@article{SmithDupontMcCarthyetal.2019, author = {Smith, Sarah R. and Dupont, Chris L. and McCarthy, James K. and Broddrick, Jared T. and Obornik, Miroslav and Horak, Ales and F{\"u}ssy, Zolt{\´a}n and Cihlar, Jaromir and Kleessen, Sabrina and Zheng, Hong and McCrow, John P. and Hixson, Kim K. and Araujo, Wagner L. and Nunes-Nesi, Adriano and Fernie, Alisdair R. and Nikoloski, Zoran and Palsson, Bernhard O. and Allen, Andrew E.}, title = {Evolution and regulation of nitrogen flux through compartmentalized metabolic networks in a marine diatom}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-019-12407-y}, pages = {14}, year = {2019}, abstract = {Diatoms outcompete other phytoplankton for nitrate, yet little is known about the mechanisms underpinning this ability. Genomes and genome-enabled studies have shown that diatoms possess unique features of nitrogen metabolism however, the implications for nutrient utilization and growth are poorly understood. Using a combination of transcriptomics, proteomics, metabolomics, fluxomics, and flux balance analysis to examine short-term shifts in nitrogen utilization in the model pennate diatom in Phaeodactylum tricornutum, we obtained a systems-level understanding of assimilation and intracellular distribution of nitrogen. Chloroplasts and mitochondria are energetically integrated at the critical intersection of carbon and nitrogen metabolism in diatoms. Pathways involved in this integration are organelle-localized GS-GOGAT cycles, aspartate and alanine systems for amino moiety exchange, and a split-organelle arginine biosynthesis pathway that clarifies the role of the diatom urea cycle. This unique configuration allows diatoms to efficiently adjust to changing nitrogen status, conferring an ecological advantage over other phytoplankton taxa.}, language = {en} }