@phdthesis{Baumgart2013, author = {Baumgart, Natalie}, title = {Faltungseigenschaften des extrazellul{\"a}ren Proteins Internalin J und seine Cysteinleiter}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-69603}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Internalin J (InlJ) geh{\"o}rt zu der Klasse der bakteriellen, cysteinhaltigen (leucine-rich repeat) LRR Proteine. Bei den Internalinen handelt es sich um meist invasions-assoziierte Proteine der Listerien. Die LRR-Dom{\"a}ne von InlJ ist aus 15 regelm{\"a}ßig wiederkehrenden, stark konservierten Sequenzeinheiten (repeats, 21 Aminos{\"a}uren) aufgebaut. Ein interessantes Detail dieses Internalins ist das stark konservierte Cystein innerhalb der repeats. Daraus ergibt sich eine ungew{\"o}hnliche Anordnung von 12 Cysteinen in einem Stapel. Die H{\"a}ufigkeit von Cysteinen in InlJ ist f{\"u}r ein extrazellul{\"a}res Protein von L. monocytogenes außergew{\"o}hnlich, und die Frage nach ihrer Funktion daher umso brennender. Im Vergleich zum ubiquit{\"a}ren Vorkommen der sogenannten repeat-Proteine in der Natur sind Studien zu ihrer Stabilit{\"a}t und Faltung nicht {\"a}quivalent vertreten. Die zentrale Eigenschaft der repeat-Proteine ist ihr modularer Aufbau, der durch einfache Topologie gekennzeichnet ist und auf kurzreichenden Wechselwirkungen basiert. Diese Topologie macht repeat-Proteine zu idealen Modellproteinen, um die stabilit{\"a}tsrelevanten Wechselwirkungen zu separieren und zuzuordnen. In der vorliegenden Arbeit wurde die Faltung und Entfaltung von InlJ umfassend charakterisiert und die Relevanz der Cysteine n{\"a}her beleuchtet. Die spektroskopische Charakterisierung von InlJ zeigte, dass dessen Faltungszustand durch zwei Tryptophane im N- und C-Terminus fluoreszenzspektroskopisch gut zug{\"a}nglich ist. Die thermodynamische Stabilit{\"a}t wurde mittels fluoreszenz-detektierten, Guanidiniumchlorid-induzierten Gleichgewichtsexperimenten bestimmt. Um die kinetischen Eigenschaften von InlJ zu erfassen, wurden die Faltungs- sowie die Entfaltungsreaktion spektroskopisch untersucht. Die Identifizierung der produktiven Faltungsreaktion war lediglich durch die Anwendung des reversen Doppelsprungexperiments m{\"o}glich. Die Auswertung erfolgte nach dem Zweizustandsmodell, wonach die Faltung dem „Alles-oder-Nichts" Prinzip folgt. Die G{\"u}ltigkeit dieser Annahme wurde durch die kinetische Charakterisierung best{\"a}tigt. Es wurde sowohl in den Gleichgewichtsexperimenten als auch in den kinetisch erhaltenen Daten eine hohe freie Stabilisierungsenthalpie festgestellt. Die hohe Stabilit{\"a}t von InlJ geht mit hoher Kooperativit{\"a}t einher. Die kinetischen Daten zeigen zudem, dass die hohe Kooperativit{\"a}t haupts{\"a}chlich der Faltungsreaktion entstammt. Der Tanford-Wert von 0.93 impliziert, dass die Oberfl{\"a}chen{\"a}nderung w{\"a}hrend der Faltung bereits zum gr{\"o}ßten Teil erfolgt ist, bevor der {\"U}bergangszustand ausgebildet wurde. Direkte strukturelle Informationen {\"u}ber den {\"U}bergangszustand wurden mit Hilfe von Mutationsstudien erhalten. Zu diesem Zweck wurden 12 der 14 Cysteine gegen ein Alanin ausgetauscht. Die repeats 1 bis 11 von InlJ beinhalten jeweils ein Cystein, deren Anordnung eine Leiter ergibt. Deren Substitutionen haben einen vergleichbar destabilisierenden Effekt auf InlJ von durchschnittlich 4.8 kJ/mol. Die Verlangsamung der Faltung deutet daraufhin, dass die Interaktionen der repeats 5 bis 11 im {\"U}bergangszustand bereits voll ausgebildet sind. Demnach liegt bei InlJ ein zentraler Faltungsnukleus vor. Im Rahmen dieser Promotionsarbeit wurde eine hohe Stabilit{\"a}t und ein stark-kooperatives Verhalten f{\"u}r das extrazellul{\"a}re Protein InlJ beobachtet. Diese Erkenntnisse k{\"o}nnten wichtige Beitr{\"a}ge zur Entwicklung artifizieller repeat-Proteine leisten, deren Verwendung sich stetig ausweitet.}, language = {de} }