@phdthesis{Bajdzienko2017, author = {Bajdzienko, Krzysztof}, title = {Analysis of Target of Rapamycin (Tor) induced changes of the Arabidopsis thaliana proteome using sub-cellular resolution}, school = {Universit{\"a}t Potsdam}, pages = {167}, year = {2017}, language = {en} } @phdthesis{Barbirz2017, author = {Barbirz, Stefanie}, title = {Highly specific binders for bacterial polysaccharides}, school = {Universit{\"a}t Potsdam}, pages = {167}, year = {2017}, language = {en} } @article{BauerWerthHaAnNguyenetal.2017, author = {Bauer, Daniel and Werth, Felix and Ha An Nguyen, and Kiecker, Felix and Eberle, J{\"u}rgen}, title = {Critical role of reactive oxygen species (ROS) for synergistic enhancement of apoptosis by vemurafenib and the potassium channel inhibitor TRAM-34 in melanoma cells}, series = {Cell death \& disease}, volume = {8}, journal = {Cell death \& disease}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-4889}, doi = {10.1038/cddis.2017.6}, pages = {10}, year = {2017}, abstract = {Inhibition of MAP kinase pathways by selective BRAF inhibitors, such as vemurafenib and dabrafenib, have evolved as key therapies of BRAF-mutated melanoma. However, tumor relapse and therapy resistance have remained as major problems, which may be addressed by combination with other pathway inhibitors. Here we identified the potassium channel inhibitor TRAM-34 as highly effective in combination with vemurafenib. Thus apoptosis was significantly enhanced and cell viability was decreased. The combination vemurafenib/TRAM-34 was also effective in vemurafenib-resistant cells, suggesting that acquired resistance may be overcome. Vemurafenib decreased ERK phosphorylation, suppressed antiapoptotic Mcl-1 and enhanced proapoptotic Puma and Bim. The combination resulted in enhancement of proapoptotic pathways as caspase-3 and loss of mitochondrial membrane potential. Indicating a special mechanism of vemurafenib-induced apoptosis, we found strong enhancement of intracellular ROS levels already at 1 h of treatment. The critical role of ROS was demonstrated by the antioxidant vitamin E (alpha-tocopherol), which decreased intracellular ROS as well as apoptosis. Also caspase activation and loss of mitochondrial membrane potential were suppressed, proving ROS as an upstream effect. Thus ROS represents an initial and independent apoptosis pathway in melanoma cells that is of particular importance for vemurafenib and its combination with TRAM-34.}, language = {en} } @phdthesis{Belkius2017, author = {Belkius, Karolina Dorota}, title = {Systems biology approach to investigate the development and degradation of the photosynthetic apparatus during leaf ontogenesis in higher plants}, school = {Universit{\"a}t Potsdam}, pages = {121}, year = {2017}, language = {en} } @article{BendjeddouLoumassineScheffleretal.2017, author = {Bendjeddou, Mohammed Lamine and Loumassine, Hibat Allah and Scheffler, Ingo and Bouslama, Zihad and Amr, Zuhair}, title = {Bat ectoparasites (Nycteribiidae, Streblidae, Siphonaptera, Heteroptera, Mesostigmata, Argasidae, and Ixodidae) from Algeria}, series = {Journal of Vector Ecology}, volume = {42}, journal = {Journal of Vector Ecology}, publisher = {Wiley Interscience}, address = {Hoboken, NJ}, issn = {1948-7134}, doi = {10.1111/jvec.12235}, pages = {13 -- 23}, year = {2017}, abstract = {Twenty two species of ectoparasites (Family Nycteribiidae: Nycteribia (Listropoda) schmidlii schmidlii, Nycteribia (Nycteribia) latreillii, Nycteribia (Nycteribia) pedicularia, Penicillidia (Penicillidia) dufourii, and Phthiridium biarticulatum; Family Streblidae: Brachytarsina (Brachytarsina) flavipennis and Raymondia huberi; Order Siphonaptera: Rhinolophopsylla unipectinata arabs, Nycteridopsylla longiceps, Araeopsylla gestroi, Ischnopsyllus intermedius, and Ischnopsyllus octactenus; Order Heteroptera: Cimex pipistrelli, Cimex lectularius, and Cacodmus vicinus; Class Arachnida: Order Mesostigmata: Spinturnix myoti and Eyndhovenia euryalis; Order Ixodida: Family Argasidae: Argas transgariepinus and Argas vespertilionis; Family Ixodidae: Hyalomma dromedarii, Ixodes ricinus, and Ixodes vespertilionis) were recovered from 19 bat species in Algeria. New host records for bats are recorded for the first time: N. schmidlii from Rh. clivosus and R. cystops; N. latreillii from Rh. blasii and P. gaisleri; R. huberi from Rh. clivosus; C. pipistrelli from E. isabellinus and H. savii; C. vicinus from E. isabellinus; S. myoti from P. gaisleri; E. euryalis from P. gaisleri and Rh. blasii; A. vespertilionis from P. gaisleri; I. ricinus from T. teniotis and Rh. hipposideros and H. dromedarii from P. kuhlii. Raymondia huberi is recorded for the first time from Algeria.}, language = {en} } @article{BengfortvanVelzenGaedke2017, author = {Bengfort, Michael and van Velzen, Ellen and Gaedke, Ursula}, title = {Slight phenotypic variation in predators and prey causes complex predator-prey oscillations}, series = {Ecological Complexity}, volume = {31}, journal = {Ecological Complexity}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1476-945X}, doi = {10.1016/j.ecocom.2017.06.003}, pages = {115 -- 124}, year = {2017}, abstract = {Predator-prey oscillations are expected to show a 1/4-phase lag between predator and prey. However, observed dynamics of natural or experimental predator-prey systems are often more complex. A striking but hardly studied example are sudden interruptions of classic 1/4-lag cycles with periods of antiphase oscillations, or periods without any regular predator-prey oscillations. These interruptions occur for a limited time before the system reverts to regular 1/4-lag oscillations, thus yielding intermittent cycles. Reasons for this behaviour are often difficult to reveal in experimental systems. Here we test the hypothesis that such complex dynamical behaviour may result from minor trait variation and trait adaptation in both the prey and predator, causing recurrent small changes in attack rates that may be hard to capture by empirical measurements. Using a model structure where the degree of trait variation in the predator can be explicitly controlled, we show that a very limited amount of adaptation resulting in 10-15\% temporal variation in attack rates is already sufficient to generate these intermittent dynamics. Such minor variation may be present in experimental predator-prey systems, and may explain disruptions in regular 1/4-lag oscillations.}, language = {en} } @article{BentsRybakGroth2017, author = {Bents, Dominik and Rybak, Alexander and Groth, Detlef}, title = {Spatial conscript body height correlation of Norwegian districts in the 19th century}, series = {Anthropologischer Anzeiger : journal of biological and clinical anthropology ; Mitteilungsorgan der Gesellschaft f{\"u}r Anthropologie}, volume = {74}, journal = {Anthropologischer Anzeiger : journal of biological and clinical anthropology ; Mitteilungsorgan der Gesellschaft f{\"u}r Anthropologie}, number = {1}, publisher = {Schweizerbart}, address = {Stuttgart}, issn = {0003-5548}, doi = {10.1127/anthranz/2017/0700}, pages = {65 -- 69}, year = {2017}, abstract = {Background: We investigated height of Norwegian conscripts in view of the hypothesis of a "community effect on height" using autocorrelation analysis of district heights within a time-span of 20 years at the end of the 19th century and correlations between neighboring districts at this time. Material and methods: After digitalizing available body height data of Norwegian draftees in 1877-1878, 1880 (averaged as 1878), and 1895-1897 (averaged as 1896) we calculated the magnitude of autocorrelation of body height within the same municipality at different time points. Furthermore, we generated three different neighborhood networks, (1) based on Euclidean distances, (2) a minimum spanning tree build on those distances, (3) a network founded on real world road connections. The networks were used to determine the correlation between body height of neighboring districts depending on the number of edges required to connect two municipalities. Results: The autocorrelation value for body heights was around r = 0.5 (for all p < 0.001) in the years 1878 and 1896. The correlation between neighboring districts varied in the Euclidean distance based network between 0.47 and 0.27 approximately for both years in a sorted order, descending from nearest (0-50 km) to farthest (150-200 km, for all p < 0.001). First order neighbors in the minimum spanning tree network correlation was 0.36 in 1878 and 0.42 in 1896 (for all p < 0.001). The values of neighbor correlation in the road connection based network ranged in 1878 from 0.42 (first order neighbors) to 0.17 (forth order neighbors, for all p < 0.01) and in 1896 from 0.46 (first order neighbors) to 0.12 (forth order neighbors, for all p < 0.05). Conclusion: This initial study of Norwegian conscript height data from the 19th century showed significant medium sized effects for the within district autocorrelation between 1878 and 1896 as well as medium neighborhood correlation, slightly lower in comparison to a recent study regarding Swiss conscripts. Digitalizing more data from other years in this and later time spans as well as using older road and ship connections instead of the actual road data might stabilize and improve those findings.}, language = {en} } @article{BergholzMayGiladietal.2017, author = {Bergholz, Kolja and May, Felix and Giladi, Itamar and Ristow, Michael and Ziv, Yaron and Jeltsch, Florian}, title = {Environmental heterogeneity drives fine-scale species assembly and functional diversity of annual plants in a semi-arid environment}, series = {Perspectives in plant ecology, evolution and systematics}, volume = {24}, journal = {Perspectives in plant ecology, evolution and systematics}, publisher = {Elsevier}, address = {Jena}, issn = {1433-8319}, doi = {10.1016/j.ppees.2017.01.001}, pages = {138 -- 146}, year = {2017}, abstract = {Spatial environmental heterogeneity is considered a fundamental factor for the maintenance of plant species richness. However, it still remains unclear whether heterogeneity may also facilitate coexistence at fine grain sizes or whether other processes, like mass effects and source sink dynamics due to dispersal, control species composition and diversity at these scales. In this study, we used two complimentary analyses to identify the role of heterogeneity within 15 m x 15 m plots for the coexistence of species-rich annual communities in a semi-arid environment along a steep precipitation gradient. Specifically, we: (a) analyzed the effect of environmental heterogeneity on species, functional and phylogenetic diversity within microsites (alpha diversity, 0.06 m(2) and 1 m(2)), across microsites (beta diversity), and diversity at the entire plot (gamma diversity); (b) further we used two null models to detect non-random trait and phylogenetic patterns in order to infer assembly processes, i.e. whether co-occurring species tend to share similar traits (trait convergence) or dissimilar traits (trait divergence). In general, our results showed that heterogeneity had a positive effect on community diversity. Specifically, for alpha diversity, the effect was significant for functional diversity, and not significant for either species or phylogenetic diversities. For beta diversity, all three measures of community diversity (species, functional, and phylogenetic) increased significantly, as they also did for gamma diversity, where functional measures were again stronger than for species or phylogenetic measures. In addition, the null model approach consistently detected trait convergence, indicating that species with similar traits tended to co-occur and had high abundances in a given microsite. While null model analysis across the phylogeny partly supported these trait findings, showing phylogenetic underdispersion at the 1m(2) grain size, surprisingly when species abundances in microsites were analyzed they were more evenly distributed across the phylogenetic tress than expected (phylogenetic overdispersion). In conclusion, our results provide compelling support that environmental heterogeneity at a relatively fine scale is an important factor for species co-existence as it positively affects diversity as well as influences species assembly. Our study underlines the need for trait-based approaches conducted at fine grain sizes in order to better understand species coexistence and community assembly. (C) 2017 Elsevier GmbH. All rights reserved.}, language = {en} } @article{BernacchioniGhiniCencettietal.2017, author = {Bernacchioni, Caterina and Ghini, Veronica and Cencetti, Francesca and Japtok, Lukasz and Donati, Chiara and Bruni, Paola and Turano, Paola}, title = {NMR metabolomics highlights sphingosine kinase-1 as a new molecular switch in the orchestration of aberrant metabolic phenotype in cancer cells}, series = {Molecular oncology / Federation of European Biochemical Societies}, volume = {11}, journal = {Molecular oncology / Federation of European Biochemical Societies}, publisher = {Wiley}, address = {Hoboken}, issn = {1878-0261}, doi = {10.1002/1878-0261.12048}, pages = {517 -- 533}, year = {2017}, abstract = {Strong experimental evidence in animal and cellular models supports a pivotal role of sphingosine kinase-1 (SK1) in oncogenesis. In many human cancers, SK1 levels are upregulated and these increases are linked to poor prognosis in patients. Here, by employing untargeted NMR- based metabolomic profiling combined with functional validations, we report the crucial role of SK1 in the metabolic shift known as the Warburg effect in A2780 ovarian cancer cells. Indeed, expression of SK1 induced a high glycolytic rate, characterized by increased levels of lactate along with increased expression of the proton/monocarboxylate symporter MCT1, and decreased oxidative metabolism, associated with the accumulation of intermediates of the tricarboxylic acid cycle and reduction in CO2 production. Additionally, SK1-expressing cells displayed a significant increase in glucose uptake paralleled by GLUT3 transporter upregulation. The role of SK1 is not limited to the induction of aerobic glycolysis, affecting metabolic pathways that appear to support the biosynthesis of macromolecules. These findings highlight the role of SK1 signaling axis in cancer metabolic reprogramming, pointing out innovative strategies for cancer therapies.}, language = {en} } @article{BerryRosaHowardetal.2017, author = {Berry, Scott and Rosa, Stefanie and Howard, Martin and Buhler, Marc and Dean, Caroline}, title = {Disruption of an RNA-binding hinge region abolishes LHP1-mediated epigenetic repression}, series = {Genes \& Development}, volume = {31}, journal = {Genes \& Development}, publisher = {Cold Spring Harbor Laboratory Press}, address = {Cold Spring Harbor, NY}, issn = {0890-9369}, doi = {10.1101/gad.305227.117}, pages = {2115 -- 2120}, year = {2017}, abstract = {Epigenetic maintenance of gene repression is essential for development. Polycomb complexes are central to this memory, but many aspects of the underlying mechanism remain unclear. LIKE HETEROCHROMATIN PROTEIN 1 (LHP1) binds Polycomb-deposited H3K27me3 and is required for repression of many Polycomb target genes in Arabidopsis. Here we show that LHP1 binds RNA in vitro through the intrinsically disordered hinge region. By independently perturbing the RNA-binding hinge region and H3K27me3 (trimethylation of histone H3 at Lys27) recognition, we found that both facilitate LHP1 localization and H3K27me3 maintenance. Disruption of the RNAbinding hinge region also prevented formation of subnuclear foci, structures potentially important for epigenetic repression.}, language = {en} } @article{BhatMilicicThieulinPardoetal.2017, author = {Bhat, Javaid Y. and Milicic, Goran and Thieulin-Pardo, Gabriel and Bracher, Andreas and Maxwell, Andrew and Ciniawsky, Susanne and M{\"u}ller-Cajar, Oliver and Engen, John R. and Hartl, F. Ulrich and Wendler, Petra and Hayer-Hartl, Manajit}, title = {Mechanism of Enzyme Repair by the AAA(+) Chaperone Rubisco Activase}, series = {Molecular cell}, volume = {67}, journal = {Molecular cell}, publisher = {Cell Press}, address = {Cambridge}, issn = {1097-2765}, doi = {10.1016/j.molcel.2017.07.004}, pages = {744 -- 756}, year = {2017}, abstract = {How AAA(+) chaperones conformationally remodel specific target proteins in an ATP-dependent manner is not well understood. Here, we investigated the mechanism of the AAA(+) protein Rubisco activase (Rca) in metabolic repair of the photosynthetic enzyme Rubisco, a complex of eight large (RbcL) and eight small (RbcS) subunits containing eight catalytic sites. Rubisco is prone to inhibition by tight-binding sugar phosphates, whose removal is catalyzed by Rca. We engineered a stable Rca hexamer ring and analyzed its functional interaction with Rubisco. Hydrogen/deuterium exchange and chemical crosslinking showed that Rca structurally destabilizes elements of the Rubisco active site with remarkable selectivity. Cryo-electron microscopy revealed that Rca docks onto Rubisco over one active site at a time, positioning the C-terminal strand of RbcL, which stabilizes the catalytic center, for access to the Rca hexamer pore. The pulling force of Rca is fine-tuned to avoid global destabilization and allow for precise enzyme repair.}, language = {en} } @article{BoginSchefflerHermanussen2017, author = {Bogin, Barry and Scheffler, Christiane and Hermanussen, Michael}, title = {Global effects of income and income inequality on adult height and sexual dimorphism in height}, series = {American journal of human biology : the official journal of the Human Biology Council}, volume = {29}, journal = {American journal of human biology : the official journal of the Human Biology Council}, number = {2}, publisher = {Wiley}, address = {Hoboken}, issn = {1042-0533}, doi = {10.1002/ajhb.22980}, pages = {11}, year = {2017}, abstract = {Objectives: Average adult height of a population is considered a biomarker of the quality of the health environment and economic conditions. The causal relationships between height and income inequality are not well understood. We analyze data from 169 countries for national average heights of men and women and national-level economic factors to test two hypotheses: (1) income inequality has a greater association with average adult height than does absolute income; and (2) neither income nor income inequality has an effect on sexual dimorphism in height. Methods: Average height data come from the NCD-RisC health risk factor collaboration. Economic indicators are derived from the World Bank data archive and include gross domestic product (GDP), Gross National Income per capita adjusted for personal purchasing power (GNI_ PPP), and income equality assessed by the Gini coefficient calculated by the Wagstaff method. Results: Hypothesis 1 is supported. Greater income equality is most predictive of average height for both sexes. GNI_ PPP explains a significant, but smaller, amount of the variation. National GDP has no association with height. Hypothesis 2 is rejected. With greater average adult height there is greater sexual dimorphism. Conclusions: Findings support a growing literature on the pernicious effects of inequality on growth in height and, by extension, on health. Gradients in height reflect gradients in social disadvantage. Inequality should be considered a pollutant that disempowers people from the resources needed for their own healthy growth and development and for the health and good growth of their children.}, language = {en} } @article{BraigKriegsVoigtlaenderetal.2017, author = {Braig, Friederike and Kriegs, Malte and Voigtlaender, Minna and Habel, Beate and Grob, Tobias and Biskup, Karina and Blanchard, Veronique and Sack, Markus and Thalhammer, Anja and Ben Batalla, Isabel and Braren, Ingke and Laban, Simon and Danielczyk, Antje and Goletz, Steffen and Jakubowicz, Elzbieta and Maerkl, Bruno and Trepel, Martin and Knecht, Rainald and Riecken, Kristoffer and Fehse, Boris and Loges, Sonja and Bokemeyer, Carsten and Binder, Mascha}, title = {Cetuximab Resistance in Head and Neck Cancer Is Mediated by EGFR-K-521 Polymorphism}, series = {Cancer research}, volume = {77}, journal = {Cancer research}, number = {5}, publisher = {American Association for Cancer Research}, address = {Philadelphia}, issn = {0008-5472}, doi = {10.1158/0008-5472.CAN-16-0754}, pages = {1188 -- 1199}, year = {2017}, abstract = {Head and neck squamous cell carcinomas (HNSCC) exhibiting resistance to the EGFR-targeting drug cetuximab poses a challenge to their effective clinical management. Here, we report a specific mechanism of resistance in this setting based upon the presence of a single nucleotide polymorphism encoding EGFR-K-521 (K-allele), which is expressed in > 40\% of HNSCC cases. Patients expressing the K-allele showed significantly shorter progressionfree survival upon palliative treatment with cetuximab plus chemotherapy or radiation. In several EGFR-mediated cancer models, cetuximab failed to inhibit downstream signaling or to kill cells harboring a high K-allele frequency. Cetuximab affinity for EGFR-K-521 was reduced slightly, but ligand-mediated EGFR acti-vation was intact. We found a lack of glycan sialyation on EGFR-K-521 that associated with reduced protein stability, suggesting a structural basis for reduced cetuximab efficacy. CetuGEX, an antibody with optimized Fc glycosylation targeting the same epitope as cetuximab, restored HNSCC sensitivity in a manner associated with antibody-dependent cellular cytotoxicity rather than EGFR pathway inhibition. Overall, our results highlight EGFR-K-521 expression as a key mechanism of cetuximab resistance to evaluate prospectively as a predictive biomarker in HNSCC patients. Further, they offer a preclinical rationale for the use of ADCC-optimized antibodies to treat tumors harboring this EGFR isoform.}, language = {en} } @phdthesis{Bremer2017, author = {Bremer, Anne}, title = {Structural and functional characterization of three closely related intrinsically disordered proteins from the model plant Arabidopsiis thaliana}, school = {Universit{\"a}t Potsdam}, pages = {86}, year = {2017}, language = {en} } @article{BremerWolffThalhammeretal.2017, author = {Bremer, Anne and Wolff, Martin and Thalhammer, Anja and Hincha, Dirk K.}, title = {Folding of intrinsically disordered plant LEA proteins is driven by glycerol-induced crowding and the presence of membranes}, series = {The FEBS journal}, volume = {284}, journal = {The FEBS journal}, publisher = {Wiley}, address = {Hoboken}, issn = {1742-464X}, doi = {10.1111/febs.14023}, pages = {919 -- 936}, year = {2017}, abstract = {Late embryogenesis abundant (LEA) proteins are related to cellular dehydration tolerance. Most LEA proteins are predicted to have no stable secondary structure in solution, i.e., to be intrinsically disordered proteins (IDPs), but they may acquire alpha-helical structure upon drying. In the model plant Arabidopsis thaliana, the LEA proteins COR15A and COR15B are highly induced upon cold treatment and are necessary for the plants to attain full freezing tolerance. Freezing leads to increased intracellular crowding due to dehydration by extracellular ice crystals. In vitro, crowding by high glycerol concentrations induced partial folding of COR15 proteins. Here, we have extended these investigations to two related proteins, LEA11 and LEA25. LEA25 is much longer than LEA11 and COR15A, but shares a conserved central sequence domain with the other two proteins. We have created two truncated versions of LEA25 (2H and 4H) to elucidate the structural and functional significance of this domain. Light scattering and CD spectroscopy showed that all five proteins were largely unstructured and monomeric in dilute solution. They folded in the presence of increasing concentrations of trifluoroethanol and glycerol. Additional folding was observed in the presence of glycerol and membranes. Fourier transform infra red spectroscopy revealed an interaction of the LEA proteins with membranes in the dry state leading to a depression in the gel to liquid-crystalline phase transition temperature. Liposome stability assays revealed a cryoprotective function of the proteins. The C- and N-terminal extensions of LEA25 were important in cryoprotection, as the central domain itself (2H, 4H) only provided a low level of protection.}, language = {en} } @article{BuschKlausPenoneetal.2017, author = {Busch, Verena and Klaus, Valentin H. and Penone, Caterina and Sch{\"a}fer, Deborah and Boch, Steffen and Prati, Daniel and M{\"u}ller, J{\"o}rg and Socher, Stephanie A. and Niinemets, {\"U}lo and Penuelas, Josep and H{\"o}lzel, Norbert and Fischer, Markus and Kleinebecker, Till}, title = {Nutrient stoichiometry and land use rather than species richness determine plant functional diversity}, series = {Ecology and evolution}, volume = {8}, journal = {Ecology and evolution}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {2045-7758}, doi = {10.1002/ece3.3609}, pages = {601 -- 616}, year = {2017}, abstract = {Plant functional traits reflect individual and community ecological strategies. They allow the detection of directional changes in community dynamics and ecosystemic processes, being an additional tool to assess biodiversity than species richness. Analysis of functional patterns in plant communities provides mechanistic insight into biodiversity alterations due to anthropogenic activity. Although studies have consi-dered of either anthropogenic management or nutrient availability on functional traits in temperate grasslands, studies combining effects of both drivers are scarce. Here, we assessed the impacts of management intensity (fertilization, mowing, grazing), nutrient stoichiometry (C, N, P, K), and vegetation composition on community-weighted means (CWMs) and functional diversity (Rao's Q) from seven plant traits in 150 grasslands in three regions in Germany, using data of 6 years. Land use and nutrient stoichiometry accounted for larger proportions of model variance of CWM and Rao's Q than species richness and productivity. Grazing affected all analyzed trait groups; fertilization and mowing only impacted generative traits. Grazing was clearly associated with nutrient retention strategies, that is, investing in durable structures and production of fewer, less variable seed. Phenological variability was increased. Fertilization and mowing decreased seed number/mass variability, indicating competition-related effects. Impacts of nutrient stoichiometry on trait syndromes varied. Nutrient limitation (large N:P, C:N ratios) promoted species with conservative strategies, that is, investment in durable plant structures rather than fast growth, fewer seed, and delayed flowering onset. In contrast to seed mass, leaf-economics variability was reduced under P shortage. Species diversity was positively associated with the variability of generative traits. Synthesis. Here, land use, nutrient availability, species richness, and plant functional strategies have been shown to interact complexly, driving community composition, and vegetation responses to management intensity. We suggest that deeper understanding of underlying mechanisms shaping community assembly and biodiversity will require analyzing all these parameters.}, language = {en} } @misc{Baeurle2017, author = {B{\"a}urle, Isabel}, title = {Can't remember to forget you}, series = {Seminars in cell \& developmental biology}, volume = {83}, journal = {Seminars in cell \& developmental biology}, publisher = {Elsevier}, address = {London}, issn = {1084-9521}, doi = {10.1016/j.semcdb.2017.09.032}, pages = {133 -- 139}, year = {2017}, abstract = {In nature plants are exposed to frequent changes in their abiotic and biotic environment. While some environmental cues are used to gauge the environment and align growth and development, others are beyond the regularly encountered spectrum of a species and trigger stress responses. Such stressful conditions provide a potential threat to survival and integrity. Plants adapt to extreme environmental conditions through physiological adaptations that are usually transient and are maintained until stressful environments subside. It is increasingly appreciated that in some cases environmental cues activate a stress memory that persists for some time after the extreme condition has subsided. Recent research has shown that this stress-induced environmental memory is mediated by epigenetic and chromatin-based mechanisms and both histone methylation and nucleosome occupancy are associated with it.}, language = {en} } @article{BuehningVallerianiLeimkuehler2017, author = {B{\"u}hning, Martin and Valleriani, Angelo and Leimk{\"u}hler, Silke}, title = {The role of SufS is restricted to Fe-S cluster biosynthesis in escherichia coli}, series = {Biochemistry}, volume = {56}, journal = {Biochemistry}, publisher = {American Chemical Society}, address = {Washington}, issn = {0006-2960}, doi = {10.1021/acs.biochem.7b00040}, pages = {1987 -- 2000}, year = {2017}, abstract = {In Escherichia coli, two different systems that are important for the coordinate formation of Fe-S clusters have been identified, namely, the ISC and SUF systems. The ISC system is the housekeeping Fe-S machinery, which provides Fe-S clusters for numerous cellular proteins. The IscS protein of this system was additionally revealed to be the primary sulfur donor for several sulfur-containing molecules with important biological functions, among which are the molybdenum cofactor (Moco) and thiolated nucleosides in tRNA. Here, we show that deletion of central components of the ISC system in addition to IscS leads to an overall decrease in Fe-S cluster enzyme and molybdoenzyme activity in addition to a decrease in the number of Fe-S-dependent thiomodifications of tRNA, based on the fact that some proteins involved in Moco biosynthesis and tRNA thiolation are Fe-S-dependent. Complementation of the ISC deficient strains with the suf operon restored the activity of Fe-S-containing proteins, including the MoaA protein, which is involved in the conversion of 5′GTP to cyclic pyranopterin monophosphate in the fist step of Moco biosynthesis. While both systems share a high degree of similarity, we show that the function of their respective l-cysteine desulfurase IscS or SufS is specific for each cellular pathway. It is revealed that SufS cannot play the role of IscS in sulfur transfer for the formation of 2-thiouridine, 4-thiouridine, or the dithiolene group of molybdopterin, being unable to interact with TusA or ThiI. The results demonstrate that the role of the SUF system is exclusively restricted to Fe-S cluster assembly in the cell.}, language = {en} } @misc{CabralValenteHartig2017, author = {Cabral, Juliano Sarmento and Valente, Luis and Hartig, Florian}, title = {Mechanistic simulation models in macroecology and biogeography}, series = {Ecography : pattern and diversity in ecology}, volume = {40}, journal = {Ecography : pattern and diversity in ecology}, number = {2}, publisher = {Wiley}, address = {Hoboken}, issn = {0906-7590}, doi = {10.1111/ecog.02480}, pages = {267 -- 280}, year = {2017}, abstract = {Macroecology and biogeography are concerned with understanding biodiversity patterns across space and time. In the past, the two disciplines have addressed this question mainly with correlative approaches, despite frequent calls for more mechanistic explanations. Recent advances in computational power, theoretical understanding, and statistical tools are, however, currently facilitating the development of more system-oriented, mechanistic models. We review these models, identify different model types and theoretical frameworks, compare their processes and properties, and summarize emergent findings. We show that ecological (physiology, demographics, dispersal, biotic interactions) and evolutionary processes, as well as environmental and human-induced drivers, are increasingly modelled mechanistically; and that new insights into biodiversity dynamics emerge from these models. Yet, substantial challenges still lie ahead for this young research field. Among these, we identify scaling, calibration, validation, and balancing complexity as pressing issues. Moreover, particular process combinations are still understudied, and so far models tend to be developed for specific applications. Future work should aim at developing more flexible and modular models that not only allow different ecological theories to be expressed and contrasted, but which are also built for tight integration with all macroecological data sources. Moving the field towards such a 'systems macroecology' will test and improve our understanding of the causal pathways through which eco-evolutionary processes create diversity patterns across spatial and temporal scales.}, language = {en} } @phdthesis{Castellanos2017, author = {Castellanos, Reynel Urrea}, title = {Functional characterization of FGT2, a positive regulator of heat stress memory}, school = {Universit{\"a}t Potsdam}, pages = {151}, year = {2017}, language = {en} }