@misc{HuberLeziusReibisetal., author = {Huber, Matthias and Lezius, Susanne and Reibis, Rona Katharina and Treszl, Andras and Kujawinska, Dorota and Jakob, Stefanie and Wegscheider, Karl and V{\"o}ller, Heinz and Kreutz, Reinhold}, title = {A single nucleotide polymorphism near the CYP17A1 gene is associated with left ventricular mass in hypertensive patients under pharmacotherapy}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400074}, pages = {13}, abstract = {Cytochrome P450 17A1 (CYP17A1) catalyses the formation and metabolism of steroid hormones. They are involved in blood pressure (BP) regulation and in the pathogenesis of left ventricular hypertrophy. Therefore, altered function of CYP17A1 due to genetic variants may influence BP and left ventricular mass. Notably, genome wide association studies supported the role of this enzyme in BP control. Against this background, we investigated associations between single nucleotide polymorphisms (SNPs) in or nearby the CYP17A1 gene with BP and left ventricular mass in patients with arterial hypertension and associated cardiovascular organ damage treated according to guidelines. Patients (n = 1007, mean age 58.0 ± 9.8 years, 83\% men) with arterial hypertension and cardiac left ventricular ejection fraction (LVEF) ≥40\% were enrolled in the study. Cardiac parameters of left ventricular mass, geometry and function were determined by echocardiography. The cohort comprised patients with coronary heart disease (n = 823; 81.7\%) and myocardial infarction (n = 545; 54.1\%) with a mean LVEF of 59.9\% ± 9.3\%. The mean left ventricular mass index (LVMI) was 52.1 ± 21.2 g/m2.7 and 485 (48.2\%) patients had left ventricular hypertrophy. There was no significant association of any investigated SNP (rs619824, rs743572, rs1004467, rs11191548, rs17115100) with mean 24 h systolic or diastolic BP. However, carriers of the rs11191548 C allele demonstrated a 7\% increase in LVMI (95\% CI: 1\%-12\%, p = 0.017) compared to non-carriers. The CYP17A1 polymorphism rs11191548 demonstrated a significant association with LVMI in patients with arterial hypertension and preserved LVEF. Thus, CYP17A1 may contribute to cardiac hypertrophy in this clinical condition.}, language = {en} } @misc{CarlsohnCasselLinneetal.2010, author = {Carlsohn, Anja and Cassel, Michael and Linn{\´e}, Karsten and Mayer, Frank}, title = {How much is too much?}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {515}, issn = {1866-8364}, doi = {10.25932/publishup-41291}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-412910}, pages = {5}, year = {2010}, abstract = {Although dietary nutrient intake is often adequate, nutritional supplement use is common among elite athletes. However, high-dose supplements or the use of multiple supplements may exceed the recommended daily allowance (RDA) of particular nutrients or even result in a daily intake above tolerable upper limits (UL). The present case report presents nutritional intake data and supplement use of a highly trained male swimmer competing at international level. Habitual energy and micronutrient intake were analysed by 3 d dietary reports. Supplement use and dosage were assessed, and total amount of nutrient supply was calculated. Micronutrient intake was evaluated based on RDA and UL as presented by the European Scientific Committee on Food, and maximum permitted levels in supplements (MPL) are given. The athlete's diet provided adequate micronutrient content well above RDA except for vitamin D. Simultaneous use of ten different supplements was reported, resulting in excess intake above tolerable UL for folate, vitamin E and Zn. Additionally, daily supplement dosage was considerably above MPL for nine micronutrients consumed as artificial products. Risks and possible side effects of exceeding UL by the athlete are discussed. Athletes with high energy intake may be at risk of exceeding UL of particular nutrients if multiple supplements are added. Therefore, dietary counselling of athletes should include assessment of habitual diet and nutritional supplement intake. Educating athletes to balance their diets instead of taking supplements might be prudent to prevent health risks that may occur with long-term excess nutrient intake.}, language = {en} } @misc{PetrovHilleMuellerRoeberetal.2015, author = {Petrov, Veselin and Hille, Jacques and M{\"u}ller-R{\"o}ber, Bernd and Gechev, Tsanko S.}, title = {ROS-mediated abiotic stress-induced programmed cell death in plants}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {425}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-406481}, pages = {16}, year = {2015}, abstract = {During the course of their ontogenesis plants are continuously exposed to a large variety of abiotic stress factors which can damage tissues and jeopardize the survival of the organism unless properly countered. While animals can simply escape and thus evade stressors, plants as sessile organisms have developed complex strategies to withstand them. When the intensity of a detrimental factor is high, one of the defense programs employed by plants is the induction of programmed cell death (PCD). This is an active, genetically controlled process which is initiated to isolate and remove damaged tissues thereby ensuring the survival of the organism. The mechanism of PCD induction usually includes an increase in the levels of reactive oxygen species (ROS) which are utilized as mediators of the stress signal. Abiotic stress-induced PCD is not only a process of fundamental biological importance, but also of considerable interest to agricultural practice as it has the potential to significantly influence crop yield. Therefore, numerous scientific enterprises have focused on elucidating the mechanisms leading to and controlling PCD in response to adverse conditions in plants. This knowledge may help develop novel strategies to obtain more resilient crop varieties with improved tolerance and enhanced productivity. The aim of the present review is to summarize the recent advances in research on ROS-induced PCD related to abiotic stress and the role of the organelles in the process.}, language = {en} }