@phdthesis{Zhang2018, author = {Zhang, Yunming}, title = {Understanding the functional specialization of poly(A) polymerases in Arabidopsis thaliana}, school = {Universit{\"a}t Potsdam}, pages = {131}, year = {2018}, language = {de} } @misc{Wiebke2019, author = {Wiebke, Ullmann}, title = {Warum hat Bayern mehr Feldhasen als Brandenburg?}, series = {Vielfalt in der Uckermark : Forschungsprojekte 2015 - 2018}, journal = {Vielfalt in der Uckermark : Forschungsprojekte 2015 - 2018}, publisher = {oerding print GmbH}, address = {Braunschweig}, pages = {46 -- 47}, year = {2019}, language = {de} } @article{TischewDierschkeSchwabeetal.2018, author = {Tischew, Sabine and Dierschke, Hartmut and Schwabe, Angelika and Garve, Eckhard and Heinken, Thilo and Holzel, Norbert and Bergmeier, Erwin and Remy, Dominique and Haerdtle, Werner}, title = {Pflanzengesellschaft des Jahres 2019: Die Glatthaferwiese}, series = {Tuexenia : Mitteilungen der Floristisch-Soziologischen Arbeitsgemeinschaft}, journal = {Tuexenia : Mitteilungen der Floristisch-Soziologischen Arbeitsgemeinschaft}, number = {38}, publisher = {Floristisch-Soziologische Arbeitsgemeinschaft}, address = {G{\"o}ttingen}, issn = {0722-494X}, doi = {10.14471/2018.38.011}, pages = {287 -- 295}, year = {2018}, abstract = {Um Themen des Schutzes von Pflanzengemeinschaften wirksamer in der breiten {\"O}ffentlichkeit zu kommunizieren wird der Vorstand der „Floristisch-Soziologischen Arbeitsgemeinschaft (FlorSoz)" ab 2019 eine „Pflanzengesellschaft des Jahres" ausrufen. Damit sollen politische und administrative Entscheidungs- und Umsetzungsprozesse zur Erhaltung der Vielfalt von {\"O}kosystemen und Pflanzengesellschaften in Deutschlands gezielt unterst{\"u}tzt werden. F{\"u}r das Jahr 2019 wurde die Glatthaferwiese ausgew{\"a}hlt. Sie z{\"a}hlt aktuell zu den durch Artenverarmung und Fl{\"a}chenr{\"u}ckgang besonders bedrohten Pflanzengesellschaften Deutschlands. Es sind deshalb dringend Maßnahmen zum Schutz und zur Wiederherstellung notwendig. Dieser Artikel gibt einen kurzen {\"U}berblick zur naturschutzfachlichen Bedeutung von Glatthaferwiesen und deren {\"O}kosystemleistungen sowie zur floristisch-soziologischen Erforschung, zu Ursachen ihres R{\"u}ckgangs und zu geeigneten Gegenmaßnahmen.}, language = {de} } @phdthesis{Tanner2022, author = {Tanner, Norman}, title = {Methoden zur routinem{\"a}ßigen Untersuchung von Bienenprodukten mittels Fourier-transformierter Infrarotspektroskopie}, school = {Universit{\"a}t Potsdam}, pages = {VI, 194}, year = {2022}, language = {de} } @phdthesis{Tanne2015, author = {Tanne, Johannes}, title = {Direkter Elektronentransfer und Bioelektrokatalyse H{\"a}m-haltiger Redoxproteine und -enzyme an geladenen MWCNT-Polyanilin- Hybriden in elektrochemischen Biosensoren}, school = {Universit{\"a}t Potsdam}, pages = {112}, year = {2015}, language = {de} } @article{Steup2015, author = {Steup, Martin}, title = {Raum und Zahl in der Pflanzenphysiologie}, series = {Raum und Zahl}, journal = {Raum und Zahl}, publisher = {Trafo}, address = {Berlin}, isbn = {978-3-86464-082-7}, pages = {77 -- 109}, year = {2015}, language = {de} } @misc{Schaefer2019, author = {Sch{\"a}fer, Merlin}, title = {Mut macht einsam}, series = {Vielfalt in der Uckermark : Forschungsprojekte 2015 - 2018}, journal = {Vielfalt in der Uckermark : Forschungsprojekte 2015 - 2018}, publisher = {oerding print GmbH}, address = {Braunschweig}, pages = {52 -- 53}, year = {2019}, language = {de} } @phdthesis{Schwuchow2019, author = {Schwuchow, Viola}, title = {Charakterisierung der periplasmatischen Aldehyd-Oxidoreduktase (PaoABC) aus Escherichia coli}, school = {Universit{\"a}t Potsdam}, pages = {119}, year = {2019}, abstract = {Im Mittelpunkt dieser Arbeit standen Analysen zur Charakterisierung der periplasmatischen Aldehyd Oxidoreduktase aus E. coli. Kinetische Untersuchungen mit Ferricyanid als Elektronenakzeptor unter anaeroben Bedingungen zeigten f{\"u}r dieses Enzym eine h{\"o}here Aktivit{\"a}t als unter aeroben Bedingungen. Die getroffene Hypothese, dass PaoABC f{\"a}hig ist Elektronen an molekularen Sauerstoff weiter zu geben, konnte best{\"a}tigt werden. F{\"u}r den Umsatz aromatischer Aldehyde mit molekularem Sauerstoff wurde ein Optimum von pH 6,0 ermittelt. Dies steht im Gegensatz zur Reaktion mit Ferricyanid, mit welchem ein pH-Optimum von 4,0 gezeigt wurde. Die Reaktion von PaoABC mit molekularem Sauerstoff generiert zwar Wasserstoffperoxid, die Produktion von Superoxid konnte dagegen nicht beobachtet werden. Dass aerobe Bedingungen einen Einfluss auf das Ausl{\"o}sen der Expression von PaoABC haben, wurde in dieser Arbeit ebenfalls ermittelt. Im Zusammenhang mit der Produktion von ROS durch PaoABC wurde die Funktion eines k{\"u}rzlich in Elektronentransfer-Distanz zum FAD identifizierten [4Fe4S]-Clusters untersucht. Ein Austausch der f{\"u}r die Bindung des Clusters zust{\"a}ndigen Cysteine f{\"u}hrte zur Instabilit{\"a}t der Proteinvarianten, weswegen f{\"u}r diese keine weiteren Untersuchungen erfolgten. Daher wird zumindest ein struktur-stabilisierender Einfluss des [4Fe4S]-Clusters angenommen. Zur weiteren Untersuchung der Funktion dieses Clusters, wurde ein zwischen FAD und [4Fe4S]-Cluster lokalisiertes Arginin gegen ein Alanin ausgetauscht. Diese Proteinvariante zeigte eine reduzierte Geschwindigkeit der Reaktion gegen{\"u}ber dem Wildtyp. Die Bildung von Superoxid konnte auch hier nicht beobachtet werden. Die Vermutung, dass dieser Cluster einen elektronen-sammelnden Mechanismus unterst{\"u}tzt, welcher die Radikalbildung verhindert, kann trotz allem nicht ausgeschlossen werden. Da im Umkreis des Arginins weitere geladene und aromatische Aminos{\"a}uren lokalisiert sind, k{\"o}nnen diese den notwendigen Elektronentransfer {\"u}bernehmen. Neben der Ermittlung eines physiologischen Elektronenakzeptors und dessen Einfluss auf die Expression von PaoABC zeigt diese Arbeit auch, dass die Chaperone PaoD und MocA w{\"a}hrend der Reifung des MCD-Kofaktor eine gemeinsame Bindung an PaoABC realisieren. Es konnte im aktiven Zentrum von PaoABC ein Arginin beschrieben werden, welches auf Grund der engen Nachbarschaft zum MCD-Kofaktor und zum Glutamat (PaoABC-EC692) am Prozess der Substratbindung beteiligt ist. Im Zusammenhang mit dem Austausch dieses Arginins gegen ein Histidin oder ein Lysin wurden die Enzymspezifit{\"a}t und der Einfluss physiologischer Bedingungen, wie pH und Ionenst{\"a}rke, auf die Reaktion des Enzyms untersucht. Gegen{\"u}ber dem Wildtyp zeigten die Varianten mit molekularem Sauerstoff eine geringere Affinit{\"a}t zum Substrat aber auch eine h{\"o}here Geschwindigkeit der Reaktion. Vor allem f{\"u}r die Histidin-Variante konnte im gesamten pH-Bereich ein instabiles Verhalten bestimmt werden. Der Grund daf{\"u}r wurde durch das L{\"o}sen der Struktur der Histidin-Variante beschreiben. Durch den Austausch der Aminos{\"a}uren entf{\"a}llt die stabilisierende Wirkung der delokalisierten Elektronen des Arginins und es kommt zu einer Konformations{\"a}nderung im aktiven Zentrum. Neben der Reaktion von PaoABC mit einer Vielzahl aromatischer Aldehyde konnte auch der Umsatz von Salicylaldehyd zu Salicyls{\"a}ure durch PaoABC in einer Farbreaktion bestimmt werden. Durch Ausschluss von molekularem Sauerstoff als terminaler Elektronenakzeptor, in einer enzym-gekoppelten Reaktion, erfolgte ein Elektronentransport auf Ferrocencarboxyls{\"a}ure. Die Kombination aus beiden Methoden erm{\"o}glichte eine Verwendung von Ferrocen-Derivaten zur Generierung einer enzym-gekoppelten Reaktion mit PaoABC. Die Untersuchungen zu PaoABC zeigen, dass die Vielfalt der durch das Enzym katalysierten Rektionen weitere M{\"o}glichkeiten der enzymatischen Bestimmung biokatalytischer Prozesse bietet.}, language = {de} } @phdthesis{Schwanhold2018, author = {Schwanhold, Nadine}, title = {Die Funktion und Spezifit{\"a}t der Molybd{\"a}n-Cofaktor-bindenden Chaperone f{\"u}r die Formiat-Dehydrogenasen aus Escherichia coli und Rhodobacter capsulatus}, school = {Universit{\"a}t Potsdam}, pages = {132}, year = {2018}, language = {de} } @article{SchwabeTischewBergmeieretal.2019, author = {Schwabe, Angelika and Tischew, Sabine and Bergmeier, Erwin and Garve, Eckhard and H{\"a}rdtle, Werner and Heinken, Thilo and H{\"o}lzel, Norbert and Peppler-Lisbach, Cord and Remy, Dominique and Dierschke, Hartmut}, title = {Pflanzengesellschaft des Jahres 2020}, series = {Tuexenia : Mitteilungen der Floristisch-Soziologischen Arbeitsgemeinschaft}, journal = {Tuexenia : Mitteilungen der Floristisch-Soziologischen Arbeitsgemeinschaft}, number = {39}, publisher = {Floristisch-soziologischen Arbeitsgemeinschaft e.V.}, address = {G{\"o}ttingen}, issn = {0722-494X}, doi = {10.14471/2019.39.017}, pages = {287 -- 308}, year = {2019}, abstract = {Wie erstmals 2019 wird auch f{\"u}r das Jahr 2020 von der „Floristisch-soziologischen Arbeitsgemeinschaft" (FlorSoz) f{\"u}r Deutschland die „Pflanzengesellschaft des Jahres" vorgestellt. Damit soll wiederum f{\"u}r die {\"O}ffentlichkeit die Notwendigkeit des Schutzes gef{\"a}hrdeter Pflanzengesellschaften aufgezeigt werden. F{\"u}r das Jahr 2020 wurden die Borstgrasrasen ausgew{\"a}hlt. Wie alle Pflanzengemeinschaften n{\"a}hrstoffarmer Standorte, sind auch die Borstgrasrasen stark gef{\"a}hrdet und regional sogar unmittelbar vom Aussterben bedroht. Wir konzentrieren uns vor allem auf die Best{\"a}nde der planaren bis montanen Stufe (Unterverband Violenion caninae: Hundsveilchen-Borstgrasrasen). Die Standorte von Violenion caninae-Gesellschaften werden nicht ged{\"u}ngt und sind auf extensive Beweidung, z.T. auch auf einsch{\"u}rige Mahd angewiesen. F{\"u}r Borstgrasrasen bezeichnend sind eine F{\"u}lle gef{\"a}hrdeter Pflanzenarten wie z.B. Arnica montana (Arnika) und Antennaria dioica (Zweih{\"a}usiges Katzenpf{\"o}tchen). Bei den Borstgrasrasen spielen f{\"u}r die zunehmend hohe Gef{\"a}hrdung nicht nur Fl{\"a}chenr{\"u}ckg{\"a}nge durch Nutzungsaufgabe, Aufforstung, Sport- und Freizeitaktivit{\"a}ten und {\"U}berbauung eine Rolle, sondern auch {\"A}nderungen der Struktur und Artenzusammensetzung durch direkte D{\"u}ngung sowie atmogene Stickstoffeintr{\"a}ge sind von Bedeutung. N{\"a}hrstoffanreicherungen f{\"u}hren zum Verlust der konkurrenzschwachen, gef{\"a}hrdeten Arten zugunsten einiger allgemein verbreiteter, h{\"a}ufig dominanter Gr{\"a}ser sowie konkurrenzkr{\"a}ftiger Kr{\"a}uter. Wir skizzieren die Bedeutung der Borstgrasrasen als gef{\"a}hrdete Lebensgemeinschaften, geben Hinweise zur floristisch-soziologischen Erforschung und zu weiteren Naturschutz-Aspekten (R{\"u}ckgang, Erhaltung, M{\"o}glichkeiten der Restitution). Ein wirksamer Schutz ist nur bei einem integrativen Naturschutzansatz mit geeigneter Nutzung m{\"o}glich.}, language = {de} } @article{ReilBinderFreiseetal.2018, author = {Reil, Daniela and Binder, Florian and Freise, Jona and Imholt, Christian and Beyrers, Konrad and Jacob, Jens and Kr{\"u}ger, Detlev H. and Hofmann, J{\"o}rg and Dreesman, Johannes and Ulrich, Rainer G{\"u}nter}, title = {Hantaviren in Deutschland}, series = {Berliner und M{\"u}nchener tier{\"a}rztliche Wochenschrift}, volume = {131}, journal = {Berliner und M{\"u}nchener tier{\"a}rztliche Wochenschrift}, number = {11-12}, publisher = {Schl{\"u}tersche Verlagsgesellschaft mbH \& Co. KG.}, address = {Hannover}, issn = {0005-9366}, doi = {10.2376/0005-9366-18003}, pages = {453 -- 464}, year = {2018}, abstract = {Hantaviruses are small mammal-associated pathogens that are found in rodents but also in shrews, moles and bats. Aim of this manuscript is to give a current overview of the epidemiology and ecology of hantaviruses in Germany and to discuss respective models for the prediction of virus outbreaks. In Germany the majority of human disease cases are caused by the Puumala virus (PUUV), transmitted by the bank vole (Myodes glareolus). PUUV is associated with the Western evolutionary lineage of the bank vole and is not present in the eastern and northern parts of Germany. A second human pathogenic hantavirus is the Dobrava-Belgrade virus (DOBV), genotype Kurkino; its reservoir host, the striped field mouse (Apodemus agrarius), is mostly occurring in the eastern part of Germany. A PUUV-related hantavirus is the rarely pathogenic Tula virus (TULV), that is associated with the common vole (Microtus arvalis). In addition, Seewis virus, Asikkala virus, and Bruges virus are shrew- and mole-associated hantaviruses with still unknown pathogenicity in humans. Human disease cases are associated with the different hantaviruses according to their regional distribution. The viruses can cause mild to severe but also subclinical courses of the respective disease. The number of human PUUV disease cases in 2007, 2010, 2012, 2015 and 2017 correlates with the occurrence of high levels of seed production of beech trees ("beech mast") in the preceding year. Models based on weather parameters for the prediction of PUUV disease clusters as developed in recent years need further validation and optimisation. in addition to the abundance of infected reservoir rodents, the exposure behaviour of humans affects the risk of human infection. The application of robust forecast models can assist the public health service to develop and communicate spatially and temporally targeted information. Thus, further recommendations to mitigate infection risk for the public may be provided.}, language = {de} } @phdthesis{Radon2017, author = {Radon, Christin}, title = {Analyse der Funktion der dualen Lokalisation der 3-Mercaptopyruvat Sulfurtransferase im Menschen}, school = {Universit{\"a}t Potsdam}, pages = {123}, year = {2017}, language = {de} } @phdthesis{Qin2022, author = {Qin, Miaojing}, title = {The role of heat shock proteins (HSP23s and HSP70-4) for heat stress memory in plants}, school = {Universit{\"a}t Potsdam}, pages = {138}, year = {2022}, abstract = {Heat is a significant climatic condition that threatens crop growth and survival. Extreme temperature occurrences in nature are becoming more severe, more frequent and longer-lasting, all of which have deleterious repercussions for agricultural production. As a result, it is critical to learn more about the mechanisms that lead to increased heat tolerance in plants. To endure and survive, higher plants have evolved complex mechanisms to respond to various amounts of heat stress. Plants have a thermal tolerance that permits them to survive rapid and dramatic temperature rises for a limited time. Plants can also be primed to withstand heat stress (HS) that would otherwise be lethal by exposing them to short, moderate, and non-lethal HS (referred to as a priming stimulus) before being exposed to severe HS. A prepared acquired thermotolerance in primed plants can be maintained for a long time under optimal circumstances, implying that plants can store information during this period. Several studies have shown that acquired thermotolerance (thermopriming) refers to the increased resistance of cells, tissues, and organisms to elevated temperatures after prior heat exposure. Maintenance of acquired thermotolerance (thermomemory) is associated with the synthesis of specialized stress proteins involved in cellular protection and accelerated tissue repair, such as heat shock proteins (HSPs). Recent studies showed a main role of heat shock proteins for turnover of protein quality components, e.g. HSP21 in the chloroplast in the regulation of thermomemory. As an important organelle, mitochondrial function is critical for plant cell responses to heat. However, it is still unknown what the molecular and physiological involvement of HSPs is in mitochondrial function and thermomemory. In our study, we showed that thermopriming induces transcript and protein levels of two mitochondrial small heat shock proteins, HSP23.5 (AT5G51440) and HSP23.6 (AT4G25200), which last for 2-3 days throughout the thermomemory phase. The morphological analysis of HSP23.5/6 transgenic plants demonstrated HSP23.5/6 function redundantly in heat stress. We showed that hsp23.5/6 double knockout plants had abnormalities in thermomemory at the seedling stage, and that mature hsp23.5/6 4 plants are more sensitive to both basal thermotolerance and thermomemory. Heat treatment significantly impacted the respiration rate of hsp23.5/6 seedlings compared to WT, indicating mitochondrial dysfunction dependent on HSP23.5 and HSP23.6. In addition, we tested and confirmed the chaperone activity of HSP23.6 toward the model substrate protein malate dehydrogenase (MDH) in vitro, indicating that HSP23.6 potentially contributes to the maintenance of cellular viability. Furthermore, we discovered a novel HSP23.6 client protein, CIB22, a mitochondrial complex-I subunit protein. According to experimental data (BiFC and Co-IP), HSP23.6 and CIB22 interact in plant cells. We also identified a heat response phenotype in the cib22 mutant compared to WT, as well as CIB22 protein degradation in the hsp23.5/6 mutant when exposed to heat. Our findings suggest that the two mitochondrial-localized heat shock proteins play a role in thermotolerance, presumably by influencing mitochondrial function and structure. More broadly, to identify novel genetic components associated with thermomemory in plants, we performed proteome profiling for Arabidopsis WT (Col-0) seedlings during thermomemory. Multiple time point samples of priming and triggering with controls were collected and analyzed to reveal the dynamic proteome changes during the memory phase in Arabidopsis cells. Among the top memory-associated proteins, we discovered that HSP70-4 was significantly upregulated after priming and remains high (at least 2-fold) for the next four days. By morphologically analyzing their heat stress behaviors, we were able to verify that HSP70-4 is involved in plant heat stress response. More intriguingly, we discovered that following priming, HSP70-4-GFP creates cytosolic foci that persist for a few days into the recovery period. We propose that these foci are linked to SGs due to cycloheximide (CHX) repressing the GFP-foci signal when exposed to heat. These findings indicate an HSP70-4-mediated transcription and translation control link (module) during basal thermotolerance and thermomemory, as well as its potential role(s) in heat stress response. To summarize, our research provides new insight into the role of heat shock proteins in controlling heat stress tolerance and memory.}, language = {de} } @phdthesis{Meyer2018, author = {Meyer, Susann}, title = {Wirkung und Wirkungsweise von Ectoin auf DNA-Molek{\"u}le}, school = {Universit{\"a}t Potsdam}, pages = {103}, year = {2018}, language = {de} } @phdthesis{Maier2016, author = {Maier, Natalia}, title = {Aufbau eines Testsystems zum Nachweis von Ethylglucuronid (EtG) in Haaren}, school = {Universit{\"a}t Potsdam}, pages = {IX, 122}, year = {2016}, language = {de} } @misc{Maass2019, author = {Maaß, Stefanie}, title = {Blick in die Zukunft}, series = {Vielfalt in der Uckermark : Forschungsprojekte 2015 - 2018}, journal = {Vielfalt in der Uckermark : Forschungsprojekte 2015 - 2018}, publisher = {oerding print GmbH}, address = {Braunschweig}, pages = {24 -- 25}, year = {2019}, language = {de} } @phdthesis{Lieske2015, author = {Lieske, Stefanie}, title = {Regulaton des mIndy-Gens durch Interleukin-6, Oncostatin M und Glucagon und die physiologischen Konsequenzen im Lipidstoffwechsel prim{\"a}rer Hepatozyten}, school = {Universit{\"a}t Potsdam}, pages = {178}, year = {2015}, language = {de} } @phdthesis{Lehmann2018, author = {Lehmann, Andreas}, title = {Variability in human life history traits}, school = {Universit{\"a}t Potsdam}, pages = {110}, year = {2018}, language = {de} } @phdthesis{Kersten2016, author = {Kersten, Birgit}, title = {Proteom-weite Studien zur Phosphorylierung pflanzlicher Proteine mittels Proteinmikroarrays und Bioinformatik}, school = {Universit{\"a}t Potsdam}, year = {2016}, language = {de} } @phdthesis{Kamprad2014, author = {Kamprad, Fanny}, title = {Einfluss von Zink auf die intestinale Mikrobiota im Ferkel und der mono-assoziirten Maus}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, school = {Universit{\"a}t Potsdam}, pages = {VIII , 92}, year = {2014}, language = {de} } @phdthesis{Dippong2017, author = {Dippong, Martin}, title = {Direkte und indirekte Hapten-selektive Immunfluoreszenzmarkierung von Hybridomzellen zur Generierung monoklonaler Antik{\"o}rper}, school = {Universit{\"a}t Potsdam}, pages = {VII, 103}, year = {2017}, abstract = {Die Hybridomtechnik zur Produktion von monoklonalen Antik{\"o}rpern erm{\"o}glichte einen großen Schritt in der Entwicklung von Immunoassays f{\"u}r die biochemische Forschung und klinische Diagnostik. Auch die Produktion von Antik{\"o}rpern gegen niedermolekulare Analyten, Haptene, typische Targets in der Lebensmittel- und Umweltanalytik, erlangte in den letzten Jahren eine immer gr{\"o}ßere Bedeutung. Im Zuge der Durchf{\"u}hrung der Hybridomtechnik werden tausende Antik{\"o}rper-sezernierende und nicht-sezernierende Zellen generiert. Die Selektion der wenigen antigenselektiven Hybridomzellen z{\"a}hlt dabei zu den herausforderndsten Schritten f{\"u}r die Antik{\"o}rpergewinnung. Bisherige Selektionsverfahren, wie die Limiting-Dilution-Klonierung in Verbindung mit Enzyme-linked Immunosorbent Assays (ELISAs), garantieren keine Monoklonalit{\"a}t und erlauben nur das Screening von einigen wenigen Zellklonen. Hingegen erm{\"o}glichen Hochdurchsatz-Selektionsmethoden, wie die Fluoreszenz-aktivierte Zellsortierung (FACS), einen sehr hohen Probendurchsatz. Eine Einzelzellablage garantiert hierbei Monoklonalit{\"a}t. Jedoch sind die daf{\"u}r erforderlichen Zellmarkierungen oftmals zellsch{\"a}digend oder aufwendig zu generieren. Auch ist bisher noch keine Markierungsmethode bekannt, die es erm{\"o}glicht, Hapten-selektive Hybridomzellen durchflusszytometrisch zu analysieren und eine FACS-Selektion durchzuf{\"u}hren. Aus diesem Grund wurden in dieser Arbeit zwei Zellmarkierungsmethoden entwickelt, die dies erm{\"o}glichen sollten. Die membranst{\"a}ndigen Antik{\"o}rper von Hybridomzellen sollten entweder direkt oder indirekt immunfluoreszenz-markiert und dadurch f{\"u}r die Durchflusszytometrie und FACS-Selektion zug{\"a}nglich gemacht werden. Die direkte Markierung wurde mittels eines Hapten-Fluorophor-Konjugats durchgef{\"u}hrt. Sie erm{\"o}glichte erstmalig den Anteil an Haptenselektiven Hybridomzellen in einer Hybridomzelllinie zu {\"u}berpr{\"u}fen. Dies konnte f{\"u}r zwei Hapten-selektive Hybridomzelllinien, die Antik{\"o}rper gegen das Hormon 17β-Estradiol und das Cardenolid Digoxigenin bilden, gezeigt werden. Durchflusszytometrie und ELISAs lieferten vergleichbare Ergebnisse. Zellen, die Hapten-selektiv markiert werden konnten, sezernierten ebenfalls Hapten-selektive Antik{\"o}rper. Des Weiteren konnte die direkte Markierung dazu genutzt werden, zwei Mykotoxin-selektive Hybridomzelllinien, welche Antik{\"o}rper gegen Aflatoxin und Zearalenon bilden, auf Monoklonalit{\"a}t zu testen. Dies ist mittels ELISA nicht m{\"o}glich. Die Markierungsmethode eignete sich jedoch nur f{\"u}r fixierte Hybridomzellen. Eine Markierung von lebenden Zellen konnte weder durchflusszytometrisch noch mittels konfokaler Laser-Scanning-Mikroskopie gezeigt werden. Dies gelang erst mit einer neu entwickelten indirekten Immunfluoreszenzmarkierung. Dabei wurden die Zellen zun{\"a}chst mit einem Hapten-Peroxidase-Konjugat inkubiert, gefolgt von einem Fluorophor-markierten anti-HRP-Antik{\"o}rper-Konjugat. Dies wurde f{\"u}r zwei Analyten, das Hormon Estron und das Antiepileptikum Carbamazepin, gezeigt. Die indirekte Markierung wurde erfolgreich dazu verwendet, Carbamazepin-selektive Hybridomzellen aus einem Fusionsansatz f{\"u}r die monoklonale Antik{\"o}rperproduktion auszusortieren. Damit wurde erstmalig eine Zellmarkierungsmethode entwickelt, die eine Hochdurchsatz-Selektion lebender Hybridomzellen aus einem Fusionsansatz erm{\"o}glicht. Sie ist nicht zellsch{\"a}digend und kann zus{\"a}tzlich zur Selektion Hapten-selektiver Plasmazellen verwendet werden.}, language = {de} } @misc{DierschkeHeinken2019, author = {Dierschke, Hartmut and Heinken, Thilo}, title = {Vorwort}, series = {Tuexenia : Mitteilungen der Floristisch-Soziologischen Arbeitsgemeinschaft}, journal = {Tuexenia : Mitteilungen der Floristisch-Soziologischen Arbeitsgemeinschaft}, number = {39}, publisher = {Floristisch-Soziologische Arbeitsgemeinschaft}, address = {G{\"o}ttingen}, issn = {0722-494X}, pages = {7 -- 7}, year = {2019}, language = {de} } @phdthesis{Buehning2018, author = {B{\"u}hning, Martin}, title = {Charakterisierung des Zusammenspiels von FeS-Cluster-Assemblierung, Molybd{\"a}nkofaktor-Biosynthese und tRNA-Thiolierung in Escherichia coli}, school = {Universit{\"a}t Potsdam}, pages = {167}, year = {2018}, language = {de} } @phdthesis{Buechner2014, author = {B{\"u}chner, Kerstin}, title = {Modifizierung und Charakterisierung von Wellenleitermaterialien f{\"u}r Biosensoranwendungen}, pages = {129}, year = {2014}, language = {de} } @phdthesis{Albers2018, author = {Albers, Philip}, title = {Funktionelle Charakterisierung des bakteriellen Typ-III Effektorproteins HopZ1a in Nicotiana benthamiana}, school = {Universit{\"a}t Potsdam}, pages = {viii, 134}, year = {2018}, abstract = {Um das Immunsystem der Pflanze zu manipulieren translozieren gram-negative pathogene Bakterien Typ-III Effektorproteine (T3E) {\"u}ber ein Typ-III Sekretionssystem (T3SS) in die pflanzliche Wirtszelle. Dort lokalisieren T3Es in verschiedenen subzellul{\"a}ren Kompartimenten, wo sie Zielproteine modifizieren und so die Infektion beg{\"u}nstigen. HopZ1a, ein T3E des Pflanzenpathogens Pseudomonas syringae pv. syringae, ist eine Acetyltransferase und lokalisiert {\"u}ber ein Myristolierungsmotiv an der Plasmamembran der Wirtszelle. Obwohl gezeigt wurde, dass HopZ1a die fr{\"u}he Signalweiterleitung an der Plasmamembran st{\"o}rt, wurde bisher kein mit der Plasmamembran assoziiertes Zielprotein f{\"u}r diesen T3E identifiziert. Um bisher unbekannte HopZ1a-Zieleproteine zu identifizieren wurde im Vorfeld dieser Arbeit eine Hefe-Zwei-Hybrid-Durchmusterung mit einer cDNA-Bibliothek aus Tabak durchgef{\"u}hrt, wobei ein nicht n{\"a}her charakterisiertes Remorin als Interaktor gefunden wurde. Bei dem Remorin handelt es sich um einen Vertreter der Gruppe 4 der Remorin-Familie, weshalb es in NbREM4 umbenannt wurde. Durch den Einsatz verschiedener Interaktionsstudien konnte demonstriert werden, dass HopZ1a mit NbREM4 in Hefe, in vitro und in planta wechselwirkt. Es wurde ferner deutlich, dass HopZ1a auf spezifische Weise mit dem konservierten C-Terminus von NbREM4 interagiert, das Remorin jedoch in vitro nicht acetyliert. Analysen mittels BiFC haben zudem ergeben, dass NbREM4 in Homodimeren an der Plasmamembran lokalisiert, wo auch die Interaktion mit HopZ1a stattfindet. Eine funktionelle Charakterisierung von NbREM4 ergab, dass das Remorin eine spezifische Rolle im Immunsystem der Pflanze einnimmt. Die transiente Expression in N. benthamiana induziert die Expression von Abwehrgenen sowie einen ver{\"a}nderten Blattph{\"a}notyp. In A. thaliana wird HopZ1a {\"u}ber das Decoy ZED1 und das R-Protein ZAR1 erkannt, was zur Ausl{\"o}sung einer starken Hypersensitiven Antwort (HR von hypersensitive response) f{\"u}hrt. Es konnte im Rahmen dieser Arbeit gezeigt werden, dass ZAR1 in N. benthamiana konserviert ist, NbREM4 jedoch nicht in der ETI als Decoy fungiert. Mit Hilfe einer Hefe-Zwei-Hybrid-Durchmusterung mit NbZAR1 als K{\"o}der konnten zwei Proteine, die Catalase CAT1 und der Protonenpumpeninteraktor PPI1, als Interaktoren von NbZAR1 identifiziert werden, welche m{\"o}glicherweise in der Regulation der HR eine Rolle spielen. Aus Voruntersuchungen war bekannt, dass NbREM4 mit weiteren, nicht n{\"a}her charakterisierten Proteinen aus Tabak interagieren k{\"o}nnte. Eine phylogenetische Einordnung hat gezeigt, dass es sich um die bekannte Immun-Kinase PBS1 sowie zwei E3-Ubiquitin-Ligasen, NbSINA1 und NbSINAL3, handelt. PBS1 interagiert mit NbREM4 an der Plasmamembran und phosphoryliert das Remorin innerhalb des intrinsisch ungeordneten N-Terminus. Mittels Massenspektrometrie konnten die Serine an Position 64 und 65 innerhalb der Aminos{\"a}uresequenz von NbREM4 als PBS1-abh{\"a}ngige Phosphorylierungsstellen identifiziert wurden. NbSINA1 und NbSINAL3 besitzen in vitro Ubiquitinierungsaktivit{\"a}t, bilden Homo- und Heterodimere und interagieren ebenfalls mit dem N-terminalen Teil von NbREM4, wobei sie das Remorin in vitro nicht ubiquitinieren. Aus den in dieser Arbeit gewonnenen Ergebnissen l{\"a}sst sich ableiten, dass der bakterielle T3E HopZ1a gezielt mit dem Tabak-Remorin NbREM4 an der Plasmamembran interagiert und {\"u}ber einen noch unbekannten Mechanismus mit dem Immunsystem der Pflanze interferiert, wobei NbREM4 m{\"o}glicherweise eine Rolle als Adapter- oder Ankerprotein zukommt, {\"u}ber welches HopZ1a mit weiteren Immunkomponenten interagiert. NbREM4 ist Teil eines gr{\"o}ßeren Immunnetzwerkes, zu welchem die bekannte Immun-Kinase PBS1 und zwei E3-Ubiquitin-Ligasen geh{\"o}ren. Mit NbREM4 konnte damit erstmalig ein membranst{\"a}ndiges Protein mit einer Funktion im Immunsystem der Pflanze als Zielprotein von HopZ1a identifiziert werden.}, language = {de} } @misc{OPUS4-62367, title = {Vielfalt in der Uckermark}, editor = {Berlin-Brandenburgisches Institut f{\"u}r Biodiverst{\"a}tsforschung,}, publisher = {oerding print GmbH}, address = {Braunschweig}, pages = {62}, year = {2019}, language = {de} }