@phdthesis{Bielecka2007, author = {Bielecka, Monika}, title = {Analysis of transcription factors under sulphur deficiency stress}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-14812}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {Sulphur, a macronutrient essential for plant growth, is among the most versatile elements in living organisms. Unfortunately, little is known about regulation of sulphate uptake and assimilation by plants. Identification of sulphate signalling processes will allow to control sulphate acquisition and assimilation and may prove useful in the future to improve sulphur-use efficiency in agriculture. Many of genes involved in sulphate metabolism are regulated on transcriptional level by products of other genes called transcription factors (TF). Several published experiments revealed TF genes that respond to sulphate deprivation, but none of these have been so far been characterized functionally. Thus, we aimed at identifying and characterising transcription factors that control sulphate metabolism in the model plant Arabidopsis thaliana. To achieve that goal we postulated that factors regulating Arabidopsis responses to inorganic sulphate deficiency change their transcriptional levels under sulphur-limited conditions. By comparing TF transcript profiles from plants grown on different sulphate regimes, we identified TF genes that may specifically induce or repress changes in expression of genes that allow plants to adapt to changes in sulphate availability. Candidate genes obtained from this screening were tested by reverse genetics approaches. Transgenic plants constitutively overproducing selected TF genes and mutant plants, lacking functional selected TF genes (knock out), were used. By comparing metabolite and transcript profiles from transgenic and wild type plants we aimed at confirming the role of selected AP2 TF candidate genes in plant adaptation to sulphur unavailability. After preliminary characterisation of WRKY24 and MYB93 TF genes, we postulate that these factors are involved in a complex multifactorial regulatory network, in which WRKY24 and MYB93 would act as superior factors regulating other transcription factors directly involved in the regulation of S-metabolism genes. Results obtained for plants overproducing TOE1 and TOE2 TF genes suggests that these factors may be involved in a mechanism, which is promoting synthesis of an essential amino acid, methionine, over synthesis of another amino acid, cysteine. Thus, TOE1 and TOE2 genes might be a part of transcriptional regulation of methionine synthesis. Approaches creating genetically manipulated plants may produce plant phenotypes of immediate biotechnological interest, such as plants with increased sulphate or sulphate-containing amino acid content, or better adapted to the sulphate unavailability.}, language = {en} } @phdthesis{Skirycz2007, author = {Skirycz, Aleksandra}, title = {Functional analysis of selected DOF transcription factors in the model plant Arabidopsis thaliana}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-16987}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {Transcription factors (TFs) are global regulators of gene expression playing essential roles in almost all biological processes, and are therefore of great scientific and biotechnological interest. This project focused on functional characterisation of three DNA-binding-with-one-zinc-finger (DOF) TFs from the genetic model plant Arabidopsis thaliana, namely OBP1, OBP2 and AtDOF4;2. These genes were selected due to severe growth phenotypes conferred upon their constitutive over-expression. To identify biological processes regulated by OBP1, OBP2 and AtDOF4;2 in detail molecular and physiological characterization of transgenic plants with modified levels of OBP1, OBP2 and AtDOF4;2 expression (constitutive and inducible over-expression, RNAi) was performed using both targeted and profiling technologies. Additionally expression patterns of studied TFs and their target genes were analyzed using promoter-GUS lines and publicly available microarray data. Finally selected target genes were confirmed by chromatin immuno-precipitation and electrophoretic-mobility shift assays. This combinatorial approach revealed distinct biological functions of OBP1, OBP2 and AtDOF4;2. Specifically OBP2 controls indole glucosinolate / auxin homeostasis by directly regulating the enzyme at the branch of these pathways; CYP83B1 (Skirycz et al., 2006). Glucosinolates are secondary compounds important for defence against herbivores and pathogens in the plants order Caparales (e.g. Arabidopsis, canola and broccoli) whilst auxin is an essential plant hormone. Hence OBP2 is important for both response to biotic stress and plant growth. Similarly to OBP2 also AtDOF4;2 is involved in the regulation of plant secondary metabolism and affects production of various phenylpropanoid compounds in a tissue and environmental specific manner. It was found that under certain stress conditions AtDOF4;2 negatively regulates flavonoid biosynthetic genes whilst in certain tissues it activates hydroxycinnamic acid production. It was hypothesized that this dual function is most likely related to specific interactions with other proteins; perhaps other TFs (Skirycz et al., 2007). Finally OBP1 regulates both cell proliferation and cell expansion. It was shown that OBP1 controls cell cycle activity by directly targeting the expression of core cell cycle genes (CYCD3;3 and KRP7), other TFs and components of the replication machinery. Evidence for OBP1 mediated activation of cell cycle during embryogenesis and germination will be presented. Additionally and independently on its effects on cell proliferation OBP1 negatively affects cell expansion via reduced expression of cell wall loosening enzymes. Summing up this work provides an important input into our knowledge on DOF TFs function. Future work will concentrate on establishing exact regulatory networks of OBP1, OBP2 and AtDOF4;2 and their possible biotechnological applications.}, language = {en} } @phdthesis{Kryvych2007, author = {Kryvych, Sergiy}, title = {Gene expression profiling in different stages of development of Arabidopsis thaliana leaftrichomes at the single cell level}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17474}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {Each organ of a multicellular organism is unique at the level of its tissues and cells. Furthermore, responses to environmental stimuli or developmental signals occur differentially at the single cell or tissue level. This underlines the necessity of precise investigation of the "building block of life" -the individual cell. Although recently large amount of data concerning different aspects of single cell performance was accumulated, our knowledge about development and differentiation of individual cell within specialized tissue are still far from being complete. To get more insight into processes that occur in certain individual cell during its development and differentiation changes in gene expression during life cycle of A. thaliana leaf hair cell (trichome) were explored in this work. After onset of trichome development this cell changes its cell cycle: it starts endoreduplication (a modified cell cycle in which DNA replication continues in the absence of mitosis and cytokinesis). This makes trichomes a suitable model for studying cell cycle regulation, regulation of cell development and differentiation. Cells of interest were sampled by puncturing them with glass microcapillaries. Each sample contained as few as ten single cells. At first time trichomes in initial stage of trichome development were investigated. To allow their sampling they were specifically labelled by green fluorescent protein (GFP). In total three cell types were explored: pavement cells, trichome initials and mature trichomes. Comparison of gene expression profiles of these cells allowed identification of the genes differentially expressed in subsequent stages of trichome development. Bioinformatic analysis of genes preferentially expressed in trichome initials showed their involvement in hormonal, metal, sulphur response and cell-cycle regulation. Expression pattern of three selected candidate genes, involved in hormonal response and early developmental processes was confirmed by independent method. Effects of mutations in these genes on both trichome and plant development as well as on plant metabolism were analysed. As an outcome of this work novel components in the sophisticated machinery of trichome development and cell cycle progression were identified. These factors could integrate hormone stimuli and network interactions between characterized and as yet unknown members of this machinery. I expect findings presented in this work to enhance and complement our current knowledge about cell cycle progression and trichome development, as well as about performance of the individual cell in general.}, language = {en} } @phdthesis{CastroMarin2007, author = {Castro Marin, Inmaculada}, title = {Nitrate: metabolism and development}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-18827}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {The major aim of this thesis was to study the effect of nitrate on primary metabolism and in development of the model plant Arabidopsis thaliana. The present work has two separate topics. First, to investigate the GDH family, a small gene family at the interface between nitrogen and carbon metabolisms. Second, to investigate the mechanisms whereby nitrogen is regulating the transition to flowering time in Arabidopsis thaliana. To gain more insights into the regulation of primary metabolism by the functional characterization of the glutamate dehydrogenase (GDH) family, an enzyme putatively involved in the metabolism of amino acids and thus suggested to play different and essential roles in carbon and nitrogen metabolism in plants, knock out mutants and transgenic plants carrying RNA interference construct were generated and characterized. The effect of silencing GDH on carbon and nitrogen metabolisms was investigated, especially the level of carbohydrates and the amino acid pool were further analysed. It has been shown that GDH expression is regulated by light and/or sugar status therefore, phenotypic and metabolic analysis were developed in plants grown at different points of the diurnal rhythm and in response to an extended night period. In addition, we are interested in the effect of nutrient availability in the transition from vegetative growth to flowering and especially in nitrate as a metabolite that triggers widespread and coordinated changes in metabolism and development. Nutrient availability has a dramatic effect on flowering time, with a marked delay of flowering when nitrate is supplied (Stitt, 1999). The use of different mutants and transgenic plants impaired in flowering signalling pathways was crucial to evaluate the impact of different nitrate concentrations on flowering time and to better understand the interaction of nitrate-dependent signals with other main flowering signalling pathways. Plants were grown on glutamine as a constitutive source of nitrogen, and the nitrate supply varied. Low nitrate led to earlier flowering. The response to nitrate is accentuated in short days and in the CONSTANS deficient co2 mutant, whereas long days or overexpression of CONSTANS overrides the nitrate response. These results indicate that nitrates acts downstream of the known flowering signalling pathways for photoperiod, autonomy, vernalization and gibberellic acid. Global analyses of gene expression of two independent flowering systems, a light impaired mutant (co2tt4) and a constitutive over-expresser of the potent repressor of flowering (35S::FLC), were to be investigated under two different concentrations of nitrate in order to identify candidate genes that may be involved in the regulation of flowering time by nitrate.}, language = {en} }