@article{DrobyshevKybarskayaDagaevetal.2019, author = {Drobyshev, Evgenii J. and Kybarskaya, Larisa and Dagaev, Sergey and Solovyev, Nikolay}, title = {New insight in beryllium toxicity excluding exposure to beryllium-containing dust}, series = {Archives of toxicology : official journal of EUROTOX}, volume = {93}, journal = {Archives of toxicology : official journal of EUROTOX}, number = {4}, publisher = {Springer}, address = {Heidelberg}, issn = {0340-5761}, doi = {10.1007/s00204-019-02432-7}, pages = {859 -- 869}, year = {2019}, abstract = {There is much contradiction between different experimental studies on beryllium (Be) toxicity. The majority of studies focus on occupational pathologies, caused by the exposure to Be dust. However, Be pollution may affect wide population groups through other exposure routes. The discrepancies between experimental studies may be attributed to the lack of adequate Be toxicity model since conventional administration routes are hampered by high acidity and low solubility of Be compounds. This study was aimed to develop a novel way to implement Be toxicity avoiding side effects, related to high acidity or low solubility of Be salts. Intraperitoneal injection of Be-glycine composition (containing BeSO4, glycine, purified water, pH adjusted to 5.5 with NaOH) was tested in the dose range 238-7622 mu molBekg(-1) (body weight, b/w) in full-grown Wistar male rats. The model provided reliable uptake of Be from the peritoneum into general circulation for at least 48h. LD50 was found to be 687 mu molBekg(-1) (b/w). The established LD50 value differed from previous data on gastrointestinal, intramuscular or intravenous administration of Be compounds. The liver was found to act as a primary elimination route for Be and related to the highest Be content in the animal. However, it had no signs of morphological damage, which was observed only in the testes (deterioration of germinal epithelium). At the same time, the lungs, stated as a primary target tissue for Be in the models of chronic beryllium disease, did not show strong Be accumulation nor morphological changes. Survived animals showed behavioral changes, including increased motor activity and aggressive reactions in some cases, and complete spasticity in other. The obtained data show the applicability of the established modeling protocol and testified for the independence of chronic beryllium disease on Be2+ ion toxicity per se.}, language = {en} } @article{KoppMuellerPohletal.2019, author = {Kopp, Johannes Florian and M{\"u}ller, Sandra Marie and Pohl, Gabriele and Lossow, Kristina and Kipp, Anna Patricia and Schwerdtle, Tanja}, title = {A quick and simple method for the determination of six trace elements in mammalian serum samples using ICP-MS/MS}, series = {Journal of trace elements in medicine and biology}, volume = {54}, journal = {Journal of trace elements in medicine and biology}, publisher = {Elsevier}, address = {M{\"u}nchen}, issn = {0946-672X}, doi = {10.1016/j.jtemb.2019.04.015}, pages = {221 -- 225}, year = {2019}, abstract = {In order to assess the individual trace element status of humans for either medical or scientific purposes, amongst others, blood serum levels are determined. Furthermore, animal models are used to study interactions of trace elements. Most published methods require larger amounts (500-1000 mu L) of serum to achieve a reliable determination of multiple trace elements. However, oftentimes, these amounts of serum cannot be dedicated to a single analysis and the amount available for TE-determination is much lower. Therefore, a published ICP-MS/MS method for trace element determination in serum was miniaturized, optimized and validated for the measurement of Mn, Fe, Cu Zn, I and Se in as little as 50 mu L of human and murine serum and is presented in this work. For validation, recoveries of multiple LOTs and levels from commercially available human reference serum samples were determined, infra- and inter-day variations were assessed and limits of detection and quantification determined. It is shown, that the method is capable of giving accurate and reproducible results for all six elements within the relevant concentration ranges for samples from humans living in central Europe as well as from laboratory mice. As a highlight, the achieved limits of detection and quantification for Mn were found to be at 0.02 mu g/L serum and 0.05 mu g/L serum, respectively, while using an alkaline diluent for the parallel determination of iodine.}, language = {en} } @article{DuyduBasaranYalcinetal.2019, author = {Duydu, Yalcin and Basaran, Nursen and Yalcin, Can {\"O}zg{\"u}r and Ustundag, Aylin and Aydin, Sevtap and Anlar, Hatice Gul and Bacanli, Merve and Aydos, Kaan and Atabekoglu, Cem Somer and Golka, Klaus and Ickstadt, Katja and Schwerdtle, Tanja and Werner, Matthias and Bolt, Hermann M.}, title = {Boron-exposed male workers in Turkey}, series = {Archives of toxicology : official journal of EUROTOX}, volume = {93}, journal = {Archives of toxicology : official journal of EUROTOX}, number = {3}, publisher = {Springer}, address = {Heidelberg}, issn = {0340-5761}, doi = {10.1007/s00204-019-02391-z}, pages = {743 -- 751}, year = {2019}, abstract = {Boron-associated shifts in sex ratios at birth were suggested earlier and attributed to a decrease in Y- vs. X-bearing sperm cells. As the matter is pivotal in the discussion of reproductive toxicity of boron/borates, re-investigation in a highly borate-exposed population was required. In the present study, 304 male workers in Bandirma and Bigadic (Turkey) with different degrees of occupational and environmental exposure to boron were investigated. Boron was quantified in blood, urine and semen, and the persons were allocated to exposure groups along B blood levels. In the highest ("extreme") exposure group (n = 69), calculated mean daily boron exposures, semen boron and blood boron concentrations were 44.91 +/- 18.32 mg B/day, 1643.23 +/- 965.44 ng B/g semen and 553.83 +/- 149.52 ng B/g blood, respectively. Overall, an association between boron exposure and Y:X sperm ratios in semen was not statistically significant (p > 0.05). Also, the mean Y:X sperm ratios in semen samples of workers allocated to the different exposure groups were statistically not different in pairwise comparisons (p > 0.05). Additionally, a boron-associated shift in sex ratio at birth towards female offspring was not visible. In essence, the present results do not support an association between boron exposure and decreased Y:X sperm ratio in males, even under extreme boron exposure conditions.}, language = {en} } @article{KluthStadionGottmannetal.2019, author = {Kluth, Oliver and Stadion, Mandy and Gottmann, Pascal and Aga-Barfknecht, Heja and J{\"a}hnert, Markus and Scherneck, Stephan and Vogel, Heike and Krus, Ulrika and Seelig, Anett and Ling, Charlotte and Gerdes, Jantje and Sch{\"u}rmann, Annette}, title = {Decreased expression of cilia genes in pancreatic islets as a risk factor for type 2 diabetes in mice and humans}, series = {Cell reports}, volume = {26}, journal = {Cell reports}, number = {11}, publisher = {Cell Press}, address = {Maryland Heights}, issn = {2211-1247}, doi = {10.1016/j.celrep.2019.02.056}, pages = {3027 -- 3036}, year = {2019}, abstract = {An insufficient adaptive beta-cell compensation is a hallmark of type 2 diabetes (T2D). Primary cilia function as versatile sensory antennae regulating various cellular processes, but their role on compensatory beta-cell replication has not been examined. Here, we identify a significant enrichment of downregulated, cilia-annotated genes in pancreatic islets of diabetes-prone NZO mice as compared with diabetes-resistant B6-ob/ob mice. Among 327 differentially expressed mouse cilia genes, 81 human orthologs are also affected in islets of diabetic donors. Islets of nondiabetic mice and humans show a substantial overlap of upregulated cilia genes that are linked to cell-cycle progression. The shRNA-mediated suppression of KIF3A, essential for ciliogenesis, impairs division of MINE beta cells as well as in dispersed primary mouse and human islet cells, as shown by decreased BrdU incorporation. These findings demonstrate the substantial role of cilia-gene regulation on islet function and T2D risk.}, language = {en} } @article{FredeSchreinerBaldermann2019, author = {Frede, Katja and Schreiner, Monika and Baldermann, Susanne}, title = {Light quality-induced changes of carotenoid composition in pak choi Brassica rapa ssp. chinensis}, volume = {193}, publisher = {Elsevier}, address = {Lausanne}, issn = {1011-1344}, doi = {10.1016/j.jphotobiol.2019.02.001}, pages = {18 -- 30}, year = {2019}, abstract = {Carotenoids as part of the photosystems are crucial for their assembly, light-harvesting, and photoprotection. Light of different wavelengths impacts the composition and structure of photosystems, thus offering the possibility to influence the carotenoid concentrations and composition in photosystems by illumination with specific narrow-banded light spectra. Key components involved in the regulation of gene transcription are still poorly characterized, particularly in leafy vegetables as compared to model plants. In particular, the effect of different light qualities and its connection to redox control mechanisms, which also determine the photosystem composition and structure, is not yet well understood. Furthermore, light quality effects are species-dependent, and thus, increase the need to perform research on individual vegetable species such as pak choi Brassica rapa ssp. chinensis. Here, we investigated the carotenoid concentrations and composition of pak choi sprouts grown for 6 days under blue, red, or white light emitting diodes (LEDs) as light source. After 6 days, the total carotenoid content was the highest under white and slightly reduced under blue or red LEDs. Blue, red, and white light differently affected the carotenoid composition mainly due to variations of the beta-carotene content which could be correlated to changes in the transcript levels of beta-carotene hydroxylase 1 (beta-OHASE1). Further investigations implied a redox controlled gene expression of beta-OHASE1. In addition, transcription factors related to light signaling and the circadian clock differed in their transcriptional abundance after exposure to blue and red light. RNA-Seq analysis also revealed increased transcript levels of genes encoding the outer antenna complex of photosystem II under red compared to blue light, indicating an adjustment of the photosystems to the different light qualities which possibly contributed to the alternations in the carotenoid content and composition.}, language = {en} } @article{ShiXieQietal.2019, author = {Shi, Jiang and Xie, Dongchao and Qi, Dandan and Peng, Qunhua and Chen, Zongmao and Schreiner, Monika and Lin, Zhi and Baldermann, Susanne}, title = {Methyl jasmonate-induced changes of flavor profiles during the processing of Green, Oolong, and Black Tea}, series = {Frontiers in plant science}, volume = {10}, journal = {Frontiers in plant science}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2019.00781}, pages = {13}, year = {2019}, abstract = {Tea aroma is one of the most important factors affecting the character and quality of tea. Here we describe the practical application of methyl jasmonate (MeJA) to improve the aroma quality of teas. The changes of selected metabolites during crucial tea processing steps, namely, withering, fixing and rolling, and fermentation, were analyzed. MeJA treatment of tea leaves (12, 24, 48, and 168 h) greatly promotes the aroma quality of green, oolong, and black tea products when comparing with untreated ones (0 h) and as confirmed by sensory evaluation. MeJA modulates the aroma profiles before, during, and after processing. Benzyl alcohol, benzaldehyde, 2-phenylethyl alcohol, phenylacetaldehyde, and trans-2-hexenal increased 1.07- to 3-fold in MeJA-treated fresh leaves and the first two maintained at a higher level in black tea and the last two in green tea. This correlates with a decrease in aromatic amino acids by more than twofold indicating a direct relation to tryptophan- and phenylalanine-derived volatiles. MeJA-treated oolong tea was characterized by a more pleasant aroma. Especially the terpenoids linalool and oxides, geraniol, and carvenol increased by more than twofold.}, language = {en} } @article{YadavDreherAthmeretal.2019, author = {Yadav, Heena and Dreher, Doroth{\´e}e and Athmer, Benedikt and Porzel, Andrea and Gavrin, Aleksandr and Baldermann, Susanne and Tissier, Alain and Hause, Bettina}, title = {Medicago TERPENE SYNTHASE 10 is involved in defense against an oomycete root pathogen}, series = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, volume = {180}, journal = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, number = {3}, publisher = {American Society of Plant Physiologists}, address = {Rockville}, issn = {0032-0889}, doi = {10.1104/pp.19.00278}, pages = {1598 -- 1613}, year = {2019}, abstract = {In nature, plants interact with numerous beneficial or pathogenic soil-borne microorganisms. Plants have developed various defense strategies to expel pathogenic microbes, some of which function soon after pathogen infection. We used Medicago truncatula and its oomycete pathogen Aphanomyces euteiches to elucidate early responses of the infected root. A. euteiches causes root rot disease in legumes and is a limiting factor in legume production. Transcript profiling of seedlings and adult plant roots inoculated with A. euteiches zoospores for 2 h revealed specific upregulation of a gene encoding a putative sesquiterpene synthase (M. truncatula TERPENE SYNTHASE 10 [MtTPS10]) in both developmental stages. MtTPS10 was specifically expressed in roots upon oomycete infection. Heterologous expression of MtTPS10 in yeast led to production of a blend of sesquiterpenes and sesquiterpene alcohols, with NMR identifying a major peak corresponding to himalachol. Moreover, plants carrying a tobacco (Nicotiana tabacum) retrotransposon Tnt1 insertion in MtTPS10 lacked the emission of sesquiterpenes upon A. euteiches infection, supporting the assumption that the identified gene encodes a multiproduct sesquiterpene synthase. Mttps10 plants and plants with reduced MtTPS10 transcript levels created by expression of an MtTPS10-artificial microRNA in roots were more susceptible to A. euteiches infection than were the corresponding wild-type plants and roots transformed with the empty vector, respectively. Sesquiterpenes produced by expression of MtTPS10 in yeast also inhibited mycelial growth and A. euteiches zoospore germination. These data suggest that sesquiterpene production in roots by MtTPS10 plays a previously unrecognized role in the defense response of M. truncatula against A. euteiches.}, language = {en} } @article{WiggerGulbinsKleuseretal.2019, author = {Wigger, Dominik and Gulbins, Erich and Kleuser, Burkhard and Schumacher, Fabian}, title = {Monitoring the Sphingolipid de novo Synthesis by Stable-Isotope Labeling and Liquid Chromatography-Mass Spectrometry}, series = {Frontiers in Cell and Developmental Biology}, volume = {7}, journal = {Frontiers in Cell and Developmental Biology}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-634X}, doi = {10.3389/fcell.2019.00210}, pages = {16}, year = {2019}, abstract = {Sphingolipids are a class of lipids that share a sphingoid base backbone. They exert various effects in eukaryotes, ranging from structural roles in plasma membranes to cellular signaling. De novo sphingolipid synthesis takes place in the endoplasmic reticulum (ER), where the condensation of the activated C₁₆ fatty acid palmitoyl-CoA and the amino acid L-serine is catalyzed by serine palmitoyltransferase (SPT). The product, 3-ketosphinganine, is then converted into more complex sphingolipids by additional ER-bound enzymes, resulting in the formation of ceramides. Since sphingolipid homeostasis is crucial to numerous cellular functions, improved assessment of sphingolipid metabolism will be key to better understanding several human diseases. To date, no assay exists capable of monitoring de novo synthesis sphingolipid in its entirety. Here, we have established a cell-free assay utilizing rat liver microsomes containing all the enzymes necessary for bottom-up synthesis of ceramides. Following lipid extraction, we were able to track the different intermediates of the sphingolipid metabolism pathway, namely 3-ketosphinganine, sphinganine, dihydroceramide, and ceramide. This was achieved by chromatographic separation of sphingolipid metabolites followed by detection of their accurate mass and characteristic fragmentations through high-resolution mass spectrometry and tandem-mass spectrometry. We were able to distinguish, unequivocally, between de novo synthesized sphingolipids and intrinsic species, inevitably present in the microsome preparations, through the addition of stable isotope-labeled palmitate-d₃ and L-serine-d₃. To the best of our knowledge, this is the first demonstration of a method monitoring the entirety of ER-associated sphingolipid biosynthesis. Proof-of-concept data was provided by modulating the levels of supplied cofactors (e.g., NADPH) or the addition of specific enzyme inhibitors (e.g., fumonisin B₁). The presented microsomal assay may serve as a useful tool for monitoring alterations in sphingolipid de novo synthesis in cells or tissues. Additionally, our methodology may be used for metabolism studies of atypical substrates - naturally occurring or chemically tailored - as well as novel inhibitors of enzymes involved in sphingolipid de novo synthesis.}, language = {en} } @article{FrombachUnbehauenKurniasihetal.2019, author = {Frombach, Janna and Unbehauen, Michael and Kurniasih, Indah N. and Schumacher, Fabian and Volz, Pierre and Hadam, Sabrina and Rancan, Fiorenza and Blume-Peytavi, Ulrike and Kleuser, Burkhard and Haag, Rainer and Alexiev, Ulrike and Vogt, Annika}, title = {Core-multishell nanocarriers enhance drug penetration and reach keratinocytes and antigen-presenting cells in intact human skin}, series = {Journal of controlled release}, volume = {299}, journal = {Journal of controlled release}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0168-3659}, doi = {10.1016/j.jconrel.2019.02.028}, pages = {138 -- 148}, year = {2019}, abstract = {In reconstructed skin and diffusion cell studies, core-multishell nanocarriers (CMS-NC) showed great potential for drug delivery across the skin barrier. Herein, we investigated penetration, release of dexamethasone (DXM), in excised full-thickness human skin with special focus on hair follicles (HF). Four hours and 16 h after topical application of clinically relevant dosages of 10 mu g DXM/cm(2) skin encapsulated in CMS-NC (12 nm diameter, 5.8\% loading), presence of DXM in the tissue as assessed by fluorescence microscopy of anti-DXM-stained tissue sections as well as ELISA and HPLC-MS/MS in tissue extracts was enhanced compared to standard LAW-creme but lower compared to DXM aqueous/alcoholic solution. Such enhanced penetration compared to conventional cremes offers high potential for topical therapies, as recurrent applications of corticosteroid solutions face limitations with regard to tolerability and fast drainage. The findings encourage more detailed investigations on where and how the nanocarrier and drug dissociate within the skin and what other factors, e.g. thermodynamic activity, influence the penetration of this formulations. Microscopic studies on the spatial distribution within the skin revealed accumulation in HF and furrows accompanied by limited cellular uptake assessed by flow cytometry (up to 9\% of total epidermal cells). FLIM clearly visualized the presence of CMS-NC in the viable epidermis and dermis. When exposed in situ a fraction of up to 25\% CD1a(+) cells were found within the epidermal CMS-NC+ population compared to approximately 3\% CD1a(+)/CMS-NC+ cells after in vitro exposure in short-term cultures of epidermal cell suspensions. The latter reflects the natural percentage of Langerhans cells (LC) in epidermis suspensions and indicated that CMS-NC were not preferentially internalized by one cell type. The increased CMS-NC+ LC proportion after exposure within the tissue is in accordance with the strategic suprabasal LC-localization. More specifically we postulate that the extensive dendrite meshwork, their position around HF orifices and their capacity to modulate tight junctions facilitated a preferential uptake of CMS-NC by LC within the skin. This newly identified aspect of CMS-NC penetration underlines the potential of CMS-NC for dermatotherapy and encourages further investigations of CMS-NC for the delivery of other molecule classes for which intracellular delivery is even more crucial.}, language = {en} } @article{WiesnerReinholdBarknowitzFlorianetal.2019, author = {Wiesner-Reinhold, Melanie and Barknowitz, Gitte and Florian, Simone and Mewis, Inga and Schumacher, Fabian and Schreiner, Monika and Glatt, Hansruedi}, title = {1-Methoxy-3-indolylmethyl DNA adducts in six tissues, and blood protein adducts, in mice under pak choi diet: time course and persistence}, series = {Archives of toxicology : official journal of EUROTOX}, volume = {93}, journal = {Archives of toxicology : official journal of EUROTOX}, number = {6}, publisher = {Springer}, address = {Heidelberg}, issn = {0340-5761}, doi = {10.1007/s00204-019-02452-3}, pages = {1515 -- 1527}, year = {2019}, abstract = {We previously showed that purified 1-methoxy-3-indolylmethyl (1-MIM) glucosinolate, a secondary plant metabolite in Brassica species, is mutagenic in various in vitro systems and forms DNA and protein adducts in mouse models. In the present study, we administered 1-MIM glucosinolate in a natural matrix to mice, by feeding a diet containing pak choi powder and extract. Groups of animals were killed after 1, 2, 4 and 8 days of pak choi diet, directly or, in the case of the 8-day treatment, after 0, 8 and 16 days of recovery with pak choi-free diet. DNA adducts [N-2-(1-MIM)-dG, N-6-(1-MIM)-dA] in six tissues, as well as protein adducts [tau N-(1-MIM)-His] in serum albumin (SA) and hemoglobin (Hb) were determined using UPLC-MS/MS with isotopically labeled internal standards. None of the samples from the 12 control animals under standard diet contained any 1-MIM adducts. All groups receiving pak choi diet showed DNA adducts in all six tissues (exception: lung of mice treated for a single day) as well as SA and Hb adducts. During the feeding period, all adduct levels continuously increased until day 8 (in the jejunum until day 4). During the 14-day recovery period, N-2-(1-MIM)-dG in liver, kidney, lung, jejunum, cecum and colon decreased to 52, 41, 59, 11, 7 and 2\%, respectively, of the peak level. The time course of N-6-(1-MIM)-dA was similar. Immunohistochemical analyses indicated that cell turnover is a major mechanism of DNA adduct elimination in the intestine. In the same recovery period, protein adducts decreased more rapidly in SA than in Hb, to 0.7 and 37\%, respectively, of the peak level, consistent with the differential turnover of these proteins. In conclusion, the pak choi diet lead to the formation of high levels of adducts in mice. Cell and protein turnover was a major mechanism of adduct elimination, at least in gut and blood.}, language = {en} } @article{RancanVolkmannGiulbudagianetal.2019, author = {Rancan, Fiorenza and Volkmann, Hildburg and Giulbudagian, Michael and Schumacher, Fabian and Stanko, Jessica Isolde and Kleuser, Burkhard and Blume-Peytavi, Ulrike and Calderon, Marcelo and Vogt, Annika}, title = {Dermal Delivery of the High-Molecular-Weight Drug Tacrolimus by Means of Polyglycerol-Based Nanogels}, series = {Pharmaceutics : Molecular Diversity Preservation International}, volume = {11}, journal = {Pharmaceutics : Molecular Diversity Preservation International}, number = {8}, publisher = {MDPI}, address = {Basel}, issn = {1999-4923}, doi = {10.3390/pharmaceutics11080394}, pages = {14}, year = {2019}, abstract = {Polyglycerol-based thermoresponsive nanogels (tNGs) have been shown to have excellent skin hydration properties and to be valuable delivery systems for sustained release of drugs into skin. In this study, we compared the skin penetration of tacrolimus formulated in tNGs with a commercial 0.1\% tacrolimus ointment. The penetration of the drug was investigated in ex vivo abdominal and breast skin, while different methods for skin barrier disruption were investigated to improve skin permeability or simulate inflammatory conditions with compromised skin barrier. The amount of penetrated tacrolimus was measured in skin extracts by liquid chromatography tandem-mass spectrometry (LC-MS/MS), whereas the inflammatory markers IL-6 and IL-8 were detected by enzyme-linked immunosorbent assay (ELISA). Higher amounts of tacrolimus penetrated in breast as compared to abdominal skin or in barrier-disrupted as compared to intact skin, confirming that the stratum corneum is the main barrier for tacrolimus skin penetration. The anti-proliferative effect of the penetrated drug was measured in skin tissue/Jurkat cells co-cultures. Interestingly, tNGs exhibited similar anti-proliferative effects as the 0.1\% tacrolimus ointment. We conclude that polyglycerol-based nanogels represent an interesting alternative to paraffin-based formulations for the treatment of inflammatory skin conditions.}, language = {en} } @article{RundHeylmannSeiwertetal.2019, author = {Rund, Katharina M. and Heylmann, Daniel and Seiwert, Nina and Wecklein, Sabine and Oger, Camille and Galano, Jean-Marie and Durand, Thierry and Chen, Rongjun and G{\"u}ler, Faikah and Fahrer, J{\"o}rg and Bornhorst, Julia and Schebb, Nils Helge}, title = {Formation of trans-epoxy fatty acids correlates with formation of isoprostanes and could serve as biomarker of oxidative stress}, series = {Prostaglandins \& Other Lipid Mediators}, volume = {144}, journal = {Prostaglandins \& Other Lipid Mediators}, publisher = {Elsevier}, address = {New York}, issn = {1098-8823}, doi = {10.1016/j.prostaglandins.2019.04.004}, pages = {10}, year = {2019}, abstract = {In mammals, epoxy-polyunsaturated fatty acids (epoxy-PUFA) are enzymatically formed from naturally occurring all-cis PUFA by cytochrome P450 monooxygenases leading to the generation of cis-epoxy-PUFA (mixture of R,S- and S,R-enantiomers). In addition, also non-enzymatic chemical peroxidation gives rise to epoxy-PUFA leading to both, cis- and trans-epoxy-PUFA (mixture of R,R- and S,S-enantiomers). Here, we investigated for the first time trans-epoxy-PUFA and the trans/cis-epoxy-PUFA ratio as potential new biomarker of lipid peroxidation. Their formation was analyzed in correlation with the formation of isoprostanes (IsoP), which are commonly used as biomarkers of oxidative stress. Five oxidative stress models were investigated including incubations of three human cell lines as well as the in vivo model Caenorhabditis elegans with tert-butyl hydroperoxide (t-BOOH) and analysis of murine kidney tissue after renal ischemia reperfusion injury (IRI). A comprehensive set of IsoP and epoxy-PUFA derived from biologically relevant PUFA (ARA, EPA and DHA) was simultaneously quantified by LC-ESI(-)-MS/MS. Following renal IRI only a moderate increase in the kidney levels of IsoP and no relevant change in the trans/cis-epoxy-PUFA ratio was observed. In all investigated cell lines (HCT-116, HepG2 and Caki-2) as well as C. elegans a dose dependent increase of both, IsoP and the trans/cis-epoxy-PUFA ratio in response to the applied t-BOOH was observed. The different cell lines showed a distinct time dependent pattern consistent for both classes of autoxidatively formed oxylipins. Clear and highly significant correlations of the trans/cisepoxy-PUFA ratios with the IsoP levels were found in all investigated cell lines and C. elegans. Based on this, we suggest the trans/cis-epoxy-PUFA ratio as potential new biomarker of oxidative stress, which warrants further investigation.}, language = {en} } @article{RohnKroepflBornhorstetal.2019, author = {Rohn, Isabelle and Kroepfl, Nina and Bornhorst, Julia and K{\"u}hnelt, Doris and Schwerdtle, Tanja}, title = {Side-directed transfer and presystemic metabolism of selenoneine in a human intestinal barrier model}, series = {Molecular nutrition \& food research : bioactivity, chemistry, immunology, microbiology, safety, technology}, volume = {63}, journal = {Molecular nutrition \& food research : bioactivity, chemistry, immunology, microbiology, safety, technology}, number = {12}, publisher = {Wiley}, address = {Hoboken}, issn = {1613-4125}, doi = {10.1002/mnfr.201900080}, pages = {11}, year = {2019}, abstract = {Scope: Selenoneine, a recently discovered selenium (Se) species mainly present in marine fish, is the Se analogue of ergothioneine, a sulfur-containing purported antioxidant. Although similar properties have been proposed for selenoneine, data on its relevance to human health are yet scarce. Here, the transfer and presystemic metabolism of selenoneine in an in vitro model of the human intestinal barrier are investigated. Methods and results: Selenoneine and the reference species Se-methylselenocysteine (MeSeCys) and selenite are applied to the Caco-2 intestinal barrier model. Selenoneine is transferred in higher amounts, but with similar kinetics as selenite, while MeSeCys shows the highest permeability. In contrast to the reference species, transfer of selenoneine is directed toward the blood side. Cellular Se contents demonstrate that selenoneine is efficiently taken up by Caco-2 cells. Moreover, HPLC/MS-based Se speciation studies reveal a partial metabolism to Se-methylselenoneine, a metabolite previously detected in human blood and urine. Conclusions: Selenoneine is likely to pass the intestinal barrier via transcellular, carrier-mediated transport, is highly bioavailable to Caco-2 cells and undergoes metabolic transformations. Therefore, further studies are needed to elucidate its possible health effects and to characterize the metabolism of selenoneine in humans.}, language = {en} } @article{BaeslerKoppPohletal.2019, author = {Baesler, Jessica and Kopp, Johannes Florian and Pohl, Gabriele and Aschner, Michael and Haase, Hajo and Schwerdtle, Tanja and Bornhorst, Julia}, title = {Zn homeostasis in genetic models of Parkinson's disease in Caenorhabditis elegans}, series = {Journal of Trace Elements in Medicine and Biology}, volume = {55}, journal = {Journal of Trace Elements in Medicine and Biology}, publisher = {Elsevier}, address = {M{\"u}nchen}, doi = {10.1016/j.jtemb.2019.05.005}, pages = {44 -- 49}, year = {2019}, abstract = {While the underlying mechanisms of Parkinson's disease (PD) are still insufficiently studied, a complex interaction between genetic and environmental factors is emphasized. Nevertheless, the role of the essential trace element zinc (Zn) in this regard remains controversial. In this study we altered Zn balance within PD models of the versatile model organism Caenorhabditis elegans (C. elegans) in order to examine whether a genetic predisposition in selected genes with relevance for PD affects Zn homeostasis. Protein-bound and labile Zn species act in various areas, such as enzymatic catalysis, protein stabilization pathways and cell signaling. Therefore, total Zn and labile Zn were quantitatively determined in living nematodes as individual biomarkers of Zn uptake and bioavailability with inductively coupled plasma tandem mass spectrometry (ICP-MS/MS) or a multi-well method using the fluorescent probe ZinPyr-1. Young and middle-aged deletion mutants of catp-6 and pdr-1, which are orthologues of mammalian ATP13A2 (PARK9) and parkin (PARK2), showed altered Zn homeostasis following Zn exposure compared to wildtype worms. Furthermore, age-specific differences in Zn uptake were observed in wildtype worms for total as well as labile Zn species. These data emphasize the importance of differentiation between Zn species as meaningful biomarkers of Zn uptake as well as the need for further studies investigating the role of dysregulated Zn homeostasis in the etiology of PD.}, language = {en} } @article{Wardelmann2019, author = {Wardelmann, Kristina}, title = {Hormonal regulation of neuronal mitochondrial unfolded protein response and its impact on metabolism}, pages = {108}, year = {2019}, abstract = {The hypothalamus is the main brain area of central regulation of whole body metabolism through impacting food intake and energy expenditure. For the complex regulation, high amounts of energy are needed and mainly provided by mitochondria. Hence, mitochondrial function is crucial for cell homeostasis and modulates central insulin sensitivity. Thus, mitochondrial dysfunction is associated with insulin resistance in the brain and therefore is involved in the pathogenesis of type-2 diabetes (T2D). Mitochondrial health and protein homeostasis is propagated by mitochondrial stress responses like e.g. mitochondrial unfolded protein response (UPRmt). Therefore, studies regarding the regulation of mitochondrial homeostasis are crucial for understanding its effects on the central nervous system (CNS) for the progression of metabolic and nutrition-dependent disorders. One main aim of this thesis was to investigate the metabolic regulation of mitochondrial stress responsiveness in the hypothalamus. The observed results showed that functional ERK-dependent insulin signaling is needed for regulation of mitochondrial stress response (MSR) genes and positively impacted the metabolism by controlling mitochondrial proteostasis without affecting mitochondrial biogenesis. To further explore the role of MSR genes for brain cell homeostasis and its consequences for the metabolism, one of the key players - the mitochondrial chaperone heat shock protein 10 (Hsp10) - was studied in detail. Hsp10 expression was decreased in insulin-resistant, hyperglycemic db/db mice brains along with increased protein oxidation. Leptin, another key hormone in regulating metabolism, was able to induce Hsp10 in neurons. Appropriately, lentiviral-mediated knock down (KD) of Hsp10 introduced into hypothalamic CLU-183 cells induced mitochondrial dysfunction, altered mitochondrial dynamics and increased contact sites between mitochondria and endoplasmic reticulum (ER). In addition, Hsp10 KD caused cellular insulin resistance along with increasing oxidative stress specifically in mitochondrial fraction. Interestingly, acute Hsp10 KD in the arcuate nucleus of the hypothalamus in C57BL/6N male mice did not change body weight or food intake, but it increased plasma leptin concentrations suggesting an effect on global leptin signaling. It increased hepatic markers of gluconeogenesis and hepatic insulin resistance along with features of low-grade inflammation. Long-term studies of hypothalamic Hsp10 KD mice revealed unaltered systemic insulin sensitivity. The demonstrated increase in markers of hepatic gluconeogenesis of acute Hsp10 KD was still exhibited after 13 weeks, but insulin resistance in the liver was no longer observed. In conclusion, hypothalamic insulin action regulates MSR and ensures proper mitochondrial function which positively affects metabolism. In addition, hypothalamic Hsp10 acts as a modulator of both insulin and leptin signaling and is identified as pivotal for the regulation of central mitochondrial function as well as insulin sensitivity in the brain and it impacts liver function. It may present a regulator of brain-liver crosstalk influencing hepatic gluconeogenesis and insulin sensitivity through a novel regulatory signaling mechanism.}, language = {en} } @article{CastroFernandoReegetal.2019, author = {Castro, Jose Pedro and Fernando, Raquel and Reeg, Sandra and Meinl, Walter and Almeida, Henrique and Grune, Tilman}, title = {Non-enzymatic cleavage of Hsp90 by oxidative stress leads to actin aggregate formation}, series = {Redox Biology}, volume = {21}, journal = {Redox Biology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2213-2317}, doi = {10.1016/j.redox.2019.101108}, pages = {10}, year = {2019}, abstract = {Aging is accompanied by the accumulation of oxidized proteins. To remove them, cells employ the proteasomal and autophagy-lysosomal systems; however, if the clearance rate is inferior to its formation, protein aggregates form as a hallmark of proteostasis loss. In cells, during stress conditions, actin aggregates accumulate leading to impaired proliferation and reduced proteasomal activity, as observed in cellular senescence. The heat shock protein 90 (Hsp90) is a molecular chaperone that binds and protects the proteasome from oxidative inactivation. We hypothesized that in oxidative stress conditions a malfunction of Hsp90 occurs resulting in the aforementioned protein aggregates. Here, we demonstrate that upon oxidative stress Hsp90 loses its function in a highly specific non-enzymatic iron-catalyzed oxidation event and its breakdown product, a cleaved form of Hsp90 (Hsp90cl), acquires a new function in mediating the accumulation of actin aggregates. Moreover, the prevention of Hsp90 cleavage reduces oxidized actin accumulation, whereas transfection of the cleaved form of Hsp90 leads to an enhanced accumulation of oxidized actin. This indicates a clear role of the Hsp90cl in the aggregation of oxidized proteins.}, language = {en} } @article{WittenbecherKuxhausBoeingetal.2019, author = {Wittenbecher, Clemens and Kuxhaus, Olga and Boeing, Heiner and Stefan, Norbert and Schulze, Matthias Bernd}, title = {Associations of short stature and components of height with incidence of type 2 diabetes}, series = {Diabetologia : journal of the European Association for the Study of Diabetes (EASD)}, volume = {62}, journal = {Diabetologia : journal of the European Association for the Study of Diabetes (EASD)}, number = {12}, publisher = {Springer}, address = {New York}, issn = {0012-186X}, doi = {10.1007/s00125-019-04978-8}, pages = {2211 -- 2221}, year = {2019}, abstract = {Aims/hypothesis This study aimed to evaluate associations of height as well as components of height (sitting height and leg length) with risk of type 2 diabetes and to explore to what extent associations are explainable by liver fat and cardiometabolic risk markers. Methods A case-cohort study within the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam study comprising 26,437 participants who provided blood samples was designed. We randomly selected a subcohort of 2500 individuals (2029 diabetes-free at baseline and with anamnestic, anthropometrical and metabolic data for analysis). Of the 820 incident diabetes cases identified in the full cohort during 7 years of follow-up, 698 remained for analyses after similar exclusions. Results After adjustment for age, potential lifestyle confounders, education and waist circumference, greater height was related to lower diabetes risk (HR per 10 cm, men 0.59 [95\% CI 0.47, 0.75] and women 0.67 [0.51, 0.88], respectively). Leg length was related to lower risk among men and women, but only among men if adjusted for total height. Adjustment for liver fat and triacylglycerols, adiponectin and C-reactive protein substantially attenuated associations between height and diabetes risk, particularly among women. Conclusions/interpretation We observed inverse associations between height and risk of type 2 diabetes, which was largely related to leg length among men. The inverse associations may be partly driven by lower liver fat content and a more favourable cardiometabolic profile.}, language = {en} } @article{SchenkEichelmannSchulzeetal.2019, author = {Schenk, Matthew and Eichelmann, Fabian and Schulze, Matthias Bernd and Rudovich, Natalia and Pfeiffer, Andreas F. H. and di Giuseppe, Romina and B{\"o}ing, Heiner and Aleksandrova, Krasimira}, title = {Reproducibility of novel immune-inflammatory biomarkers over 4 months}, series = {Biomarkers in medicine}, volume = {13}, journal = {Biomarkers in medicine}, number = {8}, publisher = {Future Medicine}, address = {London}, issn = {1752-0363}, doi = {10.2217/bmm-2018-0351}, pages = {639 -- 648}, year = {2019}, abstract = {Aim: Assessment of the feasibility and reliability of immune-inflammatory biomarker measurements. Methods: The following biomarkers were assessed in 207 predominantly healthy participants at baseline and after 4 months: MMF, TGF-beta, suPAR and clusterin. Results: Intraclass correlation coefficients (95\% CIs) ranged from good for TGF-beta (0.75 [95\% CI: 0.33-0.90]) to excellent for MMF (0.81 [95\% CI: 0.64-0.90]), clusterin (0.83 [95\% CI: 0.78-0.87]) and suPAR (0.91 [95\% CI: 0.88-0.93]). Measurement of TGF-beta was challenged by the large number of values below the detection limit. Conclusion: Single measurements of suPAR, clusterin and MMF could serve as feasible and reliable biomarkers of immune-inflammatory pathways in biomedical research.}, language = {en} } @article{SchroeterNeugartSchreineretal.2019, author = {Schr{\"o}ter, David and Neugart, Susanne and Schreiner, Monika and Grune, Tilman and Rohn, Sascha and Ott, Christiane}, title = {Amaranth's 2-Caffeoylisocitric Acid—An Anti-Inflammatory Caffeic Acid Derivative That Impairs NF-κB Signaling in LPS-Challenged RAW 264.7 Macrophages}, series = {Nutrients}, volume = {11}, journal = {Nutrients}, number = {3}, publisher = {MDPI}, address = {Basel}, issn = {2072-6643}, doi = {10.3390/nu11030571}, pages = {14}, year = {2019}, abstract = {For centuries, Amaranthus sp. were used as food, ornamentals, and medication. Molecular mechanisms, explaining the health beneficial properties of amaranth, are not yet understood, but have been attributed to secondary metabolites, such as phenolic compounds. One of the most abundant phenolic compounds in amaranth leaves is 2-caffeoylisocitric acid (C-IA) and regarding food occurrence, C-IA is exclusively found in various amaranth species. In the present study, the anti-inflammatory activity of C-IA, chlorogenic acid, and caffeic acid in LPS-challenged macrophages (RAW 264.7) has been investigated and cellular contents of the caffeic acid derivatives (CADs) were quantified in the cells and media. The CADs were quantified in the cell lysates in nanomolar concentrations, indicating a cellular uptake. Treatment of LPS-challenged RAW 264.7 cells with 10 µM of CADs counteracted the LPS effects and led to significantly lower mRNA and protein levels of inducible nitric oxide synthase, tumor necrosis factor alpha, and interleukin 6, by directly decreasing the translocation of the nuclear factor κB/Rel-like containing protein 65 into the nucleus. This work provides new insights into the molecular mechanisms that attribute to amaranth's anti-inflammatory properties and highlights C-IA's potential as a health-beneficial compound for future research.}, language = {en} } @article{EichelmannSchulzeWittenbecheretal.2019, author = {Eichelmann, Fabian and Schulze, Matthias Bernd and Wittenbecher, Clemens and Menzel, Juliane and Weikert, Cornelia and di Giuseppe, Romina and Biemann, Ronald and Isermann, Berend and Fritsche, Andreas and Boeing, Heiner and Aleksandrova, Krasimira}, title = {Association of Chemerin Plasma Concentration With Risk of Colorectal Cancer}, series = {JAMA network open}, volume = {2}, journal = {JAMA network open}, number = {3}, publisher = {American Veterinary Medical Association}, address = {Chicago}, issn = {2574-3805}, doi = {10.1001/jamanetworkopen.2019.0896}, pages = {14}, year = {2019}, abstract = {IMPORTANCE Inflammatory processes have been suggested to have an important role in colorectal cancer (CRC) etiology. Chemerin is a recently discovered inflammatory biomarker thought to exert chemotactic, adipogenic, and angiogenic functions. However, its potential link with CRC has not been sufficiently explored. OBJECTIVE To evaluate the prospective association of circulating plasma chemerin concentrations with incident CRC. DESIGN, SETTING, AND PARTICIPANTS Prospective case-cohort study based on 27 548 initially healthy participants from the European Prospective Investigation Into Cancer and Nutrition (EPIC)-Potsdam cohort who were followed for up to 16 years. Baseline study information and samples were collected between August 23, 1994, and September 25, 1998. Recruitment was according to random registry sampling from the geographical area of Potsdam, Germany, and surrounding municipalities. The last date of study follow-up was May 10, 2010. Statistical analysis was conducted in 2018. MAIN OUTCOMES AND MEASURES Incident CRC, colon cancer, and rectal cancer. Baseline chemerin plasma concentrations were measured by enzyme-linked immunosorbent assay. CONCLUSIONS AND RELEVANCE This study found that the association between chemerin concentration and the risk of incident CRC was linear and independent of established CRC risk factors. Further studies are warranted to evaluate chemerin as a novel immune-inflammatory agent in colorectal carcinogenesis.}, language = {en} } @article{KlopschBaldermannHanschenetal.2019, author = {Klopsch, Rebecca and Baldermann, Susanne and Hanschen, Franziska S. and Voss, Alexander and Rohn, Sascha and Schreiner, Monika and Neugart, Susanne}, title = {Brassica-enriched wheat bread: Unraveling the impact of ontogeny and breadmaking on bioactive secondary plant metabolites of pak choi and kale}, series = {Food chemistry}, volume = {295}, journal = {Food chemistry}, publisher = {Elsevier}, address = {Oxford}, issn = {0308-8146}, doi = {10.1016/j.foodchem.2019.05.113}, pages = {412 -- 422}, year = {2019}, abstract = {Consumption of Brassica vegetables is linked to health benefits, as they contain high concentrations of the following secondary plant metabolites (SPMs): glucosinolate breakdown products, carotenoids, chlorophylls, and phenolic compounds. Especially Brassica vegetables are consumed as microgreens (developed cotyledons). It was investigated how different ontogenetic stages (microgreens or leaves) of pak choi (Brassica rapa subsp. chinensis) and kale (Brassica oleracea var. sabellica) differ in their SPM concentration. The impact of breadmaking on SPMs in microgreens (7 days) and leaves (14 days) in pak choi and kale as a supplement in mixed wheat bread was assessed. In leaves, carotenoids, chlorophylls, and phenolic compounds were higher compared to those of microgreens. Breadmaking caused a decrease of SPMs. Chlorophyll degradation was observed, leading to pheophytin and pyropheophytin formation. In kale, sinapoylgentiobiose, a hydroxycinnamic acid derivative, concentration increased. Thus, leaves of Brassica species are suitable as natural ingredients for enhancing bioactive SPM concentrations in bread.}, language = {en} } @article{HarmsScalbertZamoraRosetal.2019, author = {Harms, Laura M. and Scalbert, Augustin and Zamora-Ros, Raul and Rinaldi, Sabina and Jenab, Mazda and Murphy, Neil and Achaintre, David and Tj{\o}nneland, Anne and Olsen, Anja and Overvad, Kim and Aleksandrova, Krasimira}, title = {Plasma polyphenols associated with lower high-sensitivity C-reactive protein concentrations}, series = {British Journal of Nutrition}, volume = {123}, journal = {British Journal of Nutrition}, number = {2}, publisher = {Cambridge University Press}, address = {Cambridge}, issn = {0007-1145}, doi = {10.1017/S0007114519002538}, pages = {198 -- 208}, year = {2019}, abstract = {Experimental studies have reported on the anti-inflammatory properties of polyphenols. However, results from epidemiological investigations have been inconsistent and especially studies using biomarkers for assessment of polyphenol intake have been scant. We aimed to characterise the association between plasma concentrations of thirty-five polyphenol compounds and low-grade systemic inflammation state as measured by high-sensitivity C-reactive protein (hsCRP). A cross-sectional data analysis was performed based on 315 participants in the European Prospective Investigation into Cancer and Nutrition cohort with available measurements of plasma polyphenols and hsCRP. In logistic regression analysis, the OR and 95 \% CI of elevated serum hsCRP (>3 mg/l) were calculated within quartiles and per standard deviation higher level of plasma polyphenol concentrations. In a multivariable-adjusted model, the sum of plasma concentrations of all polyphenols measured (per standard deviation) was associated with 29 (95 \% CI 50, 1) \% lower odds of elevated hsCRP. In the class of flavonoids, daidzein was inversely associated with elevated hsCRP (OR 0 center dot 66, 95 \% CI 0 center dot 46, 0 center dot 96). Among phenolic acids, statistically significant associations were observed for 3,5-dihydroxyphenylpropionic acid (OR 0 center dot 58, 95 \% CI 0 center dot 39, 0 center dot 86), 3,4-dihydroxyphenylpropionic acid (OR 0 center dot 63, 95 \% CI 0 center dot 46, 0 center dot 87), ferulic acid (OR 0 center dot 65, 95 \% CI 0 center dot 44, 0 center dot 96) and caffeic acid (OR 0 center dot 69, 95 \% CI 0 center dot 51, 0 center dot 93). The odds of elevated hsCRP were significantly reduced for hydroxytyrosol (OR 0 center dot 67, 95 \% CI 0 center dot 48, 0 center dot 93). The present study showed that polyphenol biomarkers are associated with lower odds of elevated hsCRP. Whether diet rich in bioactive polyphenol compounds could be an effective strategy to prevent or modulate deleterious health effects of inflammation should be addressed by further well-powered longitudinal studies.}, language = {en} }