@misc{VanBelProostVanNesteetal.2013, author = {Van Bel, Michiel and Proost, Sebastian and Van Neste, Christophe and Deforce, Dieter and Van de Peer, Yves and Vandepoele, Klaas}, title = {TRAPID}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {900}, issn = {1866-8372}, doi = {10.25932/publishup-43640}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-436409}, pages = {12}, year = {2013}, abstract = {Transcriptome analysis through next-generation sequencing technologies allows the generation of detailed gene catalogs for non-model species, at the cost of new challenges with regards to computational requirements and bioinformatics expertise. Here, we present TRAPID, an online tool for the fast and efficient processing of assembled RNA-Seq transcriptome data, developed to mitigate these challenges. TRAPID offers high-throughput open reading frame detection, frameshift correction and includes a functional, comparative and phylogenetic toolbox, making use of 175 reference proteomes. Benchmarking and comparison against state-of-the-art transcript analysis tools reveals the efficiency and unique features of the TRAPID system. TRAPID is freely available at http://bioinformatics.psb.ugent.be/webtools/trapid/.}, language = {en} } @misc{ThomasMatuschekGrima2013, author = {Thomas, Philipp and Matuschek, Hannes and Grima, Ramon}, title = {How reliable is the linear noise approximation of gene regulatory networks?}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {876}, issn = {1866-8372}, doi = {10.25932/publishup-43502}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-435028}, pages = {17}, year = {2013}, abstract = {Background: The linear noise approximation (LNA) is commonly used to predict how noise is regulated and exploited at the cellular level. These predictions are exact for reaction networks composed exclusively of first order reactions or for networks involving bimolecular reactions and large numbers of molecules. It is however well known that gene regulation involves bimolecular interactions with molecule numbers as small as a single copy of a particular gene. It is therefore questionable how reliable are the LNA predictions for these systems. Results: We implement in the software package intrinsic Noise Analyzer (iNA), a system size expansion based method which calculates the mean concentrations and the variances of the fluctuations to an order of accuracy higher than the LNA. We then use iNA to explore the parametric dependence of the Fano factors and of the coefficients of variation of the mRNA and protein fluctuations in models of genetic networks involving nonlinear protein degradation, post-transcriptional, post-translational and negative feedback regulation. We find that the LNA can significantly underestimate the amplitude and period of noise-induced oscillations in genetic oscillators. We also identify cases where the LNA predicts that noise levels can be optimized by tuning a bimolecular rate constant whereas our method shows that no such regulation is possible. All our results are confirmed by stochastic simulations. Conclusion: The software iNA allows the investigation of parameter regimes where the LNA fares well and where it does not. We have shown that the parametric dependence of the coefficients of variation and Fano factors for common gene regulatory networks is better described by including terms of higher order than LNA in the system size expansion. This analysis is considerably faster than stochastic simulations due to the extensive ensemble averaging needed to obtain statistically meaningful results. Hence iNA is well suited for performing computationally efficient and quantitative studies of intrinsic noise in gene regulatory networks.}, language = {en} } @phdthesis{Slezak2013, author = {Slezak, Kathleen}, title = {Impact of intestinal bacteria on the anatomy and physiology of the intestinal tract in the PRM/Alf mouse model}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-68946}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Introduction: Intestinal bacteria influence gut morphology by affecting epithelial cell proliferation, development of the lamina propria, villus length and crypt depth [1]. Gut microbiota-derived factors have been proposed to also play a role in the development of a 30 \% longer intestine, that is characteristic of PRM/Alf mice compared to other mouse strains [2, 3]. Polyamines and SCFAs produced by gut bacteria are important growth factors, which possibly influence mucosal morphology, in particular villus length and crypt depth and play a role in gut lengthening in the PRM/Alf mouse. However, experimental evidence is lacking. Aim: The objective of this work was to clarify the role of bacterially-produced polyamines on crypt depth, mucosa thickness and epithelial cell proliferation. For this purpose, C3H mice associated with a simplified human microbiota (SIHUMI) were compared with mice colonized with SIHUMI complemented by the polyamine-producing Fusobacterium varium (SIHUMI + Fv). In addition, the microbial impact on gut lengthening in PRM/Alf mice was characterized and the contribution of SCFAs and polyamines to this phenotype was examined. Results: SIHUMI + Fv mice exhibited an up to 1.7 fold higher intestinal polyamine concentration compared to SIHUMI mice, which was mainly due to increased putrescine concentrations. However, no differences were observed in crypt depth, mucosa thickness and epithelial proliferation. In PRM/Alf mice, the intestine of conventional mice was 8.5 \% longer compared to germfree mice. In contrast, intestinal lengths of C3H mice were similar, independent of the colonization status. The comparison of PRM/Alf and C3H mice, both associated with SIHUMI + Fv, demonstrated that PRM/Alf mice had a 35.9 \% longer intestine than C3H mice. However, intestinal SCFA and polyamine concentrations of PRM/Alf mice were similar or even lower, except N acetylcadaverine, which was 3.1-fold higher in PRM/Alf mice. When germfree PRM/Alf mice were associated with a complex PRM/Alf microbiota, the intestine was one quarter longer compared to PRM/Alf mice colonized with a C3H microbiota. This gut elongation correlated with levels of the polyamine N acetylspermine. Conclusion: The intestinal microbiota is able to influence intestinal length dependent on microbial composition and on the mouse genotype. Although SCFAs do not contribute to gut elongation, an influence of the polyamines N acetylcadaverine and N acetylspermine is conceivable. In addition, the study clearly demonstrated that bacterial putrescine does not influence gut morphology in C3H mice.}, language = {en} } @phdthesis{Schumann2013, author = {Schumann, Sara}, title = {Influence of intestinal inflammation on bacterial protein expression in monoassociated mice}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-67757}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Background: Increased numbers of intestinal E. coli are observed in inflammatory bowel disease, but the reasons for this proliferation and it exact role in intestinal inflammation are unknown. Aim of this PhD-project was to identify E. coli proteins involved in E. coli's adaptation to the inflammatory conditions in the gut and to investigate whether these factors affect the host. Furthermore, the molecular basis for strain-specific differences between probiotic and harmful E. coli in their response to intestinal inflammation was investigated. Methods: Using mice monoassociated either with the adherent-invasive E. coli (AIEC) strain UNC or the probiotic E. coli Nissle, two different mouse models of intestinal inflammation were analysed: On the one hand, severe inflammation was induced by treating mice with 3.5\% dextran sodium sulphate (DSS). On the other hand, a very mild intestinal inflammation was generated by associating interleukin 10-deficient (IL-10-/-) mice with E. coli. Differentially expressed proteins in the E. coli strains collected from caecal contents of these mice were identified by two-dimensional fluorescence difference gel electrophoresis. Results DSS-experiment: All DSS-treated mice revealed signs of a moderate caecal and a severe colonic inflammation. However, mice monoassociated with E. coli Nissle were less affected. In both E. coli strains, acute inflammation led to a downregulation of pathways involved in carbohydrate breakdown and energy generation. Accordingly, DSS-treated mice had lower caecal concentrations of bacterial fermentation products than the control mice. Differentially expressed proteins also included the Fe-S cluster repair protein NfuA, the tryptophanase TnaA, and the uncharacterised protein YggE. NfuA was upregulated nearly 3-fold in both E. coli strains after DSS administration. Reactive oxygen species produced during intestinal inflammation damage Fe-S clusters and thereby lead to an inactivation of Fe-S proteins. In vitro data indicated that the repair of Fe-S proteins by NfuA is a central mechanism in E. coli to survive oxidative stress. Expression of YggE, which has been reported to reduce the intracellular level of reactive oxygen species, was 4- to 8-fold higher in E. coli Nissle than in E. coli UNC under control and inflammatory conditions. In vitro growth experiments confirmed these results, indicating that E. coli Nissle is better equipped to cope with oxidative stress than E. coli UNC. Additionally, E. coli Nissle isolated from DSS-treated and control mice had TnaA levels 4- to 7-fold higher than E. coli UNC. In turn, caecal indole concentrations resulting from cleavage of tryptophan by TnaA were higher in E. coli Nissle- associated control mice than in the respective mice associated with E. coli UNC. Because of its anti-inflammatory effect, indole is hypothesised to be involved in the extension of the remission phase in ulcerative colitis described for E. coli Nissle. Results IL-10-/--experiment: Only IL-10-/- mice monoassociated with E. coli UNC for 8 weeks exhibited signs of a very mild caecal inflammation. In agreement with this weak inflammation, the variations in the bacterial proteome were small. Similar to the DSS-experiment, proteins downregulated by inflammation belong mainly to the central energy metabolism. In contrast to the DSS-experiment, no upregulation of chaperone proteins and NfuA were observed, indicating that these are strategies to overcome adverse effects of strong intestinal inflammation. The inhibitor of vertebrate C-type lysozyme, Ivy, was 2- to 3-fold upregulated on mRNA and protein level in E. coli Nissle in comparison to E. coli UNC isolated from IL-10-/- mice. By overexpressing ivy, it was demonstrated in vitro that Ivy contributes to a higher lysozyme resistance observed for E. coli Nissle, supporting the role of Ivy as a potential fitness factor in this E. coli strain. Conclusions: The results of this PhD-study demonstrate that intestinal bacteria sense even minimal changes in the health status of the host. While some bacterial adaptations to the inflammatory conditions are equal in response to strong and mild intestinal inflammation, other reactions are unique to a specific disease state. In addition, probiotic and colitogenic E. coli differ in their response to the intestinal inflammation and thereby may influence the host in different ways.}, language = {en} } @phdthesis{Rothe2013, author = {Rothe, Monique}, title = {Response of intestinal Escherichia coli to dietary factors in the mouse intestine}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-66387}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Diet is a major force influencing the intestinal microbiota. This is obvious from drastic changes in microbiota composition after a dietary alteration. Due to the complexity of the commensal microbiota and the high inter-individual variability, little is known about the bacterial response at the cellular level. The objective of this work was to identify mechanisms that enable gut bacteria to adapt to dietary factors. For this purpose, germ-free mice monoassociated with the commensal Escherichia coli K-12 strain MG1655 were fed three different diets over three weeks: a diet rich in starch, a diet rich in non-digestible lactose and a diet rich in casein. Two dimensional gel electrophoresis and electrospray tandem mass spectrometry were applied to identify differentially expressed proteins of E. coli recovered from small intestine and caecum of mice fed the lactose or casein diets in comparison with those of mice fed the starch diet. Selected differentially expressed bacterial proteins were characterised in vitro for their possible roles in bacterial adaptation to the various diets. Proteins belonging to the oxidative stress regulon oxyR such as alkyl hydroperoxide reductase subunit F (AhpF), DNA protection during starvation protein (Dps) and ferric uptake regulatory protein (Fur), which are required for E. coli's oxidative stress response, were upregulated in E. coli of mice fed the lactose-rich diet. Reporter gene analysis revealed that not only oxidative stress but also carbohydrate-induced osmotic stress led to the OxyR-dependent expression of ahpCF and dps. Moreover, the growth of E. coli mutants lacking the ahpCF or oxyR genes was impaired in the presence of non-digestible sucrose. This indicates that some OxyR-dependent proteins are crucial for the adaptation of E. coli to osmotic stress conditions. In addition, the function of two so far poorly characterised E. coli proteins was analysed: 2 deoxy-D gluconate 3 dehydrogenase (KduD) was upregulated in intestinal E. coli of mice fed the lactose-rich diet and this enzyme and 5 keto 4 deoxyuronate isomerase (KduI) were downregulated on the casein-rich diet. Reporter gene analysis identified galacturonate and glucuronate as inducers of the kduD and kduI gene expression. Moreover, KduI was shown to facilitate the breakdown of these hexuronates, which are normally degraded by uronate isomerase (UxaC), altronate oxidoreductase (UxaB), altronate dehydratase (UxaA), mannonate oxidoreductase (UxuB) and mannonate dehydratase (UxuA), whose expression was repressed by osmotic stress. The growth of kduID-deficient E. coli on galacturonate or glucuronate was impaired in the presence of osmotic stress, suggesting KduI and KduD to compensate for the function of the regular hexuronate degrading enzymes under such conditions. This indicates a novel function of KduI and KduD in E. coli's hexuronate metabolism. Promotion of the intracellular formation of hexuronates by lactose connects these in vitro observations with the induction of KduD on the lactose-rich diet. Taken together, this study demonstrates the crucial influence of osmotic stress on the gene expression of E. coli enzymes involved in stress response and metabolic processes. Therefore, the adaptation to diet-induced osmotic stress is a possible key factor for bacterial colonisation of the intestinal environment.}, language = {en} } @phdthesis{Rietsch2013, author = {Rietsch, Katrin}, title = {Body composition especially external skeletal robustness in association with physical activity and recreation in pre-pubertal children : a national and international investigation}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-66913}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {In children the way of life, nutrition and recreation changed in recent years and as a consequence body composition shifted as well. It is established that overweight belongs to a global problem. In addition, German children exhibit a less robust skeleton than ten years ago. These developments may elevate the risk of cardiovascular diseases and skeletal modifications. Heredity and environmental factors as nutrition, socioeconomic status, physical activity and inactivity influence fat accumulation and the skeletal system. Based on these negative developments associations between type of body shape, skeletal measures and physical activity; relations between external skeletal robustness, physical activity and inactivity, BMI and body fat and also the progress of body composition especially external skeletal robustness in comparison in Russian and German children were investigated. In a cross-sectional study 691 German boys and girls aged 6 to 10 years were examined. Anthropometric measurements were taken and questionnaires about physical activity and inactivity were answered by parents. Additionally, pedometers were worn to determinate the physical activity in children. To compare the body composition in Russian and German children data from the years 2000 and 2010 were used. The study has shown that pyknomorphic individuals exhibit the highest external skeletal robustness and leptomorphic ones the lowest. Leptomorphic children may have a higher risk for bone diseases in adulthood. Pyknomorphic boys are more physically active by tendency. This is assessed as positive because pyknomorphic types display the highest BMI and body fat. Results showed that physical activity may reduce BMI and body fat. In contrast physical inactivity may lead to an increase of BMI and body fat and may rise with increasing age. Physical activity encourages additionally a robust skeleton. Furthermore external skeletal robustness is associated with BMI in order that BMI as a measure of overweight should be consider critically. The international 10-year comparison has shown an increase of BMI in Russian children and German boys. Currently, Russian children exhibit a higher external skeletal robustness than the Germans. However, in Russian boys skeleton is less robust than ten years ago. This trend should be observed in the future as well in other countries. All in all, several measures should be used to describe health situation in children and adults. Furthermore, in children it is essential to support physical activity in order to reduce the risk of obesity and to maintain a robust skeleton. In this way diseases are able to prevent in adulthood.}, language = {en} } @misc{PavesiTiedemannDeMatthaeisetal.2013, author = {Pavesi, Laura and Tiedemann, Ralph and De Matthaeis, Elvira and Ketmaier, Valerio}, title = {Genetic connectivity between land and sea}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-401110}, pages = {19}, year = {2013}, abstract = {Introduction: We examined patterns of genetic divergence in 26 Mediterranean populations of the semi-terrestrial beachflea Orchestia montagui using mitochondrial (cytochrome oxidase subunit I), microsatellite (eight loci) and allozymic data. The species typically forms large populations within heaps of dead seagrass leaves stranded on beaches at the waterfront. We adopted a hierarchical geographic sampling to unravel population structure in a species living at the sea-land transition and, hence, likely subjected to dramatically contrasting forces. Results: Mitochondrial DNA showed historical phylogeographic breaks among Adriatic, Ionian and the remaining basins (Tyrrhenian, Western and Eastern Mediterranean Sea) likely caused by the geological and climatic changes of the Pleistocene. Microsatellites (and to a lesser extent allozymes) detected a further subdivision between and within the Western Mediterranean and the Tyrrhenian Sea due to present-day processes. A pattern of isolation by distance was not detected in any of the analyzed data set. Conclusions: We conclude that the population structure of O. montagui is the result of the interplay of two contrasting forces that act on the species population genetic structure. On one hand, the species semi-terrestrial life style would tend to determine the onset of local differences. On the other hand, these differences are partially counter-balanced by passive movements of migrants via rafting on heaps of dead seagrass leaves across sites by sea surface currents. Approximate Bayesian Computations support dispersal at sea as prevalent over terrestrial regionalism.}, language = {en} } @phdthesis{Nitschke2013, author = {Nitschke, Felix}, title = {Phosphorylation of polyglycans, especially glycogen and starch}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-67396}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Functional metabolism of storage carbohydrates is vital to plants and animals. The water-soluble glycogen in animal cells and the amylopectin which is the major component of water-insoluble starch granules residing in plant plastids are chemically similar as they consist of α-1,6 branched α-1,4 glucan chains. Synthesis and degradation of transitory starch and of glycogen are accomplished by a set of enzymatic activities that to some extend are also similar in plants and animals. Chain elongation, branching, and debranching are achieved by synthases, branching enzymes, and debranching enzymes, respectively. Similarly, both types of polyglucans contain low amounts of phosphate esters whose abundance varies depending on species and organs. Starch is selectively phosphorylated by at least two dikinases (GWD and PWD) at the glucosyl carbons C6 and C3 and dephosphorylated by the phosphatase SEX4 and SEX4-like enzymes. In Arabidopsis insufficiency in starch phosphorylation or dephosphorylation results in largely impaired starch turnover, starch accumulation, and often in retardation of growth. In humans the progressive neurodegenerative epilepsy, Lafora disease, is the result of a defective enzyme (laforin) that is functional equivalent to the starch phosphatase SEX4 and capable of glycogen dephosphorylation. Patients lacking laforin progressively accumulate unphysiologically structured insoluble glycogen-derived particles (Lafora bodies) in many tissues including brain. Previous results concerning the carbon position of glycogen phosphate are contradictory. Currently it is believed that glycogen is esterified exclusively at the carbon positions C2 and C3 and that the monophosphate esters, being incorporated via a side reaction of glycogen synthase (GS), lack any specific function but are rather an enzymatic error that needs to be corrected. In this study a versatile and highly sensitive enzymatic cycling assay was established that enables quantification of very small G6P amounts in the presence of high concentrations of non-target compounds as present in hydrolysates of polysaccharides, such as starch, glycogen, or cytosolic heteroglycans in plants. Following validation of the G6P determination by analyzing previously characterized starches G6P was quantified in hydrolysates of various glycogen samples and in plant heteroglycans. Interestingly, glucosyl C6 phosphate is present in all glycogen preparations examined, the abundance varying between glycogens of different sources. Additionally, it was shown that carbon C6 is severely hyperphosphorylated in glycogen of Lafora disease mouse model and that laforin is capable of removing C6 phosphate from glycogen. After enrichment of phosphoglucans from amylolytically degraded glycogen, several techniques of two-dimensional NMR were applied that independently proved the existence of 6-phosphoglucosyl residues in glycogen and confirmed the recently described phosphorylation sites C2 and C3. C6 phosphate is neither Lafora disease- nor species-, or organ-specific as it was demonstrated in liver glycogen from laforin-deficient mice and in that of wild type rabbit skeletal muscle. The distribution of 6-phosphoglucosyl residues was analyzed in glycogen molecules and has been found to be uneven. Gradual degradation experiments revealed that C6 phosphate is more abundant in central parts of the glycogen molecules and in molecules possessing longer glucan chains. Glycogen of Lafora disease mice consistently contains a higher proportion of longer chains while most short chains were reduced as compared to wild type. Together with results recently published (Nitschke et al., 2013) the findings of this work completely unhinge the hypothesis of GS-mediated phosphate incorporation as the respective reaction mechanism excludes phosphorylation of this glucosyl carbon, and as it is difficult to explain an uneven distribution of C6 phosphate by a stochastic event. Indeed the results rather point to a specific function of 6-phosphoglucosyl residues in the metabolism of polysaccharides as they are present in starch, glycogen, and, as described in this study, in heteroglycans of Arabidopsis. In the latter the function of phosphate remains unclear but this study provides evidence that in starch and glycogen it is related to branching. Moreover a role of C6 phosphate in the early stages of glycogen synthesis is suggested. By rejecting the current view on glycogen phosphate to be a stochastic biochemical error the results permit a wider view on putative roles of glycogen phosphate and on alternative biochemical ways of glycogen phosphorylation which for many reasons are likely to be mediated by distinct phosphorylating enzymes as it is realized in starch metabolism of plants. Better understanding of the enzymology underlying glycogen phosphorylation implies new possibilities of Lafora disease treatment.}, language = {en} } @phdthesis{May2013, author = {May, Felix}, title = {Spatial models of plant diversity and plant functional traits : towards a better understanding of plant community dynamics in fragmented landscapes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-68444}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {The fragmentation of natural habitat caused by anthropogenic land use changes is one of the main drivers of the current rapid loss of biodiversity. In face of this threat, ecological research needs to provide predictions of communities' responses to fragmentation as a prerequisite for the effective mitigation of further biodiversity loss. However, predictions of communities' responses to fragmentation require a thorough understanding of ecological processes, such as species dispersal and persistence. Therefore, this thesis seeks an improved understanding of community dynamics in fragmented landscapes. In order to approach this overall aim, I identified key questions on the response of plant diversity and plant functional traits to variations in species' dispersal capability, habitat fragmentation and local environmental conditions. All questions were addressed using spatially explicit simulations or statistical models. In chapter 2, I addressed scale-dependent relationships between dispersal capability and species diversity using a grid-based neutral model. I found that the ratio of survey area to landscape size is an important determinant of scale-dependent dispersal-diversity relationships. With small ratios, the model predicted increasing dispersal-diversity relationships, while decreasing dispersal-diversity relationships emerged, when the ratio approached one, i.e. when the survey area approached the landscape size. For intermediate ratios, I found a U-shaped pattern that has not been reported before. With this study, I unified and extended previous work on dispersal-diversity relationships. In chapter 3, I assessed the type of regional plant community dynamics for the study area in the Southern Judean Lowlands (SJL). For this purpose, I parameterised a multi-species incidence-function model (IFM) with vegetation data using approximate Bayesian computation (ABC). I found that the type of regional plant community dynamics in the SJL is best characterized as a set of isolated "island communities" with very low connectivity between local communities. Model predictions indicated a significant extinction debt with 33\% - 60\% of all species going extinct within 1000 years. In general, this study introduces a novel approach for combining a spatially explicit simulation model with field data from species-rich communities. In chapter 4, I first analysed, if plant functional traits in the SJL indicate trait convergence by habitat filtering and trait divergence by interspecific competition, as predicted by community assembly theory. Second, I assessed the interactive effects of fragmentation and the south-north precipitation gradient in the SJL on community-mean plant traits. I found clear evidence for trait convergence, but the evidence for trait divergence fundamentally depended on the chosen null-model. All community-mean traits were significantly associated with the precipitation gradient in the SJL. The trait associations with fragmentation indices (patch size and connectivity) were generally weaker, but statistically significant for all traits. Specific leaf area (SLA) and plant height were consistently associated with fragmentation indices along the precipitation gradient. In contrast, seed mass and seed number were interactively influenced by fragmentation and precipitation. In general, this study provides the first analysis of the interactive effects of climate and fragmentation on plant functional traits. Overall, I conclude that the spatially explicit perspective adopted in this thesis is crucial for a thorough understanding of plant community dynamics in fragmented landscapes. The finding of contrasting responses of local diversity to variations in dispersal capability stresses the importance of considering the diversity and composition of the metacommunity, prior to implementing conservation measures that aim at increased habitat connectivity. The model predictions derived with the IFM highlight the importance of additional natural habitat for the mitigation of future species extinctions. In general, the approach of combining a spatially explicit IFM with extensive species occupancy data provides a novel and promising tool to assess the consequences of different management scenarios. The analysis of plant functional traits in the SJL points to important knowledge gaps in community assembly theory with respect to the simultaneous consequences of habitat filtering and competition. In particular, it demonstrates the importance of investigating the synergistic consequences of fragmentation, climate change and land use change on plant communities. I suggest that the integration of plant functional traits and of species interactions into spatially explicit, dynamic simulation models offers a promising approach, which will further improve our understanding of plant communities and our ability to predict their dynamics in fragmented and changing landscapes.}, language = {en} } @phdthesis{Martin2013, author = {Martin, Benjamin}, title = {Linking individual-based models and dynamic energy budget theory : lessons for ecology and ecotoxicology}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-67001}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {In the context of ecological risk assessment of chemicals, individual-based population models hold great potential to increase the ecological realism of current regulatory risk assessment procedures. However, developing and parameterizing such models is time-consuming and often ad hoc. Using standardized, tested submodels of individual organisms would make individual-based modelling more efficient and coherent. In this thesis, I explored whether Dynamic Energy Budget (DEB) theory is suitable for being used as a standard submodel in individual-based models, both for ecological risk assessment and theoretical population ecology. First, I developed a generic implementation of DEB theory in an individual-based modeling (IBM) context: DEB-IBM. Using the DEB-IBM framework I tested the ability of the DEB theory to predict population-level dynamics from the properties of individuals. We used Daphnia magna as a model species, where data at the individual level was available to parameterize the model, and population-level predictions were compared against independent data from controlled population experiments. We found that DEB theory successfully predicted population growth rates and peak densities of experimental Daphnia populations in multiple experimental settings, but failed to capture the decline phase, when the available food per Daphnia was low. Further assumptions on food-dependent mortality of juveniles were needed to capture the population dynamics after the initial population peak. The resulting model then predicted, without further calibration, characteristic switches between small- and large-amplitude cycles, which have been observed for Daphnia. We conclude that cross-level tests help detecting gaps in current individual-level theories and ultimately will lead to theory development and the establishment of a generic basis for individual-based models and ecology. In addition to theoretical explorations, we tested the potential of DEB theory combined with IBMs to extrapolate effects of chemical stress from the individual to population level. For this we used information at the individual level on the effect of 3,4-dichloroanailine on Daphnia. The individual data suggested direct effects on reproduction but no significant effects on growth. Assuming such direct effects on reproduction, the model was able to accurately predict the population response to increasing concentrations of 3,4-dichloroaniline. We conclude that DEB theory combined with IBMs holds great potential for standardized ecological risk assessment based on ecological models.}, language = {en} }