@article{ZouWangNeffeetal.2017, author = {Zou, Jie and Wang, Weiwei and Neffe, Axel T. and Xu, Xun and Li, Zhengdong and Deng, Zijun and Sun, Xianlei and Ma, Nan and Lendlein, Andreas}, title = {Adipogenic differentiation of human adipose derived mesenchymal stem cells in 3D architectured gelatin based hydrogels (ArcGel)}, series = {Clinical hemorheology and microcirculation : blood flow and vessels}, volume = {67}, journal = {Clinical hemorheology and microcirculation : blood flow and vessels}, number = {3-4}, publisher = {IOS Press}, address = {Amsterdam}, issn = {1386-0291}, doi = {10.3233/CH-179210}, pages = {297 -- 307}, year = {2017}, abstract = {Polymeric matrices mimicking multiple functions of the ECM are expected to enable a material induced regeneration of tissues. Here, we investigated the adipogenic differentiation of human adipose derived mesenchymal stem cells (hADSCs) in a 3D architectured gelatin based hydrogel (ArcGel) prepared from gelatin and L-lysine diisocyanate ethyl ester (LDI) in an one-step process, in which the formation of an open porous morphology and the chemical network formation were integrated. The ArcGel was designed to support adipose tissue regeneration with its 3D porous structure, high cell biocompatibility, and mechanical properties compatible with human subcutaneous adipose tissue. The ArcGel could support initial cell adhesion and survival of hADSCs. Under static culture condition, the cells could migrate into the inner part of the scaffold with a depth of 840 +/- 120 mu m after 4 days, and distributed in the whole scaffold (2mm in thickness) within 14 days. The cells proliferated in the scaffold and the fold increase of cell number after 7 days of culture was 2.55 +/- 0.08. The apoptotic rate of hADSCs in the scaffold was similar to that of cells maintained on tissue culture plates. When cultured in adipogenic induction medium, the hADSCs in the scaffold differentiated into adipocytes with a high efficiency (93 +/- 1\%). Conclusively, this gelatin based 3D scaffold presented high cell compatibility for hADSC cultivation and differentiation, which could serve as a potential implant material in clinical applications for adipose tissue reparation and regeneration.}, language = {en} } @article{ZimmermannRaschkeEppetal.2017, author = {Zimmermann, Heike Hildegard and Raschke, Elena and Epp, Laura Saskia and Stoof-Leichsenring, Kathleen Rosemarie and Schwamborn, Georg and Schirrmeister, Lutz and Overduin, Pier Paul and Herzschuh, Ulrike}, title = {Sedimentary ancient DNA and pollen reveal the composition of plant organic matter in Late Quaternary permafrost sediments of the Buor Khaya Peninsula (north-eastern Siberia)}, series = {Biogeosciences}, volume = {14}, journal = {Biogeosciences}, number = {3}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1726-4170}, doi = {10.5194/bg-14-575-2017}, pages = {575 -- 596}, year = {2017}, abstract = {Organic matter deposited in ancient, ice-rich permafrost sediments is vulnerable to climate change and may contribute to the future release of greenhouse gases; it is thus important to get a better characterization of the plant organic matter within such sediments. From a Late Quaternary permafrost sediment core from the Buor Khaya Peninsula, we analysed plant-derived sedimentary ancient DNA (sedaDNA) to identify the taxonomic composition of plant organic matter, and undertook palynological analysis to assess the environmental conditions during deposition. Using sedaDNA, we identified 154 taxa and from pollen and non-pollen palynomorphs we identified 83 taxa. In the deposits dated between 54 and 51 kyr BP, sedaDNA records a diverse low-centred polygon plant community including recurring aquatic pond vegetation while from the pollen record we infer terrestrial open-land vegetation with relatively dry environmental conditions at a regional scale. A fluctuating dominance of either terrestrial or swamp and aquatic taxa in both proxies allowed the local hydrological development of the polygon to be traced. In deposits dated between 11.4 and 9.7 kyr BP (13.4-11.1 cal kyr BP), sedaDNA shows a taxonomic turnover to moist shrub tundra and a lower taxonomic richness compared to the older samples. Pollen also records a shrub tundra community, mostly seen as changes in relative proportions of the most dominant taxa, while a decrease in taxonomic richness was less pronounced compared to sedaDNA. Our results show the advantages of using sedaDNA in combination with palynological analyses when macrofossils are rarely preserved. The high resolution of the sedaDNA record provides a detailed picture of the taxonomic composition of plant-derived organic matter throughout the core, and palynological analyses prove valuable by allowing for inferences of regional environmental conditions.}, language = {en} } @article{ZimmermannRaschkeEppetal.2017, author = {Zimmermann, Heike Hildegard and Raschke, Elena and Epp, Laura Saskia and Stoof-Leichsenring, Kathleen Rosemarie and Schirrmeister, Lutz and Schwamborn, Georg and Herzschuh, Ulrike}, title = {The history of tree and shrub taxa on Bol'shoy Lyakhovsky Island (New Siberian Archipelago) since the Last Interglacial Uncovered by Sedimentary Ancient DNA and Pollen Data}, series = {Genes}, volume = {8}, journal = {Genes}, number = {10}, publisher = {MDPI}, address = {Basel}, issn = {2073-4425}, doi = {10.3390/genes8100273}, pages = {273}, year = {2017}, abstract = {Ecosystem boundaries, such as the Arctic-Boreal treeline, are strongly coupled with climate and were spatially highly dynamic during past glacial-interglacial cycles. Only a few studies cover vegetation changes since the last interglacial, as most of the former landscapes are inundated and difficult to access. Using pollen analysis and sedimentary ancient DNA (sedaDNA) metabarcoding, we reveal vegetation changes on Bol'shoy Lyakhovsky Island since the last interglacial from permafrost sediments. Last interglacial samples depict high levels of floral diversity with the presence of trees (Larix, Picea, Populus) and shrubs (Alnus, Betula, Ribes, Cornus, Saliceae) on the currently treeless island. After the Last Glacial Maximum, Larix re-colonised the island but disappeared along with most shrub taxa. This was probably caused by Holocene sea-level rise, which led to increased oceanic conditions on the island. Additionally, we applied two newly developed larch-specific chloroplast markers to evaluate their potential for tracking past population dynamics from environmental samples. The novel markers were successfully re-sequenced and exhibited two variants of each marker in last interglacial samples. SedaDNA can track vegetation changes as well as genetic changes across geographic space through time and can improve our understanding of past processes that shape modern patterns.}, language = {en} } @article{ZibulskiWesenerWilkesetal.2017, author = {Zibulski, Romy and Wesener, Felix and Wilkes, Heinz and Plessen, Birgit and Pestryakova, Luidmila Agafyevna and Herzschuh, Ulrike}, title = {C / N ratio, stable isotope (delta C-13, delta N-15), and n-alkane patterns of brown mosses along hydrological gradients of low-centred polygons of the Siberian Arctic}, series = {Biogeosciences}, volume = {14}, journal = {Biogeosciences}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1726-4170}, doi = {10.5194/bg-14-1617-2017}, pages = {1617 -- 1630}, year = {2017}, abstract = {Mosses are a major component of the arctic vegetation, particularly in wetlands. We present C / N atomic ratio, delta C-13 and delta N-15 data of 400 brown-moss samples belonging to 10 species that were collected along hydrological gradients within polygonal mires located on the southern Taymyr Peninsula and the Lena River delta in northern Siberia. Additionally, n-alkane patterns of six of these species (16 samples) were investigated. The aim of the study is to see whether the inter-and intraspecific differences in C / N, isotopic compositions and n-alkanes are indicative of habitat, particularly with respect to water level. Overall, we find high variability in all investigated parameters for two different moisture-related groups of moss species. The C / N ratios range between 11 and 53 (median: 32) and show large variations at the intraspecific level. However, species preferring a dry habitat (xero-mesophilic mosses) show higher C / N ratios than those preferring a wet habitat (meso-hygrophilic mosses). The delta C-13 values range between 37.0 and 22.5\% (median D 27.8 \%). The delta N-15 values range between 6.6 and C 1.7\%(median D 2.2 \%). We find differences in delta C-13 and delta N-15 compositions between both habitat types. For some species of the meso-hygrophilic group, we suggest that a relationship between the individ-ual habitat water level and isotopic composition can be inferred as a function of microbial symbiosis. The n-alkane distribution also shows differences primarily between xeromesophilic and meso-hygrophilic mosses, i. e. having a dominance of n-alkanes with long (n-C29, n-C31 /and intermediate (n-C25 /chain lengths, respectively. Overall, our results reveal that C / N ratios, isotopic signals and n-alkanes of studied brown-moss taxa from polygonal wetlands are characteristic of their habitat.}, language = {en} } @phdthesis{Zeng2017, author = {Zeng, Ting}, title = {Nanoparticles promoted biocatalysis}, school = {Universit{\"a}t Potsdam}, pages = {99}, year = {2017}, language = {en} } @article{Yarman2017, author = {Yarman, Aysu}, title = {Development of a molecularly imprinted polymer-based electrochemical sensor for tyrosinase}, series = {Turkish journal of chemistry}, volume = {42}, journal = {Turkish journal of chemistry}, number = {2}, publisher = {T{\"u}rkiye Bilimsel ve Teknik Ara{\c{s}}t{\i}rma Kurumu}, address = {Ankara}, issn = {1300-0527}, doi = {10.3906/kim-1708-68}, pages = {346 -- 354}, year = {2017}, abstract = {For the first time a molecularly imprinted polymer (MIP)-based sensor for tyrosinase is described. This sensor is based on the electropolymerization of scopoletin or o-phenylenediamine in the presence of tyrosinase from mushrooms, which has a high homology to the human enzyme. The template was removed either by treatment with proteinase Kor by alkaline treatment. The measuring signal was generated either by measuring the formation of a product by the target enzyme or by evaluation of the permeability of the redox marker ferricyanide. The o-phenylenediamine-based MIP sensor has a linear measuring range up to 50 nM of tyrosinase with a limit of detection of 3.97 nM (R 2 = 0.994) and shows good discrimination towards other proteins, e.g., bovine serum albumin and cytochrome c.}, language = {en} } @misc{YangDarkoHuangetal.2017, author = {Yang, Xiaoping and Darko, Kwame Oteng and Huang, Yanjun and He, Caimei and Yang, Huansheng and He, Shanping and Li, Jianzhong and Li, Jian and Hocher, Berthold and Yin, Yulong}, title = {Resistant starch regulates gut microbiota}, series = {Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology}, volume = {42}, journal = {Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry and pharmacology}, number = {1}, publisher = {Karger}, address = {Basel}, issn = {1015-8987}, doi = {10.1159/000477386}, pages = {306 -- 318}, year = {2017}, abstract = {Starch is one of the most popular nutritional sources for both human and animals. Due to the variation of its nutritional traits and biochemical specificities, starch has been classified into rapidly digestible, slowly digestible and resistant starch. Resistant starch has its own unique chemical structure, and various forms of resistant starch are commercially available. It has been found being a multiple-functional regulator for treating metabolic dysfunction. Different functions of resistant starch such as modulation of the gut microbiota, gut peptides, circulating growth factors, circulating inflammatory mediators have been characterized by animal studies and clinical trials. In this mini-review, recent remarkable progress in resistant starch on gut microbiota, particularly the effect of structure, biochemistry and cell signaling on nutrition has been summarized, with highlights on its regulatory effect on gut microbiota.}, language = {en} } @phdthesis{Yang2017, author = {Yang, Lei}, title = {Verification of systemic mRNAs mobility and mobile functions}, school = {Universit{\"a}t Potsdam}, pages = {125}, year = {2017}, language = {en} } @article{WurzbacherFuchsAttermeyeretal.2017, author = {Wurzbacher, Christian and Fuchs, Andrea and Attermeyer, Katrin and Frindte, Katharina and Grossart, Hans-Peter and Hupfer, Michael and Casper, Peter and Monaghan, Michael T.}, title = {Shifts among Eukaryota, Bacteria, and Archaea define the vertical organization of a lake sediment}, series = {Microbiome}, volume = {5}, journal = {Microbiome}, publisher = {BioMed Central}, address = {London}, issn = {2049-2618}, doi = {10.1186/s40168-017-0255-9}, pages = {16}, year = {2017}, abstract = {Background: Lake sediments harbor diverse microbial communities that cycle carbon and nutrients while being constantly colonized and potentially buried by organic matter sinking from the water column. The interaction of activity and burial remained largely unexplored in aquatic sediments. We aimed to relate taxonomic composition to sediment biogeochemical parameters, test whether community turnover with depth resulted from taxonomic replacement or from richness effects, and to provide a basic model for the vertical community structure in sediments. Methods: We analyzed four replicate sediment cores taken from 30-m depth in oligo-mesotrophic Lake Stechlin in northern Germany. Each 30-cm core spanned ca. 170 years of sediment accumulation according to Cs-137 dating and was sectioned into layers 1-4 cm thick. We examined a full suite of biogeochemical parameters and used DNA metabarcoding to examine community composition of microbial Archaea, Bacteria, and Eukaryota. Results: Community beta-diversity indicated nearly complete turnover within the uppermost 30 cm. We observed a pronounced shift from Eukaryota- and Bacteria-dominated upper layers (<5 cm) to Bacteria-dominated intermediate layers (5-14 cm) and to deep layers (>14 cm) dominated by enigmatic Archaea that typically occur in deep-sea sediments. Taxonomic replacement was the prevalent mechanism in structuring the community composition and was linked to parameters indicative of microbial activity (e.g., CO2 and CH4 concentration, bacterial protein production). Richness loss played a lesser role but was linked to conservative parameters (e.g., C, N, P) indicative of past conditions. Conclusions: By including all three domains, we were able to directly link the exponential decay of eukaryotes with the active sediment microbial community. The dominance of Archaea in deeper layers confirms earlier findings from marine systems and establishes freshwater sediments as a potential low-energy environment, similar to deep sea sediments. We propose a general model of sediment structure and function based on microbial characteristics and burial processes. An upper "replacement horizon" is dominated by rapid taxonomic turnover with depth, high microbial activity, and biotic interactions. A lower "depauperate horizon" is characterized by low taxonomic richness, more stable "low-energy" conditions, and a dominance of enigmatic Archaea.}, language = {en} } @phdthesis{Wu2017, author = {Wu, Si}, title = {Exploring the Arabidopsis metabolic landscape by genetic mapping integrated with network analysis}, school = {Universit{\"a}t Potsdam}, pages = {121}, year = {2017}, language = {en} }