@misc{JeltschBontePe'eretal.2013, author = {Jeltsch, Florian and Bonte, Dries and Pe'er, Guy and Reineking, Bj{\"o}rn and Leimgruber, Peter and Balkenhol, Niko and Schr{\"o}der-Esselbach, Boris and Buchmann, Carsten M. and M{\"u}ller, Thomas and Blaum, Niels and Zurell, Damaris and B{\"o}hning-Gaese, Katrin and Wiegand, Thorsten and Eccard, Jana and Hofer, Heribert and Reeg, Jette and Eggers, Ute and Bauer, Silke}, title = {Integrating movement ecology with biodiversity research}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-401177}, pages = {13}, year = {2013}, abstract = {Movement of organisms is one of the key mechanisms shaping biodiversity, e.g. the distribution of genes, individuals and species in space and time. Recent technological and conceptual advances have improved our ability to assess the causes and consequences of individual movement, and led to the emergence of the new field of 'movement ecology'. Here, we outline how movement ecology can contribute to the broad field of biodiversity research, i.e. the study of processes and patterns of life among and across different scales, from genes to ecosystems, and we propose a conceptual framework linking these hitherto largely separated fields of research. Our framework builds on the concept of movement ecology for individuals, and demonstrates its importance for linking individual organismal movement with biodiversity. First, organismal movements can provide 'mobile links' between habitats or ecosystems, thereby connecting resources, genes, and processes among otherwise separate locations. Understanding these mobile links and their impact on biodiversity will be facilitated by movement ecology, because mobile links can be created by different modes of movement (i.e., foraging, dispersal, migration) that relate to different spatiotemporal scales and have differential effects on biodiversity. Second, organismal movements can also mediate coexistence in communities, through 'equalizing' and 'stabilizing' mechanisms. This novel integrated framework provides a conceptual starting point for a better understanding of biodiversity dynamics in light of individual movement and space-use behavior across spatiotemporal scales. By illustrating this framework with examples, we argue that the integration of movement ecology and biodiversity research will also enhance our ability to conserve diversity at the genetic, species, and ecosystem levels.}, language = {en} } @article{MenguellueoğluFickelHoferetal.2019, author = {Meng{\"u}ll{\"u}oğlu, Deniz and Fickel, J{\"o}rns and Hofer, Heribert and F{\"o}rster, Daniel W.}, title = {Non-invasive faecal sampling reveals spatial organization and improves measures of genetic diversity for the conservation assessment of territorial species}, series = {PLoS one}, volume = {14}, journal = {PLoS one}, number = {5}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0216549}, pages = {20}, year = {2019}, abstract = {The Caucasian lynx, Lynx lynx dinniki, has one of the southernmost distributions in the Eurasian lynx range, covering Anatolian Turkey, the Caucasus and Iran. Little is known about the biology and the genetic status of this subspecies. To collect baseline genetic, ecological and behavioural data and benefit future conservation of L. l. dinniki, we monitored 11 lynx territories (396 km(2)) in northwestern Anatolia. We assessed genetic diversity of this population by non-invasively collecting 171 faecal samples and trapped and sampled 12 lynx individuals using box traps. We observed high allelic variation at 11 nuclear microsatellite markers, and found no signs of inbreeding despite the potential isolation of this population. We obtained similar numbers of distinct genotypes from the two sampling sources. Our results indicated that first order female relatives occupy neighbouring territories (female philopatry) and that territorial male lynx were highly unrelated to each other and to female territorial lynx, suggesting long distance male dispersal. Particular male and female resident territorial lynx and their offspring (kittens and subadults) were more likely to be trapped than resident floaters or dispersing (unrelated) lynx. Conversely, we obtained more data for unrelated lynx and higher numbers of territorials using non-invasive sampling (faeces). When invasive and non-invasive samples were analysed separately, the spatial organisation of lynx (in terms of female philopatry and females and males occupying permanent ranges) affected measures of genetic diversity in such a way that estimates of genetic diversity were reduced if only invasive samples were considered. It appears that, at small spatial scales, invasive sampling using box traps may underestimate the genetic diversity in carnivores with permanent ranges and philopatry such as the Eurasian lynx. As non-invasive sampling can also provide additional data on diet and spatial organisation, we advocate the use of such samples for conservation genetic studies of vulnerable, endangered or data deficient territorial species.}, language = {en} }