@article{Wardelmann2019, author = {Wardelmann, Kristina}, title = {Hormonal regulation of neuronal mitochondrial unfolded protein response and its impact on metabolism}, pages = {108}, year = {2019}, abstract = {The hypothalamus is the main brain area of central regulation of whole body metabolism through impacting food intake and energy expenditure. For the complex regulation, high amounts of energy are needed and mainly provided by mitochondria. Hence, mitochondrial function is crucial for cell homeostasis and modulates central insulin sensitivity. Thus, mitochondrial dysfunction is associated with insulin resistance in the brain and therefore is involved in the pathogenesis of type-2 diabetes (T2D). Mitochondrial health and protein homeostasis is propagated by mitochondrial stress responses like e.g. mitochondrial unfolded protein response (UPRmt). Therefore, studies regarding the regulation of mitochondrial homeostasis are crucial for understanding its effects on the central nervous system (CNS) for the progression of metabolic and nutrition-dependent disorders. One main aim of this thesis was to investigate the metabolic regulation of mitochondrial stress responsiveness in the hypothalamus. The observed results showed that functional ERK-dependent insulin signaling is needed for regulation of mitochondrial stress response (MSR) genes and positively impacted the metabolism by controlling mitochondrial proteostasis without affecting mitochondrial biogenesis. To further explore the role of MSR genes for brain cell homeostasis and its consequences for the metabolism, one of the key players - the mitochondrial chaperone heat shock protein 10 (Hsp10) - was studied in detail. Hsp10 expression was decreased in insulin-resistant, hyperglycemic db/db mice brains along with increased protein oxidation. Leptin, another key hormone in regulating metabolism, was able to induce Hsp10 in neurons. Appropriately, lentiviral-mediated knock down (KD) of Hsp10 introduced into hypothalamic CLU-183 cells induced mitochondrial dysfunction, altered mitochondrial dynamics and increased contact sites between mitochondria and endoplasmic reticulum (ER). In addition, Hsp10 KD caused cellular insulin resistance along with increasing oxidative stress specifically in mitochondrial fraction. Interestingly, acute Hsp10 KD in the arcuate nucleus of the hypothalamus in C57BL/6N male mice did not change body weight or food intake, but it increased plasma leptin concentrations suggesting an effect on global leptin signaling. It increased hepatic markers of gluconeogenesis and hepatic insulin resistance along with features of low-grade inflammation. Long-term studies of hypothalamic Hsp10 KD mice revealed unaltered systemic insulin sensitivity. The demonstrated increase in markers of hepatic gluconeogenesis of acute Hsp10 KD was still exhibited after 13 weeks, but insulin resistance in the liver was no longer observed. In conclusion, hypothalamic insulin action regulates MSR and ensures proper mitochondrial function which positively affects metabolism. In addition, hypothalamic Hsp10 acts as a modulator of both insulin and leptin signaling and is identified as pivotal for the regulation of central mitochondrial function as well as insulin sensitivity in the brain and it impacts liver function. It may present a regulator of brain-liver crosstalk influencing hepatic gluconeogenesis and insulin sensitivity through a novel regulatory signaling mechanism.}, language = {en} } @article{RundHeylmannSeiwertetal.2019, author = {Rund, Katharina M. and Heylmann, Daniel and Seiwert, Nina and Wecklein, Sabine and Oger, Camille and Galano, Jean-Marie and Durand, Thierry and Chen, Rongjun and G{\"u}ler, Faikah and Fahrer, J{\"o}rg and Bornhorst, Julia and Schebb, Nils Helge}, title = {Formation of trans-epoxy fatty acids correlates with formation of isoprostanes and could serve as biomarker of oxidative stress}, series = {Prostaglandins \& Other Lipid Mediators}, volume = {144}, journal = {Prostaglandins \& Other Lipid Mediators}, publisher = {Elsevier}, address = {New York}, issn = {1098-8823}, doi = {10.1016/j.prostaglandins.2019.04.004}, pages = {10}, year = {2019}, abstract = {In mammals, epoxy-polyunsaturated fatty acids (epoxy-PUFA) are enzymatically formed from naturally occurring all-cis PUFA by cytochrome P450 monooxygenases leading to the generation of cis-epoxy-PUFA (mixture of R,S- and S,R-enantiomers). In addition, also non-enzymatic chemical peroxidation gives rise to epoxy-PUFA leading to both, cis- and trans-epoxy-PUFA (mixture of R,R- and S,S-enantiomers). Here, we investigated for the first time trans-epoxy-PUFA and the trans/cis-epoxy-PUFA ratio as potential new biomarker of lipid peroxidation. Their formation was analyzed in correlation with the formation of isoprostanes (IsoP), which are commonly used as biomarkers of oxidative stress. Five oxidative stress models were investigated including incubations of three human cell lines as well as the in vivo model Caenorhabditis elegans with tert-butyl hydroperoxide (t-BOOH) and analysis of murine kidney tissue after renal ischemia reperfusion injury (IRI). A comprehensive set of IsoP and epoxy-PUFA derived from biologically relevant PUFA (ARA, EPA and DHA) was simultaneously quantified by LC-ESI(-)-MS/MS. Following renal IRI only a moderate increase in the kidney levels of IsoP and no relevant change in the trans/cis-epoxy-PUFA ratio was observed. In all investigated cell lines (HCT-116, HepG2 and Caki-2) as well as C. elegans a dose dependent increase of both, IsoP and the trans/cis-epoxy-PUFA ratio in response to the applied t-BOOH was observed. The different cell lines showed a distinct time dependent pattern consistent for both classes of autoxidatively formed oxylipins. Clear and highly significant correlations of the trans/cisepoxy-PUFA ratios with the IsoP levels were found in all investigated cell lines and C. elegans. Based on this, we suggest the trans/cis-epoxy-PUFA ratio as potential new biomarker of oxidative stress, which warrants further investigation.}, language = {en} } @article{RancanVolkmannGiulbudagianetal.2019, author = {Rancan, Fiorenza and Volkmann, Hildburg and Giulbudagian, Michael and Schumacher, Fabian and Stanko, Jessica Isolde and Kleuser, Burkhard and Blume-Peytavi, Ulrike and Calderon, Marcelo and Vogt, Annika}, title = {Dermal Delivery of the High-Molecular-Weight Drug Tacrolimus by Means of Polyglycerol-Based Nanogels}, series = {Pharmaceutics : Molecular Diversity Preservation International}, volume = {11}, journal = {Pharmaceutics : Molecular Diversity Preservation International}, number = {8}, publisher = {MDPI}, address = {Basel}, issn = {1999-4923}, doi = {10.3390/pharmaceutics11080394}, pages = {14}, year = {2019}, abstract = {Polyglycerol-based thermoresponsive nanogels (tNGs) have been shown to have excellent skin hydration properties and to be valuable delivery systems for sustained release of drugs into skin. In this study, we compared the skin penetration of tacrolimus formulated in tNGs with a commercial 0.1\% tacrolimus ointment. The penetration of the drug was investigated in ex vivo abdominal and breast skin, while different methods for skin barrier disruption were investigated to improve skin permeability or simulate inflammatory conditions with compromised skin barrier. The amount of penetrated tacrolimus was measured in skin extracts by liquid chromatography tandem-mass spectrometry (LC-MS/MS), whereas the inflammatory markers IL-6 and IL-8 were detected by enzyme-linked immunosorbent assay (ELISA). Higher amounts of tacrolimus penetrated in breast as compared to abdominal skin or in barrier-disrupted as compared to intact skin, confirming that the stratum corneum is the main barrier for tacrolimus skin penetration. The anti-proliferative effect of the penetrated drug was measured in skin tissue/Jurkat cells co-cultures. Interestingly, tNGs exhibited similar anti-proliferative effects as the 0.1\% tacrolimus ointment. We conclude that polyglycerol-based nanogels represent an interesting alternative to paraffin-based formulations for the treatment of inflammatory skin conditions.}, language = {en} } @article{KluthStadionGottmannetal.2019, author = {Kluth, Oliver and Stadion, Mandy and Gottmann, Pascal and Aga-Barfknecht, Heja and J{\"a}hnert, Markus and Scherneck, Stephan and Vogel, Heike and Krus, Ulrika and Seelig, Anett and Ling, Charlotte and Gerdes, Jantje and Sch{\"u}rmann, Annette}, title = {Decreased expression of cilia genes in pancreatic islets as a risk factor for type 2 diabetes in mice and humans}, series = {Cell reports}, volume = {26}, journal = {Cell reports}, number = {11}, publisher = {Cell Press}, address = {Maryland Heights}, issn = {2211-1247}, doi = {10.1016/j.celrep.2019.02.056}, pages = {3027 -- 3036}, year = {2019}, abstract = {An insufficient adaptive beta-cell compensation is a hallmark of type 2 diabetes (T2D). Primary cilia function as versatile sensory antennae regulating various cellular processes, but their role on compensatory beta-cell replication has not been examined. Here, we identify a significant enrichment of downregulated, cilia-annotated genes in pancreatic islets of diabetes-prone NZO mice as compared with diabetes-resistant B6-ob/ob mice. Among 327 differentially expressed mouse cilia genes, 81 human orthologs are also affected in islets of diabetic donors. Islets of nondiabetic mice and humans show a substantial overlap of upregulated cilia genes that are linked to cell-cycle progression. The shRNA-mediated suppression of KIF3A, essential for ciliogenesis, impairs division of MINE beta cells as well as in dispersed primary mouse and human islet cells, as shown by decreased BrdU incorporation. These findings demonstrate the substantial role of cilia-gene regulation on islet function and T2D risk.}, language = {en} } @article{FrombachUnbehauenKurniasihetal.2019, author = {Frombach, Janna and Unbehauen, Michael and Kurniasih, Indah N. and Schumacher, Fabian and Volz, Pierre and Hadam, Sabrina and Rancan, Fiorenza and Blume-Peytavi, Ulrike and Kleuser, Burkhard and Haag, Rainer and Alexiev, Ulrike and Vogt, Annika}, title = {Core-multishell nanocarriers enhance drug penetration and reach keratinocytes and antigen-presenting cells in intact human skin}, series = {Journal of controlled release}, volume = {299}, journal = {Journal of controlled release}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0168-3659}, doi = {10.1016/j.jconrel.2019.02.028}, pages = {138 -- 148}, year = {2019}, abstract = {In reconstructed skin and diffusion cell studies, core-multishell nanocarriers (CMS-NC) showed great potential for drug delivery across the skin barrier. Herein, we investigated penetration, release of dexamethasone (DXM), in excised full-thickness human skin with special focus on hair follicles (HF). Four hours and 16 h after topical application of clinically relevant dosages of 10 mu g DXM/cm(2) skin encapsulated in CMS-NC (12 nm diameter, 5.8\% loading), presence of DXM in the tissue as assessed by fluorescence microscopy of anti-DXM-stained tissue sections as well as ELISA and HPLC-MS/MS in tissue extracts was enhanced compared to standard LAW-creme but lower compared to DXM aqueous/alcoholic solution. Such enhanced penetration compared to conventional cremes offers high potential for topical therapies, as recurrent applications of corticosteroid solutions face limitations with regard to tolerability and fast drainage. The findings encourage more detailed investigations on where and how the nanocarrier and drug dissociate within the skin and what other factors, e.g. thermodynamic activity, influence the penetration of this formulations. Microscopic studies on the spatial distribution within the skin revealed accumulation in HF and furrows accompanied by limited cellular uptake assessed by flow cytometry (up to 9\% of total epidermal cells). FLIM clearly visualized the presence of CMS-NC in the viable epidermis and dermis. When exposed in situ a fraction of up to 25\% CD1a(+) cells were found within the epidermal CMS-NC+ population compared to approximately 3\% CD1a(+)/CMS-NC+ cells after in vitro exposure in short-term cultures of epidermal cell suspensions. The latter reflects the natural percentage of Langerhans cells (LC) in epidermis suspensions and indicated that CMS-NC were not preferentially internalized by one cell type. The increased CMS-NC+ LC proportion after exposure within the tissue is in accordance with the strategic suprabasal LC-localization. More specifically we postulate that the extensive dendrite meshwork, their position around HF orifices and their capacity to modulate tight junctions facilitated a preferential uptake of CMS-NC by LC within the skin. This newly identified aspect of CMS-NC penetration underlines the potential of CMS-NC for dermatotherapy and encourages further investigations of CMS-NC for the delivery of other molecule classes for which intracellular delivery is even more crucial.}, language = {en} } @article{KlopschBaldermannHanschenetal.2019, author = {Klopsch, Rebecca and Baldermann, Susanne and Hanschen, Franziska S. and Voss, Alexander and Rohn, Sascha and Schreiner, Monika and Neugart, Susanne}, title = {Brassica-enriched wheat bread: Unraveling the impact of ontogeny and breadmaking on bioactive secondary plant metabolites of pak choi and kale}, series = {Food chemistry}, volume = {295}, journal = {Food chemistry}, publisher = {Elsevier}, address = {Oxford}, issn = {0308-8146}, doi = {10.1016/j.foodchem.2019.05.113}, pages = {412 -- 422}, year = {2019}, abstract = {Consumption of Brassica vegetables is linked to health benefits, as they contain high concentrations of the following secondary plant metabolites (SPMs): glucosinolate breakdown products, carotenoids, chlorophylls, and phenolic compounds. Especially Brassica vegetables are consumed as microgreens (developed cotyledons). It was investigated how different ontogenetic stages (microgreens or leaves) of pak choi (Brassica rapa subsp. chinensis) and kale (Brassica oleracea var. sabellica) differ in their SPM concentration. The impact of breadmaking on SPMs in microgreens (7 days) and leaves (14 days) in pak choi and kale as a supplement in mixed wheat bread was assessed. In leaves, carotenoids, chlorophylls, and phenolic compounds were higher compared to those of microgreens. Breadmaking caused a decrease of SPMs. Chlorophyll degradation was observed, leading to pheophytin and pyropheophytin formation. In kale, sinapoylgentiobiose, a hydroxycinnamic acid derivative, concentration increased. Thus, leaves of Brassica species are suitable as natural ingredients for enhancing bioactive SPM concentrations in bread.}, language = {en} } @article{DuyduBasaranYalcinetal.2019, author = {Duydu, Yalcin and Basaran, Nursen and Yalcin, Can {\"O}zg{\"u}r and Ustundag, Aylin and Aydin, Sevtap and Anlar, Hatice Gul and Bacanli, Merve and Aydos, Kaan and Atabekoglu, Cem Somer and Golka, Klaus and Ickstadt, Katja and Schwerdtle, Tanja and Werner, Matthias and Bolt, Hermann M.}, title = {Boron-exposed male workers in Turkey}, series = {Archives of toxicology : official journal of EUROTOX}, volume = {93}, journal = {Archives of toxicology : official journal of EUROTOX}, number = {3}, publisher = {Springer}, address = {Heidelberg}, issn = {0340-5761}, doi = {10.1007/s00204-019-02391-z}, pages = {743 -- 751}, year = {2019}, abstract = {Boron-associated shifts in sex ratios at birth were suggested earlier and attributed to a decrease in Y- vs. X-bearing sperm cells. As the matter is pivotal in the discussion of reproductive toxicity of boron/borates, re-investigation in a highly borate-exposed population was required. In the present study, 304 male workers in Bandirma and Bigadic (Turkey) with different degrees of occupational and environmental exposure to boron were investigated. Boron was quantified in blood, urine and semen, and the persons were allocated to exposure groups along B blood levels. In the highest ("extreme") exposure group (n = 69), calculated mean daily boron exposures, semen boron and blood boron concentrations were 44.91 +/- 18.32 mg B/day, 1643.23 +/- 965.44 ng B/g semen and 553.83 +/- 149.52 ng B/g blood, respectively. Overall, an association between boron exposure and Y:X sperm ratios in semen was not statistically significant (p > 0.05). Also, the mean Y:X sperm ratios in semen samples of workers allocated to the different exposure groups were statistically not different in pairwise comparisons (p > 0.05). Additionally, a boron-associated shift in sex ratio at birth towards female offspring was not visible. In essence, the present results do not support an association between boron exposure and decreased Y:X sperm ratio in males, even under extreme boron exposure conditions.}, language = {en} } @article{WittenbecherKuxhausBoeingetal.2019, author = {Wittenbecher, Clemens and Kuxhaus, Olga and Boeing, Heiner and Stefan, Norbert and Schulze, Matthias Bernd}, title = {Associations of short stature and components of height with incidence of type 2 diabetes}, series = {Diabetologia : journal of the European Association for the Study of Diabetes (EASD)}, volume = {62}, journal = {Diabetologia : journal of the European Association for the Study of Diabetes (EASD)}, number = {12}, publisher = {Springer}, address = {New York}, issn = {0012-186X}, doi = {10.1007/s00125-019-04978-8}, pages = {2211 -- 2221}, year = {2019}, abstract = {Aims/hypothesis This study aimed to evaluate associations of height as well as components of height (sitting height and leg length) with risk of type 2 diabetes and to explore to what extent associations are explainable by liver fat and cardiometabolic risk markers. Methods A case-cohort study within the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam study comprising 26,437 participants who provided blood samples was designed. We randomly selected a subcohort of 2500 individuals (2029 diabetes-free at baseline and with anamnestic, anthropometrical and metabolic data for analysis). Of the 820 incident diabetes cases identified in the full cohort during 7 years of follow-up, 698 remained for analyses after similar exclusions. Results After adjustment for age, potential lifestyle confounders, education and waist circumference, greater height was related to lower diabetes risk (HR per 10 cm, men 0.59 [95\% CI 0.47, 0.75] and women 0.67 [0.51, 0.88], respectively). Leg length was related to lower risk among men and women, but only among men if adjusted for total height. Adjustment for liver fat and triacylglycerols, adiponectin and C-reactive protein substantially attenuated associations between height and diabetes risk, particularly among women. Conclusions/interpretation We observed inverse associations between height and risk of type 2 diabetes, which was largely related to leg length among men. The inverse associations may be partly driven by lower liver fat content and a more favourable cardiometabolic profile.}, language = {en} } @article{EichelmannSchulzeWittenbecheretal.2019, author = {Eichelmann, Fabian and Schulze, Matthias Bernd and Wittenbecher, Clemens and Menzel, Juliane and Weikert, Cornelia and di Giuseppe, Romina and Biemann, Ronald and Isermann, Berend and Fritsche, Andreas and Boeing, Heiner and Aleksandrova, Krasimira}, title = {Association of Chemerin Plasma Concentration With Risk of Colorectal Cancer}, series = {JAMA network open}, volume = {2}, journal = {JAMA network open}, number = {3}, publisher = {American Veterinary Medical Association}, address = {Chicago}, issn = {2574-3805}, doi = {10.1001/jamanetworkopen.2019.0896}, pages = {14}, year = {2019}, abstract = {IMPORTANCE Inflammatory processes have been suggested to have an important role in colorectal cancer (CRC) etiology. Chemerin is a recently discovered inflammatory biomarker thought to exert chemotactic, adipogenic, and angiogenic functions. However, its potential link with CRC has not been sufficiently explored. OBJECTIVE To evaluate the prospective association of circulating plasma chemerin concentrations with incident CRC. DESIGN, SETTING, AND PARTICIPANTS Prospective case-cohort study based on 27 548 initially healthy participants from the European Prospective Investigation Into Cancer and Nutrition (EPIC)-Potsdam cohort who were followed for up to 16 years. Baseline study information and samples were collected between August 23, 1994, and September 25, 1998. Recruitment was according to random registry sampling from the geographical area of Potsdam, Germany, and surrounding municipalities. The last date of study follow-up was May 10, 2010. Statistical analysis was conducted in 2018. MAIN OUTCOMES AND MEASURES Incident CRC, colon cancer, and rectal cancer. Baseline chemerin plasma concentrations were measured by enzyme-linked immunosorbent assay. CONCLUSIONS AND RELEVANCE This study found that the association between chemerin concentration and the risk of incident CRC was linear and independent of established CRC risk factors. Further studies are warranted to evaluate chemerin as a novel immune-inflammatory agent in colorectal carcinogenesis.}, language = {en} } @article{SchroeterNeugartSchreineretal.2019, author = {Schr{\"o}ter, David and Neugart, Susanne and Schreiner, Monika and Grune, Tilman and Rohn, Sascha and Ott, Christiane}, title = {Amaranth's 2-Caffeoylisocitric Acid—An Anti-Inflammatory Caffeic Acid Derivative That Impairs NF-κB Signaling in LPS-Challenged RAW 264.7 Macrophages}, series = {Nutrients}, volume = {11}, journal = {Nutrients}, number = {3}, publisher = {MDPI}, address = {Basel}, issn = {2072-6643}, doi = {10.3390/nu11030571}, pages = {14}, year = {2019}, abstract = {For centuries, Amaranthus sp. were used as food, ornamentals, and medication. Molecular mechanisms, explaining the health beneficial properties of amaranth, are not yet understood, but have been attributed to secondary metabolites, such as phenolic compounds. One of the most abundant phenolic compounds in amaranth leaves is 2-caffeoylisocitric acid (C-IA) and regarding food occurrence, C-IA is exclusively found in various amaranth species. In the present study, the anti-inflammatory activity of C-IA, chlorogenic acid, and caffeic acid in LPS-challenged macrophages (RAW 264.7) has been investigated and cellular contents of the caffeic acid derivatives (CADs) were quantified in the cells and media. The CADs were quantified in the cell lysates in nanomolar concentrations, indicating a cellular uptake. Treatment of LPS-challenged RAW 264.7 cells with 10 µM of CADs counteracted the LPS effects and led to significantly lower mRNA and protein levels of inducible nitric oxide synthase, tumor necrosis factor alpha, and interleukin 6, by directly decreasing the translocation of the nuclear factor κB/Rel-like containing protein 65 into the nucleus. This work provides new insights into the molecular mechanisms that attribute to amaranth's anti-inflammatory properties and highlights C-IA's potential as a health-beneficial compound for future research.}, language = {en} }