@article{DiekmannAndresBeckeretal.2019, author = {Diekmann, Martin and Andres, Christian and Becker, Thomas and Bennie, Jonathan and Blueml, Volker and Bullock, James M. and Culmsee, Heike and Fanigliulo, Miriam and Hahn, Annett and Heinken, Thilo and Leuschner, Christoph and Luka, Stefanie and Meissner, Justus and M{\"u}ller, Josef and Newton, Adrian and Peppler-Lisbach, Cord and Rosenthal, Gert and van den Berg, Leon J. L. and Vergeer, Philippine and Wesche, Karsten}, title = {Patterns of long-term vegetation change vary between different types of semi-natural grasslands in Western and Central Europe}, series = {Journal of vegetation science}, volume = {30}, journal = {Journal of vegetation science}, number = {2}, publisher = {Wiley}, address = {Hoboken}, issn = {1100-9233}, doi = {10.1111/jvs.12727}, pages = {187 -- 202}, year = {2019}, abstract = {Questions Has plant species richness in semi-natural grasslands changed over recent decades? Do the temporal trends of habitat specialists differ from those of habitat generalists? Has there been a homogenization of the grassland vegetation? Location Different regions in Germany and the UK. Methods We conducted a formal meta-analysis of re-survey vegetation studies of semi-natural grasslands. In total, 23 data sets were compiled, spanning up to 75 years between the surveys, including 13 data sets from wet grasslands, six from dry grasslands and four from other grassland types. Edaphic conditions were assessed using mean Ellenberg indicator values for soil moisture, nitrogen and pH. Changes in species richness and environmental variables were evaluated using response ratios. Results In most wet grasslands, total species richness declined over time, while habitat specialists almost completely vanished. The number of species losses increased with increasing time between the surveys and were associated with a strong decrease in soil moisture and higher soil nutrient contents. Wet grasslands in nature reserves showed no such changes or even opposite trends. In dry grasslands and other grassland types, total species richness did not consistently change, but the number or proportions of habitat specialists declined. There were also considerable changes in species composition, especially in wet grasslands that often have been converted into intensively managed, highly productive meadows or pastures. We did not find a general homogenization of the vegetation in any of the grassland types. Conclusions The results document the widespread deterioration of semi-natural grasslands, especially of those types that can easily be transformed to high production grasslands. The main causes for the loss of grassland specialists are changed management in combination with increased fertilization and nitrogen deposition. Dry grasslands are most resistant to change, but also show a long-term trend towards an increase in more mesotrophic species.}, language = {en} } @article{SchoepkeHeinzePaetzigetal.2019, author = {Sch{\"o}pke, Benito and Heinze, Johannes and P{\"a}tzig, Marlene and Heinken, Thilo}, title = {Do dispersal traits of wetland plant species explain tolerance against isolation effects in naturally fragmented habitats?}, series = {Plant ecology : an international journal}, volume = {220}, journal = {Plant ecology : an international journal}, number = {9}, publisher = {Springer}, address = {Dordrecht}, issn = {1385-0237}, doi = {10.1007/s11258-019-00955-8}, pages = {801 -- 815}, year = {2019}, abstract = {The effects of habitat fragmentation and isolation on plant species richness have been verified for a wide range of anthropogenically fragmented habitats, but there is currently little information about their effects in naturally small and isolated habitats. We tested whether habitat area, heterogeneity, and isolation affect the richness of wetland vascular plant species in kettle holes, i.e., small glacially created wetlands, in an agricultural landscape of 1 km(2) in NE Germany. We compared fragmentation effects with those of forest fragments in the same landscape window. Since wetland and forest species might differ in their tolerance to isolation, and because isolation effects on plant species may be trait dependent, we asked which key life history traits might foster differences in isolation tolerance between wetland and forest plants. We recorded the flora and vegetation types in 83 isolated sites that contained 81 kettle holes and 25 forest fragments. Overall, the number of wetland species increased with increasing area and heterogeneity, i.e., the number of vegetation types, while area was not a surrogate for heterogeneity in these naturally fragmented systems. Isolation did not influence the number of wetland species but decreased the number of forest species. We also found that seeds of wetland species were on average lighter, more persistent and better adapted to epizoochory, e.g., by waterfowl, than seeds of forest species. Therefore, we suggest that wetland species are more tolerant to isolation than forest species due to their higher dispersal potential in space and time, which may counterbalance the negative effects of isolation.}, language = {en} } @article{HeimHoelzelHeinkenetal.2019, author = {Heim, Ramona J. and H{\"o}lzel, Norbert and Heinken, Thilo and Kamp, Johannes and Thomas, Alexander and Darman, Galina F. and Smirenski, Sergei M. and Heim, Wieland}, title = {Post-burn and long-term fire effects on plants and birds in floodplain wetlands of the Russian Far East}, series = {Biodiversity and conservation}, volume = {28}, journal = {Biodiversity and conservation}, number = {6}, publisher = {Springer}, address = {Dordrecht}, issn = {0960-3115}, doi = {10.1007/s10531-019-01746-3}, pages = {1611 -- 1628}, year = {2019}, abstract = {Wildfires affect biodiversity at multiple levels. While vegetation is directly changed by fire events, animals are often indirectly affected through changes in habitat and food availability. Globally, fire frequency and the extent of fires are predicted to increase in the future. The impact of fire on the biodiversity of temperate wetlands has gained little attention so far. We compared species richness and abundance of plants and birds in burnt and unburnt areas in the Amur floodplain/Russian Far East in the year of fire and 1 year after. We also analysed vegetation recovery in relation to time since fire over a period of 18 years. Plant species richness was higher in burnt compared to unburnt plots in the year of the fire, but not in the year after. This suggests that fire has a positive short-term effect on plant diversity. Bird species richness and abundance were lower on burnt compared to unburnt plots in the year of the fire, but not in the year after. Over a period of 18 years, high fire frequency led to an increase in herb cover and a decrease in grass cover. We show that the effects on biodiversity are taxon- and species-specific. Fire management strategies in temperate wetlands should consider fire frequency as a key driving force of vegetation structure, with carry-over effects on higher trophic levels. Designing fire refuges, i.e., areas that do not burn annually, might locally be necessary to maintain high species richness.}, language = {en} } @article{MaesBlondeelPerringetal.2019, author = {Maes, Sybryn L. and Blondeel, Haben and Perring, Michael P. and Depauw, Leen and Brumelis, Guntis and Brunet, J{\"o}rg and Decocq, Guillaume and den Ouden, Jan and Haerdtle, Werner and Hedl, Radim and Heinken, Thilo and Heinrichs, Steffi and Jaroszewicz, Bogdan and Kirby, Keith J. and Kopecky, Martin and Malis, Frantisek and Wulf, Monika and Verheyen, Kris}, title = {Litter quality, land-use history, and nitrogen deposition effects on topsoil conditions across European temperate deciduous forests}, series = {Forest ecology and management}, volume = {433}, journal = {Forest ecology and management}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0378-1127}, doi = {10.1016/j.foreco.2018.10.056}, pages = {405 -- 418}, year = {2019}, abstract = {Topsoil conditions in temperate forests are influenced by several soil-forming factors, such as canopy composition (e.g. through litter quality), land-use history, atmospheric deposition, and the parent material. Many studies have evaluated the effects of single factors on physicochemical topsoil conditions, but few have assessed the simultaneous effects of multiple drivers. Here, we evaluate the combined effects of litter quality, land-use history (past land cover as well as past forest management), and atmospheric deposition on several physicochemical topsoil conditions of European temperate deciduous forest soils: bulk density, proportion of exchangeable base cations, carbon/nitrogen-ratio (C/N), litter mass, bio-available and total phosphorus, pH(KCI)and soil organic matter. We collected mineral soil and litter layer samples, and measured site characteristics for 190 20 x 20 m European mixed forest plots across gradients of litter quality (derived from the canopy species composition) and atmospheric deposition, and for different categories of past land cover and past forest management. We accounted for the effects of parent material on topsoil conditions by clustering our plots into three soil type groups based on texture and carbonate concentration. We found that litter quality was a stronger driver of topsoil conditions compared to land-use history or atmospheric deposition, while the soil type also affected several topsoil conditions here. Plots with higher litter quality had soils with a higher proportion of exchangeable base cations, and total phosphorus, and lower C/N-ratios and litter mass. Furthermore, the observed litter quality effects on the topsoil were independent from the regional nitrogen deposition or the soil type, although the soil type likely (co)-determined canopy composition and thus litter quality to some extent in the investigated plots. Litter quality effects on topsoil phosphorus concentrations did interact with past land cover, highlighting the need to consider land-use history when evaluating canopy effects on soil conditions. We conclude that forest managers can use the canopy composition as an important tool for influencing topsoil conditions, although soil type remains an important factor to consider.}, language = {en} } @article{SchwabeTischewBergmeieretal.2019, author = {Schwabe, Angelika and Tischew, Sabine and Bergmeier, Erwin and Garve, Eckhard and H{\"a}rdtle, Werner and Heinken, Thilo and H{\"o}lzel, Norbert and Peppler-Lisbach, Cord and Remy, Dominique and Dierschke, Hartmut}, title = {Pflanzengesellschaft des Jahres 2020}, series = {Tuexenia : Mitteilungen der Floristisch-Soziologischen Arbeitsgemeinschaft}, journal = {Tuexenia : Mitteilungen der Floristisch-Soziologischen Arbeitsgemeinschaft}, number = {39}, publisher = {Floristisch-soziologischen Arbeitsgemeinschaft e.V.}, address = {G{\"o}ttingen}, issn = {0722-494X}, doi = {10.14471/2019.39.017}, pages = {287 -- 308}, year = {2019}, abstract = {Wie erstmals 2019 wird auch f{\"u}r das Jahr 2020 von der „Floristisch-soziologischen Arbeitsgemeinschaft" (FlorSoz) f{\"u}r Deutschland die „Pflanzengesellschaft des Jahres" vorgestellt. Damit soll wiederum f{\"u}r die {\"O}ffentlichkeit die Notwendigkeit des Schutzes gef{\"a}hrdeter Pflanzengesellschaften aufgezeigt werden. F{\"u}r das Jahr 2020 wurden die Borstgrasrasen ausgew{\"a}hlt. Wie alle Pflanzengemeinschaften n{\"a}hrstoffarmer Standorte, sind auch die Borstgrasrasen stark gef{\"a}hrdet und regional sogar unmittelbar vom Aussterben bedroht. Wir konzentrieren uns vor allem auf die Best{\"a}nde der planaren bis montanen Stufe (Unterverband Violenion caninae: Hundsveilchen-Borstgrasrasen). Die Standorte von Violenion caninae-Gesellschaften werden nicht ged{\"u}ngt und sind auf extensive Beweidung, z.T. auch auf einsch{\"u}rige Mahd angewiesen. F{\"u}r Borstgrasrasen bezeichnend sind eine F{\"u}lle gef{\"a}hrdeter Pflanzenarten wie z.B. Arnica montana (Arnika) und Antennaria dioica (Zweih{\"a}usiges Katzenpf{\"o}tchen). Bei den Borstgrasrasen spielen f{\"u}r die zunehmend hohe Gef{\"a}hrdung nicht nur Fl{\"a}chenr{\"u}ckg{\"a}nge durch Nutzungsaufgabe, Aufforstung, Sport- und Freizeitaktivit{\"a}ten und {\"U}berbauung eine Rolle, sondern auch {\"A}nderungen der Struktur und Artenzusammensetzung durch direkte D{\"u}ngung sowie atmogene Stickstoffeintr{\"a}ge sind von Bedeutung. N{\"a}hrstoffanreicherungen f{\"u}hren zum Verlust der konkurrenzschwachen, gef{\"a}hrdeten Arten zugunsten einiger allgemein verbreiteter, h{\"a}ufig dominanter Gr{\"a}ser sowie konkurrenzkr{\"a}ftiger Kr{\"a}uter. Wir skizzieren die Bedeutung der Borstgrasrasen als gef{\"a}hrdete Lebensgemeinschaften, geben Hinweise zur floristisch-soziologischen Erforschung und zu weiteren Naturschutz-Aspekten (R{\"u}ckgang, Erhaltung, M{\"o}glichkeiten der Restitution). Ein wirksamer Schutz ist nur bei einem integrativen Naturschutzansatz mit geeigneter Nutzung m{\"o}glich.}, language = {de} } @misc{DierschkeHeinken2019, author = {Dierschke, Hartmut and Heinken, Thilo}, title = {Vorwort}, series = {Tuexenia : Mitteilungen der Floristisch-Soziologischen Arbeitsgemeinschaft}, journal = {Tuexenia : Mitteilungen der Floristisch-Soziologischen Arbeitsgemeinschaft}, number = {39}, publisher = {Floristisch-Soziologische Arbeitsgemeinschaft}, address = {G{\"o}ttingen}, issn = {0722-494X}, pages = {7 -- 7}, year = {2019}, language = {de} } @misc{LozadaGobilardStangPirhoferWalzletal.2019, author = {Lozada Gobilard, Sissi Donna and Stang, Susanne and Pirhofer-Walzl, Karin and Kalettka, Thomas and Heinken, Thilo and Schr{\"o}der, Boris and Eccard, Jana and Jasmin Radha, Jasmin}, title = {Environmental filtering predicts plant-community trait distribution and diversity}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {629}, issn = {1866-8372}, doi = {10.25932/publishup-42484}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-424843}, pages = {13}, year = {2019}, abstract = {Meta-communities of habitat islands may be essential to maintain biodiversity in anthropogenic landscapes allowing rescue effects in local habitat patches. To understand the species-assembly mechanisms and dynamics of such ecosystems, it is important to test how local plant-community diversity and composition is affected by spatial isolation and hence by dispersal limitation and local environmental conditions acting as filters for local species sorting. We used a system of 46 small wetlands (kettle holes)—natural small-scale freshwater habitats rarely considered in nature conservation policies—embedded in an intensively managed agricultural matrix in northern Germany. We compared two types of kettle holes with distinct topographies (flatsloped, ephemeral, frequently plowed kettle holes vs. steep-sloped, more permanent ones) and determined 254 vascular plant species within these ecosystems, as well as plant functional traits and nearest neighbor distances to other kettle holes. Differences in alpha and beta diversity between steep permanent compared with ephemeral flat kettle holes were mainly explained by species sorting and niche processes and mass effect processes in ephemeral flat kettle holes. The plant-community composition as well as the community trait distribution in terms of life span, breeding system, dispersal ability, and longevity of seed banks significantly differed between the two habitat types. Flat ephemeral kettle holes held a higher percentage of non-perennial plants with a more persistent seed bank, less obligate outbreeders and more species with seed dispersal abilities via animal vectors compared with steep-sloped, more permanent kettle holes that had a higher percentage of wind-dispersed species. In the flat kettle holes, plant-species richness was negatively correlated with the degree of isolation, whereas no such pattern was found for the permanent kettle holes. Synthesis: Environment acts as filter shaping plant diversity (alpha and beta) and plant-community trait distribution between steep permanent compared with ephemeral flat kettle holes supporting species sorting and niche mechanisms as expected, but we identified a mass effect in ephemeral kettle holes only. Flat ephemeral kettle holes can be regarded as meta-ecosystems that strongly depend on seed dispersal and recruitment from a seed bank, whereas neighboring permanent kettle holes have a more stable local species diversity.}, language = {en} } @article{LozadaGobilardStangPirhoferWalzletal.2019, author = {Lozada Gobilard, Sissi Donna and Stang, Susanne and Pirhofer-Walzl, Karin and Kalettka, Thomas and Heinken, Thilo and Schr{\"o}der, Boris and Eccard, Jana and Jasmin Radha, Jasmin}, title = {Environmental filtering predicts plant-community trait distribution and diversity}, series = {Ecology and Evolution}, journal = {Ecology and Evolution}, publisher = {John Wiley \& Sons, Inc.}, address = {Hoboken}, issn = {2045-7758}, doi = {10.1002/ece3.4883}, pages = {13}, year = {2019}, abstract = {Meta-communities of habitat islands may be essential to maintain biodiversity in anthropogenic landscapes allowing rescue effects in local habitat patches. To understand the species-assembly mechanisms and dynamics of such ecosystems, it is important to test how local plant-community diversity and composition is affected by spatial isolation and hence by dispersal limitation and local environmental conditions acting as filters for local species sorting. We used a system of 46 small wetlands (kettle holes)—natural small-scale freshwater habitats rarely considered in nature conservation policies—embedded in an intensively managed agricultural matrix in northern Germany. We compared two types of kettle holes with distinct topographies (flatsloped, ephemeral, frequently plowed kettle holes vs. steep-sloped, more permanent ones) and determined 254 vascular plant species within these ecosystems, as well as plant functional traits and nearest neighbor distances to other kettle holes. Differences in alpha and beta diversity between steep permanent compared with ephemeral flat kettle holes were mainly explained by species sorting and niche processes and mass effect processes in ephemeral flat kettle holes. The plant-community composition as well as the community trait distribution in terms of life span, breeding system, dispersal ability, and longevity of seed banks significantly differed between the two habitat types. Flat ephemeral kettle holes held a higher percentage of non-perennial plants with a more persistent seed bank, less obligate outbreeders and more species with seed dispersal abilities via animal vectors compared with steep-sloped, more permanent kettle holes that had a higher percentage of wind-dispersed species. In the flat kettle holes, plant-species richness was negatively correlated with the degree of isolation, whereas no such pattern was found for the permanent kettle holes. Synthesis: Environment acts as filter shaping plant diversity (alpha and beta) and plant-community trait distribution between steep permanent compared with ephemeral flat kettle holes supporting species sorting and niche mechanisms as expected, but we identified a mass effect in ephemeral kettle holes only. Flat ephemeral kettle holes can be regarded as meta-ecosystems that strongly depend on seed dispersal and recruitment from a seed bank, whereas neighboring permanent kettle holes have a more stable local species diversity.}, language = {en} } @article{KurzeHeinkenFartmann2018, author = {Kurze, Susanne and Heinken, Thilo and Fartmann, Thomas}, title = {Nitrogen enrichment in host plants increases the mortality of common Lepidoptera species}, series = {Oecologia}, volume = {188}, journal = {Oecologia}, number = {4}, publisher = {Springer}, address = {New York}, issn = {0029-8549}, doi = {10.1007/s00442-018-4266-4}, pages = {1227 -- 1237}, year = {2018}, abstract = {The recent decline of Lepidoptera species strongly correlates with the increasing intensification of agriculture in Western and Central Europe. However, the effects of changed host-plant quality through agricultural fertilization on this insect group remain largely unexplored. For this reason, we tested the response of six common butterfly and moth species to host-plant fertilization using fertilizer quantities usually applied in agriculture. The larvae of the study species Coenonympha pamphilus, Lycaena phlaeas, Lycaena tityrus, Pararge aegeria, Rivula sericealis and Timandra comae were distributed according to a split-brood design to three host-plant treatments comprising one control treatment without fertilization and two fertilization treatments with an input of 150 and 300kgNha(-1)year(-1), respectively. In L.tityrus, we used two additional fertilization treatments with an input of 30 and 90kgNha(-1)year(-1), respectively. Fertilization increased the nitrogen concentration of both host-plant species, Rumex acetosella and Poa pratensis, and decreased the survival of larvae in all six Lepidoptera species by at least one-third, without clear differences between sorrel- and grass-feeding species. The declining survival rate in all species contradicts the well-accepted nitrogen-limitation hypothesis, which predicts a positive response in species performance to dietary nitrogen content. In contrast, this study presents the first evidence that current fertilization quantities in agriculture exceed the physiological tolerance of common Lepidoptera species. Our results suggest that (1) the negative effect of plant fertilization on Lepidoptera has previously been underestimated and (2) that it contributes to the range-wide decline of Lepidoptera.}, language = {en} } @article{DeFrenneBlondeelBrunetetal.2018, author = {De Frenne, Pieter and Blondeel, H. and Brunet, J. and Caron, M. M. and Chabrerie, O. and Cougnon, M. and Cousins, S. A. O. and Decocq, G. and Diekmann, M. and Graae, B. J. and Hanley, M. E. and Heinken, Thilo and Hermy, M. and Kolb, A. and Lenoir, J. and Liira, J. and Orczewska, A. and Shevtsova, A. and Vanneste, T. and Verheyen, K.}, title = {Atmospheric nitrogen deposition on petals enhances seed quality of the forest herb Anemone nemorosa}, series = {Plant biology}, volume = {20}, journal = {Plant biology}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {1435-8603}, doi = {10.1111/plb.12688}, pages = {619 -- 626}, year = {2018}, abstract = {Elevated atmospheric input of nitrogen (N) is currently affecting plant biodiversity and ecosystem functioning. The growth and survival of numerous plant species is known to respond strongly to N fertilisation. Yet, few studies have assessed the effects of N deposition on seed quality and reproductive performance, which is an important life-history stage of plants. Here we address this knowledge gap by assessing the effects of atmospheric N deposition on seed quality of the ancient forest herb Anemone nemorosa using two complementary approaches. By taking advantage of the wide spatiotemporal variation in N deposition rates in pan-European temperate and boreal forests over 2years, we detected positive effects of N deposition on the N concentration (percentage N per unit seed mass, increased from 2.8\% to 4.1\%) and N content (total N mass per seed more than doubled) of A.nemorosa seeds. In a complementary experiment, we applied ammonium nitrate to aboveground plant tissues and the soil surface to determine whether dissolved N sources in precipitation could be incorporated into seeds. Although the addition of N to leaves and the soil surface had no effect, a concentrated N solution applied to petals during anthesis resulted in increased seed mass, seed N concentration and N content. Our results demonstrate that N deposition on the petals enhances bioaccumulation of N in the seeds of A.nemorosa. Enhanced atmospheric inputs of N can thus not only affect growth and population dynamics via root or canopy uptake, but can also influence seed quality and reproduction via intake through the inflorescences.}, language = {en} }