@phdthesis{Kuhnert2012, author = {Kuhnert, Oliver}, title = {Charakterisierung der neuen centrosomalen Proteine CP148 und CP55 in Dictyostelium discoideum}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-59949}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {Das im Cytosol liegende Dictyostelium Centrosom ist aus einer geschichteten Core-Region aufgebaut, die von einer Mikrotubuli-nukleierenden Corona umgeben ist. Zudem ist es {\"u}ber eine spezifische Verbindung eng an den Kern gekn{\"u}pft und durch die Kernmembran hindurch mit den geclusterten Centromeren verbunden. Beim G2/M {\"U}bergang dissoziiert die Corona vom Centrosom und der Core verdoppelt sich so dass zwei Spindelpole entstehen. CP55 und CP148 wurden in einer Proteom-Analyse des Centrosoms identifiziert. CP148 ist ein neues coiled-coil Protein der centrosomalen Corona. Es zeigt eine zellzyklusabh{\"a}ngige An- und Abwesenheit am Centrosom, die mit der Dissoziation der Corona in der Prophase und ihrer Neubildung in der Telophase korreliert. W{\"a}hrend der Telophase erschienen in GFP-CP148 exprimierenden Zellen viele, kleine GFP-CP148-Foci im Cytoplasma, die zum Teil miteinander fusionierten und zum Centrosom wanderten. Daraus resultierte eine hypertrophe Corona in Zellen mit starker GFP-CP148 {\"U}berexpression. Ein Knockdown von CP148 durch RNAi f{\"u}hrte zu einem Verlust der Corona und einem ungeordneten Interphase Mikrotubuli-Cytoskelett. Die Bildung der mitotischen Spindel und der astralen Mikrotubuli blieb davon unbeeinflusst. Das bedeutet, dass die Mikrotubuli-Nukleationskomplexe w{\"a}hrend der Interphase und Mitose {\"u}ber verschiedene Wege mit dem Core assoziiert sind. Des Weiteren bewirkte der Knockdown eine Dispersion der Centromere sowie eine ver{\"a}nderte Sun1 Lokalisation in der Kernh{\"u}lle. Somit spielt CP148 ebenso eine Rolle in der Centrosomen-Centromer-Verbindung. Zusammengefasst ist CP148 ein essentielles Protein f{\"u}r die Bildung und Organisation der Corona, welche wiederum f{\"u}r die Centrosom/Centromer Verbindung ben{\"o}tigt wird. CP55 wurde als Protein der Core-Region identifiziert und verbleibt w{\"a}hrend des Zellzyklus am Centrosom. Dort besitzt es strukturelle Aufgaben, da die Mehrheit der GFP-CP55 Molek{\"u}le in der Interphase keine Mobilit{\"a}t zeigten. Die GFP-CP55 {\"U}berexpression f{\"u}hrte zur Bildung von {\"u}berz{\"a}hligen Centrosomen mit der {\"u}blichen Ausstattung an Markerproteinen der Corona und des Cores. CP55 Knockout-Zellen waren durch eine erh{\"o}hte Ploidie, eine weniger strukturierte und leicht vergr{\"o}ßerte Corona sowie zus{\"a}tzliche cytosolische Mikrotubuli-organisierende Zentren charakterisiert. Letztere entstanden in der Telophase und enthielten nur Corona- aber keine Core-Proteine. In CP55 k/o Zellen erfolgte die Rekrutierung des Corona-Organisators CP148 an den Spindelpol bereits in der fr{\"u}hen Metaphase anstatt, wie {\"u}blich, erst in der Telophase. Außerdem zeigten die Knockout-Zellen Wachstumsdefekte, deren Grund vermutlich Schwierigkeiten bei der Centrosomenverdopplung in der Prophase durch das Fehlen von CP55 waren. Dar{\"u}ber hinaus konnten die Knockout-Zellen phagozytiertes Material nicht verwerten, obwohl der Vorgang der Phagozytose nicht beeintr{\"a}chtigt war. Dieser Defekt kann dem im CP55 k/o auftretenden dispergierten Golgi-Apparat zugeschrieben werden.}, language = {de} } @phdthesis{Bringmann2012, author = {Bringmann, Martin}, title = {Identification of novel components that connect cellulose synthases to the cytoskeleton}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-61478}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {Cellulose is the most abundant biopolymer on earth and the main load-bearing structure in plant cell walls. Cellulose microfibrils are laid down in a tight parallel array, surrounding plant cells like a corset. Orientation of microfibrils determines the direction of growth by directing turgor pressure to points of expansion (Somerville et al., 2004). Hence, cellulose deficient mutants usually show cell and organ swelling due to disturbed anisotropic cell expansion (reviewed in Endler and Persson, 2011). How do cellulose microfibrils gain their parallel orientation? First experiments in the 1960s suggested, that cortical microtubules aid the cellulose synthases on their way around the cell (Green, 1962; Ledbetter and Porter, 1963). This was proofed in 2006 through life cell imaging (Paredez et al., 2006). However, how this guidance was facilitated, remained unknown. Through a combinatory approach, including forward and reverse genetics together with advanced co-expression analysis, we identified pom2 as a cellulose deficient mutant. Map- based cloning revealed that the gene locus of POM2 corresponded to CELLULOSE SYNTHASE INTERACTING 1 (CSI1). Intriguingly, we previously found the CSI1 protein to interact with the putative cytosolic part of the primary cellulose synthases in a yeast-two-hybrid screen (Gu et al., 2010). Exhaustive cell biological analysis of the POM2/CSI1 protein allowed to determine its cellular function. Using spinning disc confocal microscopy, we could show that in the absence of POM2/CSI1, cellulose synthase complexes lose their microtubule-dependent trajectories in the plasma membrane. The loss of POM2/CSI1, however does not influence microtubule- dependent delivery of cellulose synthases (Bringmann et al., 2012). Consequently, POM2/CSI1 acts as a bridging protein between active cellulose synthases and cortical microtubules. This thesis summarizes three publications of the author, regarding the identification of proteins that connect cellulose synthases to the cytoskeleton. This involves the development of bioinformatics tools allowing candidate gene prediction through co-expression studies (Mutwil et al., 2009), identification of candidate genes through interaction studies (Gu et al., 2010), and determination of the cellular function of the candidate gene (Bringmann et al., 2012).}, language = {en} }