwide regulations, PCBs persist in the environment and remain a severe concern for killer whale populations, placing calves at high risk due to the mother-offspring PCB-transfer resulting in a high toxicological burden of the neonates.}, language = {en} } @article{SenczukHavensteinMilanaetal.2018, author = {Senczuk, Gabriele and Havenstein, Katja and Milana, Valentina and Ripa, Chiara and De Simone, Emanuela and Tiedemann, Ralph and Castiglia, Riccardo}, title = {Spotlight on islands}, series = {Scientific reports}, volume = {8}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-018-33326-w}, pages = {12}, year = {2018}, abstract = {Groups of proximate continental islands may conceal more tangled phylogeographic patterns than oceanic archipelagos as a consequence of repeated sea level changes, which allow populations to experience gene flow during periods of low sea level stands and isolation by vicariant mechanisms during periods of high sea level stands. Here, we describe for the first time an ancient and diverging lineage of the Italian wall lizard Podarcis siculus from the western Pontine Islands. We used nuclear and mitochondrial DNA sequences of 156 individuals with the aim of unraveling their phylogenetic position, while microsatellite loci were used to test several a priori insular biogeographic models of migration with empirical data. Our results suggest that the western Pontine populations colonized the islands early during their Pliocene volcanic formation, while populations from the eastern Pontine Islands seem to have been introduced recently. The inter-island genetic makeup indicates an important role of historical migration, probably due to glacial land bridges connecting islands followed by a recent vicariant mechanism of isolation. Moreover, the most supported migration model predicted higher gene flow among islands which are geographically arranged in parallel. Considering the threatened status of small insular endemic populations, we suggest this new evolutionarily independent unit be given priority in conservation efforts.}, language = {en} } @article{ParaskevopoulouTiedemannWeithoff2018, author = {Paraskevopoulou, Sofia and Tiedemann, Ralph and Weithoff, Guntram}, title = {Differential response to heat stress among evolutionary lineages of an aquatic invertebrate species complex}, series = {Biology letters}, volume = {14}, journal = {Biology letters}, number = {11}, publisher = {Royal Society}, address = {London}, issn = {1744-9561}, doi = {10.1098/rsbl.2018.0498}, pages = {5}, year = {2018}, abstract = {Under global warming scenarios, rising temperatures can constitute heat stress to which species may respond differentially. Within a described species, knowledge on cryptic diversity is of further relevance, as different lineages/cryptic species may respond differentially to environmental change. The Brachionus calyciflorus species complex (Rotifera), which was recently described using integrative taxonomy, is an essential component of aquatic ecosystems. Here, we tested the hypothesis that these (formerly cryptic) species differ in their heat tolerance. We assigned 47 clones with nuclear ITS1 (nuITS1) and mitochondrial COI (mtCOI) markers to evolutionary lineages, now named B. calyciflorus sensu stricto (s.s.) and B. fernandoi. We selected 15 representative clones and assessed their heat tolerance as a bi-dimensional phenotypic trait affected by both the intensity and duration of heat stress. We found two distinct groups, with B. calyciflorus s.s. clones having higher heat tolerance than the novel species B. fernandoi. This apparent temperature specialization among former cryptic species underscores the necessity of a sound species delimitation and assignment, when organismal responses to environmental changes are investigated.}, language = {en} } @article{ReckendorfLudesWehrmeisterWohlseinetal.2018, author = {Reckendorf, Anja and Ludes-Wehrmeister, Eva and Wohlsein, Peter and Tiedemann, Ralph and Siebert, U. and Lehnert, Kristina}, title = {First record of Halocercus sp (Pseudaliidae) lungworm infections in two stranded neonatal orcas (Orcinus orca)}, series = {Parasitology}, volume = {145}, journal = {Parasitology}, number = {12}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {0031-1820}, doi = {10.1017/S0031182018000586}, pages = {1553 -- 1557}, year = {2018}, abstract = {Orca (Orcinus orca) strandings are rare and post-mortem examinations on fresh individuals are scarce. Thus, little is known about their parasitological fauna, prevalence of infections, associated pathology and the impact on their health. During post-mortem examinations of two male neonatal orcas stranded in Germany and Norway, lungworm infections were found within the bronchi of both individuals. The nematodes were identified as Halocercus sp. (Pseudaliidae), which have been described in the respiratory tract of multiple odontocete species, but not yet in orcas. The life cycle and transmission pathways of some pseudaliid nematodes are incompletely understood. Lungworm infections in neonatal cetaceans are an unusual finding and thus seem to be an indicator for direct mother-to-calf transmission (transplacental or transmammary) of Halocercus sp. nematodes in orcas.}, language = {en} }