@misc{BaumannArndtMueller2013, author = {Baumann, Tobias and Arndt, Katja Maren and M{\"u}ller, Kristian M.}, title = {Directional cloning of DNA fragments using deoxyinosine-containing oligonucleotides and endonuclease V}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {983}, issn = {1866-8372}, doi = {10.25932/publishup-43108}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-431085}, pages = {13}, year = {2013}, abstract = {Background: DNA fragments carrying internal recognition sites for the restriction endonucleases intended for cloning into a target plasmid pose a challenge for conventional cloning. Results: A method for directional insertion of DNA fragments into plasmid vectors has been developed. The target sequence is amplified from a template DNA sample by PCR using two oligonucleotides each containing a single deoxyinosine base at the third position from the 5' end. Treatment of such PCR products with endonuclease V generates 3' protruding ends suitable for ligation with vector fragments created by conventional restriction endonuclease reactions. Conclusions: The developed approach generates terminal cohesive ends without the use of Type II restriction endonucleases, and is thus independent from the DNA sequence. Due to PCR amplification, minimal amounts of template DNA are required. Using the robust Taq enzyme or a proofreading Pfu DNA polymerase mutant, the method is applicable to a broad range of insert sequences. Appropriate primer design enables direct incorporation of terminal DNA sequence modifications such as tag addition, insertions, deletions and mutations into the cloning strategy. Further, the restriction sites of the target plasmid can be either retained or removed.}, language = {en} } @misc{ThomasMatuschekGrima2013, author = {Thomas, Philipp and Matuschek, Hannes and Grima, Ramon}, title = {How reliable is the linear noise approximation of gene regulatory networks?}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {876}, issn = {1866-8372}, doi = {10.25932/publishup-43502}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-435028}, pages = {17}, year = {2013}, abstract = {Background: The linear noise approximation (LNA) is commonly used to predict how noise is regulated and exploited at the cellular level. These predictions are exact for reaction networks composed exclusively of first order reactions or for networks involving bimolecular reactions and large numbers of molecules. It is however well known that gene regulation involves bimolecular interactions with molecule numbers as small as a single copy of a particular gene. It is therefore questionable how reliable are the LNA predictions for these systems. Results: We implement in the software package intrinsic Noise Analyzer (iNA), a system size expansion based method which calculates the mean concentrations and the variances of the fluctuations to an order of accuracy higher than the LNA. We then use iNA to explore the parametric dependence of the Fano factors and of the coefficients of variation of the mRNA and protein fluctuations in models of genetic networks involving nonlinear protein degradation, post-transcriptional, post-translational and negative feedback regulation. We find that the LNA can significantly underestimate the amplitude and period of noise-induced oscillations in genetic oscillators. We also identify cases where the LNA predicts that noise levels can be optimized by tuning a bimolecular rate constant whereas our method shows that no such regulation is possible. All our results are confirmed by stochastic simulations. Conclusion: The software iNA allows the investigation of parameter regimes where the LNA fares well and where it does not. We have shown that the parametric dependence of the coefficients of variation and Fano factors for common gene regulatory networks is better described by including terms of higher order than LNA in the system size expansion. This analysis is considerably faster than stochastic simulations due to the extensive ensemble averaging needed to obtain statistically meaningful results. Hence iNA is well suited for performing computationally efficient and quantitative studies of intrinsic noise in gene regulatory networks.}, language = {en} } @phdthesis{Duensing2013, author = {Duensing, Nina}, title = {Transport processes in the arbuscular mycorrhizal symbiosis}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-68210}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {The nutrient exchange between plant and fungus is the key element of the arbuscular mycorrhizal (AM) symbiosis. The fungus improves the plant's uptake of mineral nutrients, mainly phosphate, and water, while the plant provides the fungus with photosynthetically assimilated carbohydrates. Still, the knowledge about the mechanisms of the nutrient exchange between the symbiotic partners is very limited. Therefore, transport processes of both, the plant and the fungal partner, are investigated in this study. In order to enhance the understanding of the molecular basis underlying this tight interaction between the roots of Medicago truncatula and the AM fungus Rhizophagus irregularis, genes involved in transport processes of both symbiotic partners are analysed here. The AM-specific regulation and cell-specific expression of potential transporter genes of M. truncatula that were found to be specifically regulated in arbuscule-containing cells and in non-arbusculated cells of mycorrhizal roots was confirmed. A model for the carbon allocation in mycorrhizal roots is suggested, in which carbohydrates are mobilized in non-arbusculated cells and symplastically provided to the arbuscule-containing cells. New insights into the mechanisms of the carbohydrate allocation were gained by the analysis of hexose/H+ symporter MtHxt1 which is regulated in distinct cells of mycorrhizal roots. Metabolite profiling of leaves and roots of a knock-out mutant, hxt1, showed that it indeed does have an impact on the carbohydrate balance in the course of the symbiosis throughout the whole plant, and on the interaction with the fungal partner. The primary metabolite profile of M. truncatula was shown to be altered significantly in response to mycorrhizal colonization. Additionally, molecular mechanisms determining the progress of the interaction in the fungal partner of the AM symbiosis were investigated. The R. irregularis transcriptome in planta and in extraradical tissues gave new insight into genes that are differentially expressed in these two fungal tissues. Over 3200 fungal transcripts with a significantly altered expression level in laser capture microdissection-collected arbuscules compared to extraradical tissues were identified. Among them, six previously unknown specifically regulated potential transporter genes were found. These are likely to play a role in the nutrient exchange between plant and fungus. While the substrates of three potential MFS transporters are as yet unknown, two potential sugar transporters are might play a role in the carbohydrate flow towards the fungal partner. In summary, this study provides new insights into transport processes between plant and fungus in the course of the AM symbiosis, analysing M. truncatula on the transcript and metabolite level, and provides a dataset of the R. irregularis transcriptome in planta, providing a high amount of new information for future works.}, language = {en} } @phdthesis{Dannehl2013, author = {Dannehl, Claudia}, title = {Fragments of the human antimicrobial LL-37 and their interaction with model membranes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-68144}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {A detailed description of the characteristics of antimicrobial peptides (AMPs) is highly demanded, since the resistance against traditional antibiotics is an emerging problem in medicine. They are part of the innate immune system in every organism, and they are very efficient in the protection against bacteria, viruses, fungi and even cancer cells. Their advantage is that their target is the cell membrane, in contrast to antibiotics which disturb the metabolism of the respective cell type. This allows AMPs to be more active and faster. The lack of an efficient therapy for some cancer types and the evolvement of resistance against existing antitumor agents make AMPs promising in cancer therapy besides being an alternative to traditional antibiotics. The aim of this work was the physical-chemical characterization of two fragments of LL-37, a human antimicrobial peptide from the cathelicidin family. The fragments LL-32 and LL-20 exhibited contrary behavior in biological experiments concerning their activity against bacterial cells, human cells and human cancer cells. LL-32 had even a higher activity than LL-37, while LL-20 had almost no effect. The interaction of the two fragments with model membranes was systematically studied in this work to understand their mode of action. Planar lipid films were mainly applied as model systems in combination with IR-spectroscopy and X-ray scattering methods. Circular Dichroism spectroscopy in bulk systems completed the results. In the first approach, the structure of the peptides was determined in aqueous solution and compared to the structure of the peptides at the air/water interface. In bulk, both peptides are in an unstructured conformation. Adsorbed and confined to at the air-water interface, the peptides differ drastically in their surface activity as well as in the secondary structure. While LL-32 transforms into an α-helix lying flat at the water surface, LL-20 stays partly unstructured. This is in good agreement with the high antimicrobial activity of LL-32. In the second approach, experiments with lipid monolayers as biomimetic models for the cell membrane were performed. It could be shown that the peptides fluidize condensed monolayers of negatively charged DPPG which can be related to the thinning of a bacterial cell membrane. An interaction of the peptides with zwitterionic PCs, as models for mammalian cells, was not clearly observed, even though LL-32 is haemolytic. In the third approach, the lipid monolayers were more adapted to the composition of human erythrocyte membranes by incorporating sphingomyelin (SM) into the PC monolayers. Physical-chemical properties of the lipid films were determined and the influence of the peptides on them was studied. It could be shown that the interaction of the more active LL-32 is strongly increased for heterogeneous lipid films containing both gel and fluid phases, while the interaction of LL-20 with the monolayers was unaffected. The results indicate an interaction of LL-32 with the membrane in a detergent-like way. Additionally, the modelling of the peptide interaction with cancer cells was performed by incorporating some negatively charged lipids into the PC/SM monolayers, but the increased charge had no effect on the interaction of LL-32. It was concluded, that the high anti-cancer activity of the peptide originates from the changed fluidity of cell membrane rather than from the increased surface charge. Furthermore, similarities to the physical-chemical properties of melittin, an AMP from the bee venom, were demonstrated.  }, language = {en} } @phdthesis{Rothe2013, author = {Rothe, Monique}, title = {Response of intestinal Escherichia coli to dietary factors in the mouse intestine}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-66387}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Diet is a major force influencing the intestinal microbiota. This is obvious from drastic changes in microbiota composition after a dietary alteration. Due to the complexity of the commensal microbiota and the high inter-individual variability, little is known about the bacterial response at the cellular level. The objective of this work was to identify mechanisms that enable gut bacteria to adapt to dietary factors. For this purpose, germ-free mice monoassociated with the commensal Escherichia coli K-12 strain MG1655 were fed three different diets over three weeks: a diet rich in starch, a diet rich in non-digestible lactose and a diet rich in casein. Two dimensional gel electrophoresis and electrospray tandem mass spectrometry were applied to identify differentially expressed proteins of E. coli recovered from small intestine and caecum of mice fed the lactose or casein diets in comparison with those of mice fed the starch diet. Selected differentially expressed bacterial proteins were characterised in vitro for their possible roles in bacterial adaptation to the various diets. Proteins belonging to the oxidative stress regulon oxyR such as alkyl hydroperoxide reductase subunit F (AhpF), DNA protection during starvation protein (Dps) and ferric uptake regulatory protein (Fur), which are required for E. coli's oxidative stress response, were upregulated in E. coli of mice fed the lactose-rich diet. Reporter gene analysis revealed that not only oxidative stress but also carbohydrate-induced osmotic stress led to the OxyR-dependent expression of ahpCF and dps. Moreover, the growth of E. coli mutants lacking the ahpCF or oxyR genes was impaired in the presence of non-digestible sucrose. This indicates that some OxyR-dependent proteins are crucial for the adaptation of E. coli to osmotic stress conditions. In addition, the function of two so far poorly characterised E. coli proteins was analysed: 2 deoxy-D gluconate 3 dehydrogenase (KduD) was upregulated in intestinal E. coli of mice fed the lactose-rich diet and this enzyme and 5 keto 4 deoxyuronate isomerase (KduI) were downregulated on the casein-rich diet. Reporter gene analysis identified galacturonate and glucuronate as inducers of the kduD and kduI gene expression. Moreover, KduI was shown to facilitate the breakdown of these hexuronates, which are normally degraded by uronate isomerase (UxaC), altronate oxidoreductase (UxaB), altronate dehydratase (UxaA), mannonate oxidoreductase (UxuB) and mannonate dehydratase (UxuA), whose expression was repressed by osmotic stress. The growth of kduID-deficient E. coli on galacturonate or glucuronate was impaired in the presence of osmotic stress, suggesting KduI and KduD to compensate for the function of the regular hexuronate degrading enzymes under such conditions. This indicates a novel function of KduI and KduD in E. coli's hexuronate metabolism. Promotion of the intracellular formation of hexuronates by lactose connects these in vitro observations with the induction of KduD on the lactose-rich diet. Taken together, this study demonstrates the crucial influence of osmotic stress on the gene expression of E. coli enzymes involved in stress response and metabolic processes. Therefore, the adaptation to diet-induced osmotic stress is a possible key factor for bacterial colonisation of the intestinal environment.}, language = {en} } @phdthesis{Dethloff2013, author = {Dethloff, Frederik}, title = {In vivo 13C stable isotope tracing of single leaf development in the cold}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-70486}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Measuring the metabolite profile of plants can be a strong phenotyping tool, but the changes of metabolite pool sizes are often difficult to interpret, not least because metabolite pool sizes may stay constant while carbon flows are altered and vice versa. Hence, measuring the carbon allocation of metabolites enables a better understanding of the metabolic phenotype. The main challenge of such measurements is the in vivo integration of a stable or radioactive label into a plant without perturbation of the system. To follow the carbon flow of a precursor metabolite, a method is developed in this work that is based on metabolite profiling of primary metabolites measured with a mass spectrometer preceded by a gas chromatograph (Wagner et al. 2003; Erban et al. 2007; Dethloff et al. submitted). This method generates stable isotope profiling data, besides conventional metabolite profiling data. In order to allow the feeding of a 13C sucrose solution into the plant, a petiole and a hypocotyl feeding assay are developed. To enable the processing of large numbers of single leaf samples, their preparation and extraction are simplified and optimised. The metabolite profiles of primary metabolites are measured, and a simple relative calculation is done to gain information on carbon allocation from 13C sucrose. This method is tested examining single leaves of one rosette in different developmental stages, both metabolically and regarding carbon allocation from 13C sucrose. It is revealed that some metabolite pool sizes and 13C pools are tightly associated to relative leaf growth, i.e. to the developmental stage of the leaf. Fumaric acid turns out to be the most interesting candidate for further studies because pool size and 13C pool diverge considerably. In addition, the analyses are also performed on plants grown in the cold, and the initial results show a different metabolite pool size pattern across single leaves of one Arabidopsis rosette, compared to the plants grown under normal temperatures. Lastly, in situ expression of REIL genes in the cold is examined using promotor-GUS plants. Initial results suggest that single leaf metabolite profiles of reil2 differ from those of the WT.}, language = {en} } @phdthesis{Toele2013, author = {T{\"o}le, Jonas Claudius}, title = {{\"U}ber die Arc-catFISH-Methode als neues Werkzeug zur Charakterisierung der Geschmacksverarbeitung im Hirnstamm der Maus}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-70491}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Intensive Forschung hat in den vergangenen Jahrzehnten zu einer sehr detaillierten Charakterisierung des Geschmackssystems der S{\"a}ugetiere gef{\"u}hrt. Dennoch sind mit den bislang eingesetzten Methoden wichtige Fragestellungen unbeantwortet geblieben. Eine dieser Fragen gilt der Unterscheidung von Bitterstoffen. Die Zahl der Substanzen, die f{\"u}r den Menschen bitter schmecken und in Tieren angeborenes Aversionsverhalten ausl{\"o}sen, geht in die Tausende. Diese Substanzen sind sowohl von der chemischen Struktur als auch von ihrer Wirkung auf den Organismus sehr verschieden. W{\"a}hrend viele Bitterstoffe potente Gifte darstellen, sind andere in den Mengen, die mit der Nahrung aufgenommen werden, harmlos oder haben sogar positive Effekte auf den K{\"o}rper. Zwischen diesen Gruppen unterscheiden zu k{\"o}nnen, w{\"a}re f{\"u}r ein Tier von Vorteil. Ein solcher Mechanismus ist jedoch bei S{\"a}ugetieren nicht bekannt. Das Ziel dieser Arbeit war die Untersuchung der Verarbeitung von Geschmacksinformation in der ersten Station der Geschmacksbahn im Mausgehirn, dem Nucleus tractus solitarii (NTS), mit besonderem Augenmerk auf der Frage nach der Diskriminierung verschiedener Bitterstoffe. Zu diesem Zweck wurde eine neue Untersuchungsmethode f{\"u}r das Geschmackssystem etabliert, die die Nachteile bereits verf{\"u}gbarer Methoden umgeht und ihre Vorteile kombiniert. Die Arc-catFISH-Methode (cellular compartment analysis of temporal activity by fluorescent in situ hybridization), die die Charakterisierung der Antwort großer Neuronengruppen auf zwei Stimuli erlaubt, wurde zur Untersuchung geschmacksverarbeitender Zellen im NTS angewandt. Im Zuge dieses Projekts wurde erstmals eine stimulusinduzierte Arc-Expression im NTS gezeigt. Die ersten Ergebnisse offenbarten, dass die Arc-Expression im NTS spezifisch nach Stimulation mit Bitterstoffen auftritt und sich die Arc exprimierenden Neurone vornehmlich im gustatorischen Teil des NTS befinden. Dies weist darauf hin, dass Arc-Expression ein Marker f{\"u}r bitterverarbeitende gustatorische Neurone im NTS ist. Nach zweimaliger Stimulation mit Bittersubstanzen konnten {\"u}berlappende, aber verschiedene Populationen von Neuronen beobachtet werden, die unterschiedlich auf die drei verwendeten Bittersubstanzen Cycloheximid, Chininhydrochlorid und Cucurbitacin I reagierten. Diese Neurone sind vermutlich an der Steuerung von Abwehrreflexen beteiligt und k{\"o}nnten so die Grundlage f{\"u}r divergentes Verhalten gegen{\"u}ber verschiedenen Bitterstoffen bilden.}, language = {de} } @misc{BarbosaPfannesAnielskiGerhardtetal.2013, author = {Barbosa Pfannes, Eva Katharina and Anielski, Alexander and Gerhardt, Matthias and Beta, Carsten}, title = {Intracellular photoactivation of caged cGMP induces myosin II and actin responses in motile cells}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-94984}, pages = {1456 -- 1463}, year = {2013}, abstract = {Cyclic GMP (cGMP) is a ubiquitous second messenger in eukaryotic cells. It is assumed to regulate the association of myosin II with the cytoskeleton of motile cells. When cells of the social amoeba Dictyostelium discoideum are exposed to chemoattractants or to increased osmotic stress, intracellular cGMP levels rise, preceding the accumulation of myosin II in the cell cortex. To directly investigate the impact of intracellular cGMP on cytoskeletal dynamics in a living cell, we released cGMP inside the cell by laser-induced photo-cleavage of a caged precursor. With this approach, we could directly show in a live cell experiment that an increase in intracellular cGMP indeed induces myosin II to accumulate in the cortex. Unexpectedly, we observed for the first time that also the amount of filamentous actin in the cell cortex increases upon a rise in the cGMP concentration, independently of cAMP receptor activation and signaling. We discuss our results in the light of recent work on the cGMP signaling pathway and suggest possible links between cGMP signaling and the actin system.}, language = {en} } @phdthesis{Ganesh2013, author = {Ganesh, Bhanu Priya}, title = {Host-microbe interactions in the inflamed gut}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-69558}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Initiation and perpetuation of inflammatory bowel diseases (IBD) may result from an exaggerated mucosal immune response to the luminal microbiota in a susceptible host. We proposed that this may be caused either 1) by an abnormal microbial composition or 2) by weakening of the protective mucus layer due to excessive mucus degradation, which may lead to an easy access of luminal antigens to the host mucosa triggering inflammation. We tested whether the probiotic Enterococcus faecium NCIMB 10415 (NCIMB) is capable of reducing chronic gut inflammation by changing the existing gut microbiota composition and aimed to identify mechanisms that are involved in possible beneficial effects of the probiotic. To identify health-promoting mechanisms of the strain, we used interleukin (IL)-10 deficient mice that spontaneously develop gut inflammation and fed these mice a diet containing NCIMB (106 cells g-1) for 3, 8 and 24 weeks, respectively. Control mice were fed an identically composed diet but without the probiotic strain. No clear-cut differences between the animals were observed in pro-inflammatory cytokine gene expression and in intestinal microbiota composition after probiotic supplementation. However, we observed a low abundance of the mucin-degrading bacterium Akkermansia muciniphila in the mice that were fed NCIMB for 8 weeks. These low cell numbers were associated with significantly lower interferon gamma (IFN-γ) and IFN-γ-inducible protein (IP-10) mRNA levels as compared to the NCIMB-treated mice that were killed after 3 and 24 weeks of intervention. In conclusion, NCIMB was not capable of reducing gut inflammation in the IL-10-/- mouse model. To further identify the exact role of A. muciniphila and uncover a possible interaction between this bacterium, NCIMB and the host in relation to inflammation, we performed in vitro studies using HT-29 colon cancer cells. The HT-29 cells were treated with bacterial conditioned media obtained by growing either A. muciniphila (AM-CM) or NCIMB (NCIMB-CM) or both together (COMB-CM) in Dulbecco's Modified Eagle Medium (DMEM) for 2 h at 37 °C followed by bacterial cell removal. HT-29 cells treated with COMB-CM displayed reduced cell viability after 18 h (p<0.01) and no viable cells were detected after 24 h of treatment, in contrast to the other groups or heated COMB-CM. Detection of activated caspase-3 in COMB-CM treated groups indicated that death of the HT-29 cells was brought about by apoptosis. It was concluded that either NCIMB or A. muciniphila produce a soluble and heat-sensitive factor during their concomitant presence that influences cell viability in an in vitro system. We currently hypothesize that this factor is a protein, which has not yet been identified. Based on the potential effect of A. muciniphila on inflammation (in vivo) and cell-viability (in vitro) in the presence of NCIMB, we investigated how the presence of A. muciniphila affects the severity of an intestinal Salmonella enterica Typhimurium (STm)-induced gut inflammation using gnotobiotic C3H mice with a background microbiota of eight bacterial species (SIHUMI, referred to as simplified human intestinal microbiota). Presence of A. muciniphila in STm-infected SIHUMI (SIHUMI-AS) mice caused significantly increased histopathology scores and elevated mRNA levels of IFN-γ, IP-10, tumor necrosis factor alpha (TNF-α), IL-12, IL-17 and IL-6 in cecal and colonic tissue. The number of mucin filled goblet cells was 2- to 3- fold lower in cecal tissue of SIHUMI-AS mice compared to SIHUMI mice associated with STm (SIHUMI-S) or A. muciniphila (SIHUMI-A) or SIHUMI mice. Reduced goblet cell numbers significantly correlated with increased IFN-γ (r2 = -0.86, ***P<0.001) in all infected mice. In addition, loss of cecal mucin sulphation was observed in SIHUMI-AS mice. Concomitant presence of A. muciniphila and STm resulted in a drastic change in microbiota composition of the SIHUMI consortium. The proportion of Bacteroides thetaiotaomicron in SIHUMI, SIHUMI-A and SIHUMI-S mice made up to 80-90\% but was completely taken over by STm in SIHUMI-AS mice contributing 94\% to total bacteria. These results suggest that A. muciniphila exacerbates STm-induced intestinal inflammation by its ability to disturb host mucus homeostasis. In conclusion, abnormal microbiota composition together with excessive mucus degradation contributes to severe intestinal inflammation in a susceptible host.}, language = {en} } @phdthesis{May2013, author = {May, Felix}, title = {Spatial models of plant diversity and plant functional traits : towards a better understanding of plant community dynamics in fragmented landscapes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-68444}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {The fragmentation of natural habitat caused by anthropogenic land use changes is one of the main drivers of the current rapid loss of biodiversity. In face of this threat, ecological research needs to provide predictions of communities' responses to fragmentation as a prerequisite for the effective mitigation of further biodiversity loss. However, predictions of communities' responses to fragmentation require a thorough understanding of ecological processes, such as species dispersal and persistence. Therefore, this thesis seeks an improved understanding of community dynamics in fragmented landscapes. In order to approach this overall aim, I identified key questions on the response of plant diversity and plant functional traits to variations in species' dispersal capability, habitat fragmentation and local environmental conditions. All questions were addressed using spatially explicit simulations or statistical models. In chapter 2, I addressed scale-dependent relationships between dispersal capability and species diversity using a grid-based neutral model. I found that the ratio of survey area to landscape size is an important determinant of scale-dependent dispersal-diversity relationships. With small ratios, the model predicted increasing dispersal-diversity relationships, while decreasing dispersal-diversity relationships emerged, when the ratio approached one, i.e. when the survey area approached the landscape size. For intermediate ratios, I found a U-shaped pattern that has not been reported before. With this study, I unified and extended previous work on dispersal-diversity relationships. In chapter 3, I assessed the type of regional plant community dynamics for the study area in the Southern Judean Lowlands (SJL). For this purpose, I parameterised a multi-species incidence-function model (IFM) with vegetation data using approximate Bayesian computation (ABC). I found that the type of regional plant community dynamics in the SJL is best characterized as a set of isolated "island communities" with very low connectivity between local communities. Model predictions indicated a significant extinction debt with 33\% - 60\% of all species going extinct within 1000 years. In general, this study introduces a novel approach for combining a spatially explicit simulation model with field data from species-rich communities. In chapter 4, I first analysed, if plant functional traits in the SJL indicate trait convergence by habitat filtering and trait divergence by interspecific competition, as predicted by community assembly theory. Second, I assessed the interactive effects of fragmentation and the south-north precipitation gradient in the SJL on community-mean plant traits. I found clear evidence for trait convergence, but the evidence for trait divergence fundamentally depended on the chosen null-model. All community-mean traits were significantly associated with the precipitation gradient in the SJL. The trait associations with fragmentation indices (patch size and connectivity) were generally weaker, but statistically significant for all traits. Specific leaf area (SLA) and plant height were consistently associated with fragmentation indices along the precipitation gradient. In contrast, seed mass and seed number were interactively influenced by fragmentation and precipitation. In general, this study provides the first analysis of the interactive effects of climate and fragmentation on plant functional traits. Overall, I conclude that the spatially explicit perspective adopted in this thesis is crucial for a thorough understanding of plant community dynamics in fragmented landscapes. The finding of contrasting responses of local diversity to variations in dispersal capability stresses the importance of considering the diversity and composition of the metacommunity, prior to implementing conservation measures that aim at increased habitat connectivity. The model predictions derived with the IFM highlight the importance of additional natural habitat for the mitigation of future species extinctions. In general, the approach of combining a spatially explicit IFM with extensive species occupancy data provides a novel and promising tool to assess the consequences of different management scenarios. The analysis of plant functional traits in the SJL points to important knowledge gaps in community assembly theory with respect to the simultaneous consequences of habitat filtering and competition. In particular, it demonstrates the importance of investigating the synergistic consequences of fragmentation, climate change and land use change on plant communities. I suggest that the integration of plant functional traits and of species interactions into spatially explicit, dynamic simulation models offers a promising approach, which will further improve our understanding of plant communities and our ability to predict their dynamics in fragmented and changing landscapes.}, language = {en} }