@phdthesis{Ziege2022, author = {Ziege, Ricardo}, title = {Growth dynamics and mechanical properties of E. coli biofilms}, doi = {10.25932/publishup-55986}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-559869}, school = {Universit{\"a}t Potsdam}, pages = {xi, 123}, year = {2022}, abstract = {Biofilms are complex living materials that form as bacteria get embedded in a matrix of self-produced protein and polysaccharide fibres. The formation of a network of extracellular biopolymer fibres contributes to the cohesion of the biofilm by promoting cell-cell attachment and by mediating biofilm-substrate interactions. This sessile mode of bacteria growth has been well studied by microbiologists to prevent the detrimental effects of biofilms in medical and industrial settings. Indeed, biofilms are associated with increased antibiotic resistance in bacterial infections, and they can also cause clogging of pipelines or promote bio-corrosion. However, biofilms also gained interest from biophysics due to their ability to form complex morphological patterns during growth. Recently, the emerging field of engineered living materials investigates biofilm mechanical properties at multiple length scales and leverages the tools of synthetic biology to tune the functions of their constitutive biopolymers. This doctoral thesis aims at clarifying how the morphogenesis of Escherichia coli (E. coli) biofilms is influenced by their growth dynamics and mechanical properties. To address this question, I used methods from cell mechanics and materials science. I first studied how biological activity in biofilms gives rise to non-uniform growth patterns. In a second study, I investigated how E. coli biofilm morphogenesis and its mechanical properties adapt to an environmental stimulus, namely the water content of their substrate. Finally, I estimated how the mechanical properties of E. coli biofilms are altered when the bacteria express different extracellular biopolymers. On nutritive hydrogels, micron-sized E. coli cells can build centimetre-large biofilms. During this process, bacterial proliferation and matrix production introduce mechanical stresses in the biofilm, which release through the formation of macroscopic wrinkles and delaminated buckles. To relate these biological and mechanical phenomena, I used time-lapse fluorescence imaging to track cell and matrix surface densities through the early and late stages of E. coli biofilm growth. Colocalization of high cell and matrix densities at the periphery precede the onset of mechanical instabilities at this annular region. Early growth is detected at this outer annulus, which was analysed by adding fluorescent microspheres to the bacterial inoculum. But only when high rates of matrix production are present in the biofilm centre, does overall biofilm spreading initiate along the solid-air interface. By tracking larger fluorescent particles for a long time, I could distinguish several kinematic stages of E. coli biofilm expansion and observed a transition from non-linear to linear velocity profiles, which precedes the emergence of wrinkles at the biofilm periphery. Decomposing particle velocities to their radial and circumferential components revealed a last kinematic stage, where biofilm movement is mostly directed towards the radial delaminated buckles, which verticalize. The resulting compressive strains computed in these regions were observed to substantially deform the underlying agar substrates. The co-localization of higher cell and matrix densities towards an annular region and the succession of several kinematic stages are thus expected to promote the emergence of mechanical instabilities at the biofilm periphery. These experimental findings are predicted to advance future modelling approaches of biofilm morphogenesis. E. coli biofilm morphogenesis is further anticipated to depend on external stimuli from the environment. To clarify how the water could be used to tune biofilm material properties, we quantified E. coli biofilm growth, wrinkling dynamics and rigidity as a function of the water content of the nutritive substrates. Time-lapse microscopy and computational image analysis revealed that substrates with high water content promote biofilm spreading kinetics, while substrates with low water content promote biofilm wrinkling. The wrinkles observed on biofilm cross-sections appeared more bent on substrates with high water content, while they tended to be more vertical on substrates with low water content. Both wet and dry biomass, accumulated over 4 days of culture, were larger in biofilms cultured on substrates with high water content, despite extra porosity within the matrix layer. Finally, the micro-indentation analysis revealed that substrates with low water content supported the formation of stiffer biofilms. This study shows that E. coli biofilms respond to the water content of their substrate, which might be used for tuning their material properties in view of further applications. Biofilm material properties further depend on the composition and structure of the matrix of extracellular proteins and polysaccharides. In particular, E. coli biofilms were suggested to present tissue-like elasticity due to a dense fibre network consisting of amyloid curli and phosphoethanolamine-modified cellulose. To understand the contribution of these components to the emergent mechanical properties of E. coli biofilms, we performed micro-indentation on biofilms grown from bacteria of several strains. Besides showing higher dry masses, larger spreading diameters and slightly reduced water contents, biofilms expressing both main matrix components also presented high rigidities in the range of several hundred kPa, similar to biofilms containing only curli fibres. In contrast, a lack of amyloid curli fibres provides much higher adhesive energies and more viscoelastic fluid-like material behaviour. Therefore, the combination of amyloid curli and phosphoethanolamine-modified cellulose fibres implies the formation of a composite material whereby the amyloid curli fibres provide rigidity to E. coli biofilms, whereas the phosphoethanolamine-modified cellulose rather acts as a glue. These findings motivate further studies involving purified versions of these protein and polysaccharide components to better understand how their interactions benefit biofilm functions. All three studies depict different aspects of biofilm morphogenesis, which are interrelated. The first work reveals the correlation between non-uniform biological activities and the emergence of mechanical instabilities in the biofilm. The second work acknowledges the adaptive nature of E. coli biofilm morphogenesis and its mechanical properties to an environmental stimulus, namely water. Finally, the last study reveals the complementary role of the individual matrix components in the formation of a stable biofilm material, which not only forms complex morphologies but also functions as a protective shield for the bacteria it contains. Our experimental findings on E. coli biofilm morphogenesis and their mechanical properties can have further implications for fundamental and applied biofilm research fields.}, language = {en} } @phdthesis{Pellegrino2022, author = {Pellegrino, Antonio}, title = {miRNA profiling for diagnosis of chronic pain in polyneuropathy}, doi = {10.25932/publishup-58385}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-583858}, school = {Universit{\"a}t Potsdam}, pages = {viii, 97, xi}, year = {2022}, abstract = {This dissertation aimed to determine differential expressed miRNAs in the context of chronic pain in polyneuropathy. For this purpose, patients with chronic painful polyneuropathy were compared with age matched healthy patients. Taken together, all miRNA pre library preparation quality controls were successful and none of the samples was identified as an outlier or excluded for library preparation. Pre sequencing quality control showed that library preparation worked for all samples as well as that all samples were free of adapter dimers after BluePippin size selection and reached the minimum molarity for further processing. Thus, all samples were subjected to sequencing. The sequencing control parameters were in their optimal range and resulted in valid sequencing results with strong sample to sample correlation for all samples. The resulting FASTQ file of each miRNA library was analyzed and used to perform a differential expression analysis. The differentially expressed and filtered miRNAs were subjected to miRDB to perform a target prediction. Three of those four miRNAs were downregulated: hsa-miR-3135b, hsa-miR-584-5p and hsa-miR-12136, while one was upregulated: hsa-miR-550a-3p. miRNA target prediction showed that chronic pain in polyneuropathy might be the result of a combination of miRNA mediated high blood flow/pressure and neural activity dysregulations/disbalances. Thus, leading to the promising conclusion that these four miRNAs could serve as potential biomarkers for the diagnosis of chronic pain in polyneuropathy. Since TRPV1 seems to be one of the major contributors of nociception and is associated with neuropathic pain, the influence of PKA phosphorylated ARMS on the sensitivity of TRPV1 as well as the part of AKAP79 during PKA phosphorylation of ARMS was characterized. Therefore, possible PKA-sites in the sequence of ARMS were identified. This revealed five canonical PKA-sites: S882, T903, S1251/52, S1439/40 and S1526/27. The single PKA-site mutants of ARMS revealed that PKA-mediated ARMS phosphorylation seems not to influence the interaction rate of TRPV1/ARMS. While phosphorylation of ARMST903 does not increase the interaction rate with TRPV1, ARMSS1526/27 is probably not phosphorylated and leads to an increased interaction rate. The calcium flux measurements indicated that the higher the interaction rate of TRPV1/ARMS, the lower the EC50 for capsaicin of TRPV1, independent of the PKA phosphorylation status of ARMS. In addition, the western blot analysis confirmed the previously observed TRPV1/ARMS interaction. More importantly, AKAP79 seems to be involved in the TRPV1/ARMS/PKA signaling complex. To overcome the problem of ARMS-mediated TRPV1 sensitization by interaction, ARMS was silenced by shRNA. ARMS silencing resulted in a restored TRPV1 desensitization without affecting the TRPV1 expression and therefore could be used as new topical therapeutic analgesic alternative to stop ARMS mediated TRPV1 sensitization.}, language = {en} } @phdthesis{Folikumah2022, author = {Folikumah, Makafui Yao}, title = {Stimuli-promoted in situ formation of hydrogels with thiol/thioester containing peptide precursors}, doi = {10.25932/publishup-56971}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-569713}, school = {Universit{\"a}t Potsdam}, pages = {159}, year = {2022}, abstract = {Hydrogels are potential synthetic ECM-like substitutes since they provide functional and structural similarities compared to soft tissues. They can be prepared by crosslinking of macromolecules or by polymerizing suitable precursors. The crosslinks are not necessarily covalent bonds, but could also be formed by physical interactions such as π-π interactions, hydrophobic interactions, or H-bonding. On demand in situ forming hydrogels have garnered increased interest especially for biomedical applications over preformed gels due to the relative ease of in vivo delivery and filling of cavities. The thiol-Michael addition reaction provides a straightforward and robust strategy for in situ gel formation with its fast reaction kinetics and ability to proceed under physiological conditions. The incorporation of a trigger function into a crosslinking system becomes even more interesting since gelling can be controlled with stimulus of choice. The use of small molar mass crosslinker precursors with active groups orthogonal to thiol-Michael reaction type electrophile provides the opportunity to implement an on-demand in situ crosslinking without compromising the fast reaction kinetics. It was postulated that short peptide sequences due to the broad range structural-function relations available with the different constituent amino acids, can be exploited for the realisation of stimuli-promoted in situ covalent crosslinking and gelation applications. The advantages of this system over conventional polymer-polymer hydrogel systems are the ability tune and predict material property at the molecular level. The main aim of this work was to develop a simplified and biologically-friendly stimuli-promoted in situ crosslinking and hydrogelation system using peptide mimetics as latent crosslinkers. The approach aims at using a single thiodepsipeptide sequence to achieve separate pH- and enzyme-promoted gelation systems with little modification to the thiodepsipeptide sequence. The realization of this aim required the completion of three milestones. In the first place, after deciding on the thiol-Michael reaction as an effective in situ crosslinking strategy, a thiodepsipeptide, Ac-Pro-Leu-Gly-SLeu-Leu-Gly-NEtSH (TDP) with expected propensity towards pH-dependent thiol-thioester exchange (TTE) activation, was proposed as a suitable crosslinker precursor for pH-promoted gelation system. Prior to the synthesis of the proposed peptide-mimetic, knowledge of the thiol-Michael reactivity of the would-be activated thiol moiety SH-Leu, which is internally embedded in the thiodepsipeptide was required. In line with pKa requirements for a successful TTE, the reactivity of a more acidic thiol, SH-Phe was also investigated to aid the selection of the best thiol to be incorporated in the thioester bearing peptide based crosslinker precursor. Using 'pseudo' 2D-NMR investigations, it was found that only reactions involving SH-Leu yielded the expected thiol-Michael product, an observation that was attributed to the steric hindrance of the bulkier nature of SH-Phe. The fast reaction rates and complete acrylate/maleimide conversion obtained with SH-Leu at pH 7.2 and higher aided the direct elimination of SH-Phe as a potential thiol for the synthesis of the peptide mimetic. Based on the initial studies, for the pH-promoted gelation system, the proposed Ac-Pro-Leu-Gly-SLeu-Leu-Gly-NEtSH was kept unmodified. The subtle difference in pKa values between SH-Leu (thioester thiol) and the terminal cysteamine thiol from theoretical conditions should be enough to effect a 'pseudo' intramolecular TTE. In polar protic solvents and under basic aqueous conditions, TDP successfully undergoes a 'pseudo' intramolecular TTE reaction to yield an α,ω-dithiol tripeptide, HSLeu-Leu-Gly-NEtSH. The pH dependence of thiolate ion generation by the cysteamine thiol aided the incorporation of the needed stimulus (pH) for the overall success of TTE (activation step) - thiol-Michael addition (crosslinking) strategy. Secondly, with potential biomedical applications in focus, the susceptibility of TDP, like other thioesters, to intermolecular TTE reaction was probed with a group of thiols of varying thiol pKa values, since biological milieu characteristically contain peptide/protein thiols. L-cysteine, which is a biologically relevant thiol, and a small molecular weight thiol, methylthioglycolate both with relatively similar thiol pKa, values, led to an increase concentration of the dithiol crosslinker when reacted with TDP. In the presence of acidic thiols (p-NTP and 4MBA), a decrease in the dithiol concentration was observed, an observation that can be attributed to the inability of the TTE tetrahedral intermediate to dissociate into exchange products and is in line with pKa requirements for successful TTE reaction. These results additionally makes TDP more attractive and the potentially the first crosslinker precursor for applications in biologically relevant media. Finally, the ability of TDP to promote pH-sensitive in situ gel formation was probed with maleimide functionalized 4-arm polyethylene glycol polymers in tris-buffered media of varying pHs. When a 1:1 thiol: maleimide molar ratio was used, TDP-PEG4MAL hydrogels formed within 3, 12 and 24 hours at pH values of 8.5, 8.0 and 7.5 respectively. However, gelation times of 3, 5 and 30 mins were observed for the same pH trend when the thiol: maleimide molar was increased to 2:1. A direct correlation of thiol content with G' of the gels at each pH could also be drawn by comparing gels with thiol: maleimide ratios of 1:1 to those with 2:1 thiol: maleimide mole ratios. This is supported by the fact that the storage modulus (G') is linearly dependent on the crosslinking density of the polymer. The values of initial G′ for all gels ranged between (200 - 5000 Pa), which falls in the range of elasticities of certain tissue microenvironments for example brain tissue 200 - 1000 Pa and adipose tissue (2500 - 3500 Pa). Knowledge so far gained from the study on the ability to design and tune the exchange reaction of thioester containing peptide mimetic will give those working in the field further insight into the development of new sequences tailored towards specific applications. TTE substrate design using peptide mimetic as presented in this work has revealed interesting new insights considering the state-of-the-art. Using the results obtained as reference, the strategy provides a possibility to extend the concept to the controlled delivery of active molecules needed for other robust and high yielding crosslinking reactions for biomedical applications. Application for this sequentially coupled functional system could be seen e.g. in the treatment of inflamed tissues associated with urinary tract like bladder infections for which pH levels above 7 were reported. By the inclusion of cell adhesion peptide motifs, the hydrogel network formed at this pH could act as a new support layer for the healing of damage epithelium as shown in interfacial gel formation experiments using TDP and PEG4MAL droplets. The versatility of the thiodepsipeptide sequence, Ac-Pro-Leu-Gly-SLeu-Leu-Gly-(TDPo) was extended for the design and synthesis of a MMP-sensitive 4-arm PEG-TDPo conjugate. The purported cleavage of TDPo at the Gly-SLeu bond yields active thiol units for subsequent reaction of orthogonal Michael acceptor moieties. One of the advantages of stimuli-promoted in situ crosslinking systems using short peptides should be the ease of design of required peptide molecules due to the predictability of peptide functions their sequence structure. Consequently the functionalisation of a 4-arm PEG core with the collagenase active TDPo sequence yielded an MMP-sensitive 4-arm thiodepsipeptide-PEG conjugate (PEG4TDPo) substrate. Cleavage studies using thiol flourometric assay in the presence of MMPs -2 and -9 confirmed the susceptibility of PEG4TDPo towards these enzymes. The resulting time-dependent increase in fluorescence intensity in the presence of thiol assay signifies the successful cleavage of TDPo at the Gly-SLeu bond as expected. It was observed that the cleavage studies with thiol flourometric assay introduces a sigmoid non-Michaelis-Menten type kinetic profile, hence making it difficult to accurately determine the enzyme cycling parameters, kcat and KM . Gelation studies with PEG4MAL at 10 \% wt. concentrations revealed faster gelation with MMP-2 than MMP-9 with 28 and 40 min gelation times respectively. Possible contributions by hydrolytic cleavage of PEG4TDPo has resulted in the gelation of PEG4MAL blank samples but only after 60 minutes of reaction. From theoretical considerations, the simultaneous gelation reaction would be expected to more negatively impact the enzymatic than hydrolytic cleavage. The exact contributions from hydrolytic cleavage of PEG4TDPo would however require additional studies. In summary this new and simplified in situ crosslinking system using peptide-based crosslinker precursors with tuneable properties exhibited in situ crosslinking gelation kinetics on similar levels with already active dithiols reported. The advantageous on-demand functionality associated with its pH-sensitivity and physiological compatibility makes it a strong candidate worth further research as biomedical applications in general and on-demand material synthesis is concerned. Results from MMP-promoted gelation system unveils a simple but unexplored approach for in situ synthesis of covalently crosslinked soft materials, that could lead to the development of an alternative pathway in addressing cancer metastasis by making use of MMP overexpression as a trigger. This goal has so far not being reach with MMP inhibitors despite the extensive work this regard.}, language = {en} }