@article{WestburyDalerumbNorenetal.2017, author = {Westbury, Michael V. and Dalerumb, Fredrik and Noren, Karin and Hofreiter, Michael}, title = {Complete mitochondrial genome of a bat-eared fox (Otocyon megalotis), along with phylogenetic considerations}, series = {Mitochondrial DNA. Part B}, volume = {2}, journal = {Mitochondrial DNA. Part B}, number = {1}, publisher = {Routledge, Taylor \& Francis Group}, address = {London}, issn = {2380-2359}, doi = {10.1080/23802359.2017.1331325}, pages = {298 -- 299}, year = {2017}, abstract = {The bat-eared fox, Otocyon megalotis, is the only member of its genus and is thought to occupy a basal position within the dog family. These factors can lead to challenges in complete mitochondrial reconstructions and accurate phylogenetic positioning. Here, we present the first complete mitochondrial genome of the bat-eared fox recovered using shotgun sequencing and iterative mapping to three distantly related species. Phylogenetic analyses placed the bat-eared fox basal in the Canidae family within the clade including true foxes (Vulpes) and the raccoon dog (Nyctereutes) with high support values. This position is in good agreement with previously published results based on short fragments of mitochondrial and nuclear genes, therefore adding more support to the basal positioning of the bat-eared fox within Canidae.}, language = {en} } @misc{BaslerXenikoudakisWestburyetal.2017, author = {Basler, Nikolas and Xenikoudakis, Georgios and Westbury, Michael V. and Song, Lingfeng and Sheng, Guilian and Barlow, Axel}, title = {Reduction of the contaminant fraction of DNA obtained from an ancient giant panda bone}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {715}, issn = {1866-8372}, doi = {10.25932/publishup-42815}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-428151}, pages = {7}, year = {2017}, abstract = {Objective: A key challenge in ancient DNA research is massive microbial DNA contamination from the deposition site which accumulates post mortem in the study organism's remains. Two simple and cost-effective methods to enrich the relative endogenous fraction of DNA in ancient samples involve treatment of sample powder with either bleach or Proteinase K pre-digestion prior to DNA extraction. Both approaches have yielded promising but vary-ing results in other studies. Here, we contribute data on the performance of these methods using a comprehensive and systematic series of experiments applied to a single ancient bone fragment from a giant panda (Ailuropoda melanoleuca).Results: Bleach and pre-digestion treatments increased the endogenous DNA content up to ninefold. However, the absolute amount of DNA retrieved was dramatically reduced by all treatments. We also observed reduced DNA damage patterns in pre-treated libraries compared to untreated ones, resulting in longer mean fragment lengths and reduced thymine over-representation at fragment ends. Guanine-cytosine (GC) contents of both mapped and total reads are consistent between treatments and conform to general expectations, indicating no obvious biasing effect of the applied methods. Our results therefore confirm the value of bleach and pre-digestion as tools in palaeog-enomic studies, providing sufficient material is available.}, language = {en} }