@article{KoppMuellerPohletal.2019, author = {Kopp, Johannes Florian and M{\"u}ller, Sandra Marie and Pohl, Gabriele and Lossow, Kristina and Kipp, Anna Patricia and Schwerdtle, Tanja}, title = {A quick and simple method for the determination of six trace elements in mammalian serum samples using ICP-MS/MS}, series = {Journal of trace elements in medicine and biology}, volume = {54}, journal = {Journal of trace elements in medicine and biology}, publisher = {Elsevier}, address = {M{\"u}nchen}, issn = {0946-672X}, doi = {10.1016/j.jtemb.2019.04.015}, pages = {221 -- 225}, year = {2019}, abstract = {In order to assess the individual trace element status of humans for either medical or scientific purposes, amongst others, blood serum levels are determined. Furthermore, animal models are used to study interactions of trace elements. Most published methods require larger amounts (500-1000 mu L) of serum to achieve a reliable determination of multiple trace elements. However, oftentimes, these amounts of serum cannot be dedicated to a single analysis and the amount available for TE-determination is much lower. Therefore, a published ICP-MS/MS method for trace element determination in serum was miniaturized, optimized and validated for the measurement of Mn, Fe, Cu Zn, I and Se in as little as 50 mu L of human and murine serum and is presented in this work. For validation, recoveries of multiple LOTs and levels from commercially available human reference serum samples were determined, infra- and inter-day variations were assessed and limits of detection and quantification determined. It is shown, that the method is capable of giving accurate and reproducible results for all six elements within the relevant concentration ranges for samples from humans living in central Europe as well as from laboratory mice. As a highlight, the achieved limits of detection and quantification for Mn were found to be at 0.02 mu g/L serum and 0.05 mu g/L serum, respectively, while using an alkaline diluent for the parallel determination of iodine.}, language = {en} } @article{WiesnerReinholdBarknowitzFlorianetal.2019, author = {Wiesner-Reinhold, Melanie and Barknowitz, Gitte and Florian, Simone and Mewis, Inga and Schumacher, Fabian and Schreiner, Monika and Glatt, Hansruedi}, title = {1-Methoxy-3-indolylmethyl DNA adducts in six tissues, and blood protein adducts, in mice under pak choi diet: time course and persistence}, series = {Archives of toxicology : official journal of EUROTOX}, volume = {93}, journal = {Archives of toxicology : official journal of EUROTOX}, number = {6}, publisher = {Springer}, address = {Heidelberg}, issn = {0340-5761}, doi = {10.1007/s00204-019-02452-3}, pages = {1515 -- 1527}, year = {2019}, abstract = {We previously showed that purified 1-methoxy-3-indolylmethyl (1-MIM) glucosinolate, a secondary plant metabolite in Brassica species, is mutagenic in various in vitro systems and forms DNA and protein adducts in mouse models. In the present study, we administered 1-MIM glucosinolate in a natural matrix to mice, by feeding a diet containing pak choi powder and extract. Groups of animals were killed after 1, 2, 4 and 8 days of pak choi diet, directly or, in the case of the 8-day treatment, after 0, 8 and 16 days of recovery with pak choi-free diet. DNA adducts [N-2-(1-MIM)-dG, N-6-(1-MIM)-dA] in six tissues, as well as protein adducts [tau N-(1-MIM)-His] in serum albumin (SA) and hemoglobin (Hb) were determined using UPLC-MS/MS with isotopically labeled internal standards. None of the samples from the 12 control animals under standard diet contained any 1-MIM adducts. All groups receiving pak choi diet showed DNA adducts in all six tissues (exception: lung of mice treated for a single day) as well as SA and Hb adducts. During the feeding period, all adduct levels continuously increased until day 8 (in the jejunum until day 4). During the 14-day recovery period, N-2-(1-MIM)-dG in liver, kidney, lung, jejunum, cecum and colon decreased to 52, 41, 59, 11, 7 and 2\%, respectively, of the peak level. The time course of N-6-(1-MIM)-dA was similar. Immunohistochemical analyses indicated that cell turnover is a major mechanism of DNA adduct elimination in the intestine. In the same recovery period, protein adducts decreased more rapidly in SA than in Hb, to 0.7 and 37\%, respectively, of the peak level, consistent with the differential turnover of these proteins. In conclusion, the pak choi diet lead to the formation of high levels of adducts in mice. Cell and protein turnover was a major mechanism of adduct elimination, at least in gut and blood.}, language = {en} }