@phdthesis{Loew2008, author = {Loew, Noya}, title = {Meerrettich Peroxidase : Modifikationen und Anwendungen in Biosensoren}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-18430}, school = {Universit{\"a}t Potsdam}, year = {2008}, abstract = {Biosensoren werden oft f{\"u}r die Messung einzelner Substanzen in komplexen Medien verwendet, wie z.B. bei der Blutzuckerbestimmung. Sie bestehen aus einem physikochemischen Sensor, dem Transduktionselement, und einer darauf immobilisierten biologischen Komponente, dem Erkennungselement. In dieser Arbeit wurde als Transduktionselement eine Elektrode und als Biokomponente das Enzym „Meerrettich Peroxidase" (engl. horseradish peroxidase, HRP) verwendet. Solche HRP-Elektroden werden f{\"u}r die Messung von Wasserstoffperoxid (H2O2) eingesetzt. H2O2 wird im K{\"o}rper von weißen Blutk{\"o}rperchen produziert, um Bakterien abzut{\"o}ten, wird teilweise ausgeatmet und kann in kondensierter Atemluft nachgewiesen werden. Da viele weiße Blutk{\"o}rperchen bei einer Chemotherapie abget{\"o}tet und dadurch die Patienten anf{\"a}lliger f{\"u}r Infektionen werden, muss ihre Anzahl regelm{\"a}ßig {\"u}berwacht werden. Dazu wird zurzeit Blut abgenommen. Im ersten Teil dieser Arbeit wurde untersucht, ob eine {\"U}berwachung der Anzahl an weißen Blutk{\"o}rperchen ohne Blutabnahme durch eine H2O2-Messung erfolgen kann. Ein direkter Zusammenhang zwischen der ausgeatmeten H2O2-Menge und der Zahl der weißen Blutk{\"o}rperchen konnte dabei nicht festgestellt werden. F{\"u}r empfindliche H2O2-Messungen mit einer HRP-Elektrode ist ein schneller Austausch von Elektronen zwischen der Elektrode und dem Enzym notwendig. Eine Vorraussetzung daf{\"u}r ist eine kurze Distanz zwischen dem aktiven Zentrum des Enzyms und der Elektrodenoberfl{\"a}che. Um einen kurzen Abstand zu erreichen wurden im zweiten Teil dieser Arbeit verschiedene por{\"o}se graphit{\"a}hnliche Materialien aus pyrolysierten Kobalt-Porphyrinen f{\"u}r die Elektrodenherstellung verwendet. Dabei stellte sich heraus, dass eines der untersuchten Materialien, welches Poren von etwa der Gr{\"o}ße eines Enzyms hat, Elektronen etwa 200mal schneller mit dem Enzym austauscht als festes Graphit. Die HRP selbst enth{\"a}lt in seinem aktiven Zentrum ein Eisen-Protoporphyrin, also ein aus vier Ringen bestehendes flaches Molek{\"u}l mit einem Eisenatom im Zentrum. Reagiert die HRP mit H2O2, so entzieht es dem Peroxid zwei Elektronen. Eines dieser Elektronen wird am Eisen, das andere im Ringsystem zwischengespeichert, bevor sie an ein anderes Molek{\"u}l oder an die Elektrode weitergegeben werden. Im letzten Teil dieser Arbeit wurde das Eisen durch Osmium ausgetauscht. Das so ver{\"a}nderte Enzym entzieht Peroxiden nur noch ein Elektron. Dadurch reagiert es zwar langsamer mit Wasserstoffperoxid, daf{\"u}r aber schneller mit tert-Butylhydroperoxid, einem organischen Vertreter der Peroxid-Familie.}, language = {de} } @phdthesis{Beissenhirtz2005, author = {Beissenhirtz, Moritz Karl}, title = {Proteinmultischichten und Proteinmutanten f{\"u}r neuartige empfindliche Superoxidbiosensoren}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-5661}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {Das Superoxidradikal kann mit fast allen Bestandteilen von Zellen reagieren und diese sch{\"a}digen. Die medizinische Forschung stellte eine Beteiligung des Radikals an Krebs, Herzinfarkten und neuraler Degeneration fest. Ein empfindlicher Superoxidnachweis ist daher zum besseren Verst{\"a}ndnis von Krankheitsverl{\"a}ufen wichtig. Dabei stellen die geringen typischen Konzentrationen und seine kurze Lebensdauer große Anforderungen. Ziel dieser Arbeit war es zum einen, zwei neuartige Proteinarchitekturen auf Metallelektroden zu entwickeln und deren elektrochemisches Ansprechverhalten zu charakterisieren. Zum anderen waren diese Elektroden zur empfindlichen quantitativen Superoxiddetektion einzusetzen. Im ersten Teil der Arbeit wurde eine Protein-Multischichtelektrode aus Cytochrom c und dem Polyelektrolyten Poly(anilinsulfons{\"a}ure) nach dem Layer-by-layer-Verfahren aufgebaut. F{\"u}r zwei bis 15 Schichten an Protein wurde eine deutliche Zunahme an elektrodenaktivem Cytochrom c mit jedem zus{\"a}tzlichen Aufbringungsschritt nachgewiesen. Die Zunahme verlief linear und ergab bei 15 Schichten eine Zunahme der redoxaktiven Proteinmenge um deutlich mehr als eine Gr{\"o}ßenordnung. W{\"a}hrend das formale Potential im Multischichtsystem sich im Vergleich zur Monoschichtelektrode nicht ver{\"a}nderte, wurde f{\"u}r die Kinetik eine Abh{\"a}ngigkeit der Geschwindigkeit des Elektronentransfers von der Zahl der Proteinschichten beobachtet. Mit zunehmender Scangeschwindigkeit trat ein reversibler Kontaktverlust zu den {\"a}ußeren Schichten auf. Die lineare Zunahme an elektroaktivem Protein mit steigender Zahl an Depositionsschritten unterscheidet sich deutlich von in der Literatur beschriebenen Protein/Polyelektrolyt-Multischichtelektroden, bei denen ab etwa 6-8 Schichten keine Zunahme an elektroaktivem Protein mehr festgestelltwurde. Auch ist bei diesen die Zunahme an kontaktierbaren Proteinmolek{\"u}len auf das Zwei- bis F{\"u}nffache limitiert. Diese Unterschiede des neu vorgestellten Systems zu bisherigen Multischichtassemblaten erkl{\"a}rt sich aus einem in dieser Arbeit f{\"u}r derartige Systeme erstmals beschriebenen Elektronentransfermechanismus. Der Transport von Elektronen zwischen der Elektrodenoberfl{\"a}che und den Proteinmolek{\"u}len in den Schichten verl{\"a}uft {\"u}ber einen Protein-Protein-Elektronenaustausch. Dieser Mechanismus beruht auf dem schnellen Selbstaustausch von Cytochrom c-Molek{\"u}len und einer verbleibenden Rotationsflexibilit{\"a}t des Proteins im Multischichtsystem. Die Reduzierung des Proteins durch das Superoxidradikal und eine anschließende Reoxidation durch die Elektrode konnten nachgewiesen werden. In einem amperometrischen Messansatz wurde das durch Superoxidradikale hervorgerufene elektrochemische Signal in Abh{\"a}ngigkeit von der Zahl an Proteinschichten gemessen. Ein maximales Ansprechverhalten auf das Radikal wurde mit 6-Schichtelektroden erzielt. Die Empfindlichkeit der 6-Schichtelektroden wurde im Vergleich zum Literaturwert der Monoschichtelektrode um Faktor 14, also mehr als eine Gr{\"o}ßenordnung, verbessert. Somit konnte eine Elektrode mit 6 Schichten aus Cytochrom c und Poly(anilinsulfons{\"a}ure) als neuartiger Superoxidsensor mit einer 14-fachen Verbesserung der Empfindlichkeit im Vergleich zum bislang benutzten System entwickelt werden. Der zweite Teil dieser Arbeit beschreibt die Auswahl, Gewinnung und Charakterisierung von Mutanten des Proteins Cu,Zn-Superoxiddismutase zur elektrochemischen Quantifizierung von Superoxidradikalen. Monomere Mutanten des humanen dimeren Enzyms wurden entworfen, die durch Austausch von Aminos{\"a}uren ein oder zwei zus{\"a}tzliche Cysteinreste besaßen, mit welchem sie direkt auf der Goldelektrodenoberfl{\"a}che chemisorbieren sollten. 6 derartige Mutanten konnten in ausreichender Menge und Reinheit in aktiver Form gewonnen werden. Die Bindung der Superoxiddismutase-Mutanten an Goldoberfl{\"a}chen konnte durch Oberfl{\"a}chen-plasmonresonanz und Impedanzspektroskopie nachgewiesen werden. Alle Mutanten wiesen einen quasi-reversiblen Elektronentransfer zwischen SOD und Elektrode auf. Durch Untersuchung von kupferfreien SOD-Mutanten sowie des Wildtyps konnte nachgewiesen werden, das die Mutanten {\"u}ber die eingef{\"u}gten Cysteinreste auf der Elektrode chemisorptiv gebunden wurden und der Elektronentransfer zwischen der Elektrode und dem Kupfer im aktiven Zentrum der SOD erfolgte. Die Superoxiddismutase katalysiert die Zersetzung von Superoxidmolek{\"u}len durch Oxidation und durch Reduktion der Radikale. Somit sind beide Teilreaktionen von analytischem Interesse. Zyklovoltammetrisch konnte sowohl die Oxidation als auch die Reduktion des Radikals durch die immobilisierten Superoxiddismutase-Mutanten nachgewiesen werden. In amperometrischen Messanordnungen konnten beide Teilreaktionen zur analytischen Quantifizierung von Superoxidradikalen genutzt werden. Im positiven Potentialfenster wurde die Empfindlichkeit um einen Faktor von etwa 10 gegen{\"u}ber der Cytochrom c-Monoschichtelektrode verbessert.}, subject = {Biosensor}, language = {de} }