@misc{BalazadehMuellerRoeber2018, author = {Balazadeh, Salma and M{\"u}ller-R{\"o}ber, Bernd}, title = {A balance to death}, series = {Nature plants}, volume = {4}, journal = {Nature plants}, number = {11}, publisher = {Nature Publ. Group}, address = {London}, issn = {2055-026X}, doi = {10.1038/s41477-018-0279-6}, pages = {863 -- 864}, year = {2018}, abstract = {Leaf senescence plays a crucial role in nutrient recovery in late-stage plant development and requires vast transcriptional reprogramming by transcription factors such as ORESARA1 (ORE1). A proteolytic mechanism is now found to control ORE1 degradation, and thus senescence, during nitrogen starvation.}, language = {en} } @misc{BestZhengBorgiaetal.2018, author = {Best, Robert B. and Zheng, Wenwei and Borgia, Alessandro and Buholzer, Karin and Borgia, Madeleine B. and Hofmann, Hagen and Soranno, Andrea and Nettels, Daniel and Gast, Klaus and Grishaev, Alexander and Schuler, Benjamin}, title = {Comment on "Innovative scattering analysis shows that hydrophobic disordered proteins are expanded in water"}, series = {Science}, volume = {361}, journal = {Science}, number = {6405}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.aar7101}, pages = {2}, year = {2018}, abstract = {Riback et al. (Reports, 13 October 2017, p. 238) used small-angle x-ray scattering (SAXS) experiments to infer a degree of compaction for unfolded proteins in water versus chemical denaturant that is highly consistent with the results from Forster resonance energy transfer (FRET) experiments. There is thus no "contradiction" between the two methods, nor evidence to support their claim that commonly used FRET fluorophores cause protein compaction.}, language = {en} } @misc{Graef2018, author = {Gr{\"a}f, Ralph}, title = {Comparative Biology of Centrosomal Structures in Eukaryotes}, series = {Cells}, volume = {7}, journal = {Cells}, number = {11}, publisher = {MDPI}, address = {Basel}, issn = {2073-4409}, doi = {10.3390/cells7110202}, pages = {9}, year = {2018}, abstract = {The centrosome is not only the largest and most sophisticated protein complex within a eukaryotic cell, in the light of evolution, it is also one of its most ancient organelles. This special issue of "Cells" features representatives of three main, structurally divergent centrosome types, i.e., centriole-containing centrosomes, yeast spindle pole bodies (SPBs), and amoebozoan nucleus-associated bodies (NABs). Here, I discuss their evolution and their key-functions in microtubule organization, mitosis, and cytokinesis. Furthermore, I provide a brief history of centrosome research and highlight recently emerged topics, such as the role of centrioles in ciliogenesis, the relationship of centrosomes and centriolar satellites, the integration of centrosomal structures into the nuclear envelope and the involvement of centrosomal components in non-centrosomal microtubule organization.}, language = {en} } @misc{WiegmannRutschmannWillemsen2018, author = {Wiegmann, Alex and Rutschmann, Ronja and Willemsen, Pascale}, title = {Correction to: Empirically Investigating the Concept of Lying (vol 34, pg 591, 2017)}, series = {Journal of Indian Council of Philosophical Research}, volume = {35}, journal = {Journal of Indian Council of Philosophical Research}, number = {1}, publisher = {Springer}, address = {New Dehli}, issn = {0970-7794}, doi = {10.1007/s40961-017-0123-9}, pages = {223 -- 223}, year = {2018}, language = {en} } @misc{DunsingMagnusLiebschetal.2018, author = {Dunsing, Valentin and Magnus, Mayer and Liebsch, Filip and Multhaup, Gerhard and Chiantia, Salvatore}, title = {Direct Evidence of APLP1 Trans Interactions in Cell-Cell Adhesion Platforms Investigated via Fluorescence Fluctuation Spectroscopy}, series = {Biophysical journal}, volume = {114}, journal = {Biophysical journal}, number = {3}, publisher = {Cell Press}, address = {Cambridge}, issn = {0006-3495}, doi = {10.1016/j.bpj.2017.11.2067}, pages = {373A -- 373A}, year = {2018}, abstract = {The Amyloid-precursor-like protein 1 (APLP1) is a neuronal type I transmembrane protein which plays a role in synaptic adhesion and synaptogenesis. Past investigations indicated that APLP1 is involved in the formation of protein-protein complexes that bridge the junctions between neighboring cells. Nevertheless, APLP1-APLP1 trans interactions have never been directly observed in higher eukaryotic cells. Here, we investigate APLP1 interactions and dynamics directly in living human embryonic kidney (HEK) cells, using fluorescence fluctuation spectroscopy techniques, namely cross-correlation scanning fluorescence correlation spectroscopy (sFCS) and Number\&Brightness (N\&B). Our results show that APLP1 forms homotypic trans complexes at cell-cell contacts. In the presence of zinc ions, the protein forms macroscopic clusters, exhibiting an even higher degree of trans binding and strongly reduced dynamics. Further evidence from Giant Plasma Membrane Vesicles and live cell actin staining suggests that the presence of an intact cortical cytoskeleton is required for zinc-induced cis multimerization. Subsequently, large adhesion platforms bridging interacting cells are formed through APLP1-APLP1 direct trans interactions. Taken together, our results provide direct evidence that APLP1 functions as a neuronal zinc-dependent adhesion protein and provide a more detailed understanding of the molecular mechanisms driving the formation of APLP1 adhesion platforms. Further, they show that fluorescence fluctuation spectroscopy techniques are useful tools for the investigation of protein-protein interactions at cell-cell adhesion sites.}, language = {en} } @misc{AlbersUestuenWitzeletal.2018, author = {Albers, Philip and Uestuen, Suayib and Witzel, Katja and Bornke, Frederik}, title = {Identification of a novel target of the bacterial effector HopZ1a}, series = {Phytopathology}, volume = {108}, journal = {Phytopathology}, number = {10}, publisher = {American Phytopathological Society}, address = {Saint Paul}, issn = {0031-949X}, pages = {1}, year = {2018}, abstract = {The plant pathogen Pseudomonas syringae is a gram-negative bacterium which infects a wide range of plant species including important crops plants. To suppress plant immunity and cause disease P.syringae injects type-III effector proteins (T3Es) into the plant cell cytosol. In this study, we identified a novel target of the well characterized bacterial T3E HopZ1a. HopZ1a is an acetyltransferase that was shown to disrupt vesicle transport during innate immunity by acetylating tubulin. Using a yeast-two-hybrid screen approach, we identified a REMORIN (REM) protein from tobacco as a novel HopZ1a target. HopZ1a interacts with REM at the plasma membrane (PM) as shown by split-YFP experiments. Interestingly, we found that PBS1, a well-known kinase involved in plant immunity also interacts with REM in pull-down assays, and at the PM as shown by BiFC. Furthermore, we confirmed that REM is phosphorylated by PBS1 in vitro. Overexpression of REM provokes the upregulation of defense genes and leads to disease-like phenotypes pointing to a role of REM in plant immune signaling. Further protein-protein interaction studies reveal novel REM binding partners with a possible role in plant immune signaling. Thus, REM might act as an assembly hub for an immune signaling complex targeted by HopZ1a. Taken together, this is the first report describing that a REM protein is targeted by a bacterial effector. How HopZ1a might mechanistically manipulate the plant immune system through interfering with REM function will be discussed.}, language = {en} } @misc{HiggsHarrisHegeretal.2018, author = {Higgs, Eric S. and Harris, Jim A. and Heger, Tina and Hobbs, Richard J. and Murphy, Stephen D. and Suding, Katharine N.}, title = {Keep ecological restoration open and flexible}, series = {Nature Ecology \& Evolution}, volume = {2}, journal = {Nature Ecology \& Evolution}, number = {4}, publisher = {Nature Publ. Group}, address = {London}, issn = {2397-334X}, doi = {10.1038/s41559-018-0483-9}, pages = {580 -- 580}, year = {2018}, language = {en} } @misc{RudKaethnerGiesseretal.2018, author = {Rud, R. and K{\"a}thner, Jana and Giesser, J. and Pasche, R. and Giebel, Antje and Selbeck, J{\"o}rn and Shenderey, C. and Fleury, D. and Zude, Manuela and Alchanatis, Victor}, title = {Monitoring spatial variability in an apple orchard under different water regimes}, series = {International Symposium on Sensing Plant Water Status - Methods and Applications in Horticultural Science}, volume = {1197}, journal = {International Symposium on Sensing Plant Water Status - Methods and Applications in Horticultural Science}, publisher = {International Society for Horticultural Science}, address = {The Hague}, isbn = {978-94-62611-93-1}, issn = {0567-7572}, doi = {10.17660/ActaHortic.2018.1197.19}, pages = {139 -- 146}, year = {2018}, abstract = {Precision fruticulture addresses site or tree-adapted crop management. In the present study, soil and tree status, as well as fruit quality at harvest were analysed in a commercial apple (Malus × domestica 'Gala Brookfield'/Pajam1) orchard in a temperate climate. Trees were irrigated in addition to precipitation. Three irrigation levels (0, 50 and 100\%) were applied. Measurements included readings of apparent electrical conductivity of soil (ECa), stem water potential, canopy temperature obtained by infrared camera, and canopy volume estimated by LiDAR and RGB colour imaging. Laboratory analyses of 6 trees per treatment were done on fruit considering the pigment contents and quality parameters. Midday stem water potential (SWP), normalized crop water stress index (CWSI) calculated from thermal data, and fruit yield and quality at harvest were analysed. Spatial patterns of the variability of tree water status were estimated by CWSI imaging supported by SWP readings. CWSI ranged from 0.1 to 0.7 indicating high variability due to irrigation and precipitation. Canopy volume data were less variable. Soil ECa appeared homogeneous in the range of 0 to 4 mS m-1. Fruit harvested in a drought stress zone showed enhanced portion of pheophytin in the chlorophyll pool. Irrigation affected soluble solids content and, hence, the quality of fruit. Overall, results highlighted that spatial variation in orchards can be found even if marginal variability of soil properties can be assumed.}, language = {en} } @misc{LucknerDunsingChiantiaetal.2018, author = {Luckner, Madlen and Dunsing, Valentin and Chiantia, Salvatore and Hermann, Andreas}, title = {Oligomerization and nuclear shuttling dynamics of viral proteins studied by quantitative molecular brightness analysis using fluorescence correlation spectroscopy}, series = {Biophysical journal}, volume = {114}, journal = {Biophysical journal}, number = {3}, publisher = {Cell Press}, address = {Cambridge}, issn = {0006-3495}, doi = {10.1016/j.bpj.2017.11.1951}, pages = {350A -- 350A}, year = {2018}, language = {en} } @misc{BarlowShengLaietal.2018, author = {Barlow, Axel and Sheng, Gui-Lian and Lai, Xu-Long and Hofreiter, Michael and Paijmans, Johanna L. A.}, title = {Once lost, twice found: Combined analysis of ancient giant panda sequences characterises extinct clade}, series = {Journal of biogeography}, volume = {46}, journal = {Journal of biogeography}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {0305-0270}, doi = {10.1111/jbi.13486}, pages = {251 -- 253}, year = {2018}, language = {en} }