@article{BenduhnTvingstedtPiersimonietal.2017, author = {Benduhn, Johannes and Tvingstedt, Kristofer and Piersimoni, Fortunato and Ullbrich, Sascha and Fan, Yeli and Tropiano, Manuel and McGarry, Kathryn A. and Zeika, Olaf and Riede, Moritz K. and Douglas, Christopher J. and Barlow, Stephen and Marder, Seth R. and Neher, Dieter and Spoltore, Donato and Vandewal, Koen}, title = {Intrinsic non-radiative voltage losses in fullerene-based organic solar cells}, series = {Nature Energy}, volume = {2}, journal = {Nature Energy}, publisher = {Nature Publ. Group}, address = {London}, issn = {2058-7546}, doi = {10.1038/nenergy.2017.53}, pages = {6}, year = {2017}, abstract = {Organic solar cells demonstrate external quantum efficiencies and fill factors approaching those of conventional photovoltaic technologies. However, as compared with the optical gap of the absorber materials, their open-circuit voltage is much lower, largely due to the presence of significant non-radiative recombination. Here, we study a large data set of published and new material combinations and find that non-radiative voltage losses decrease with increasing charge-transfer-state energies. This observation is explained by considering non-radiative charge-transfer-state decay as electron transfer in the Marcus inverted regime, being facilitated by a common skeletal molecular vibrational mode. Our results suggest an intrinsic link between non-radiative voltage losses and electron-vibration coupling, indicating that these losses are unavoidable. Accordingly, the theoretical upper limit for the power conversion efficiency of single-junction organic solar cells would be reduced to about 25.5\% and the optimal optical gap increases to (1.45-1.65) eV, that is, (0.2-0.3) eV higher than for technologies with minimized non-radiative voltage losses.}, language = {en} } @article{HofackerNeher2017, author = {Hofacker, Andreas and Neher, Dieter}, title = {Dispersive and steady-state recombination in organic disordered semiconductors}, series = {Physical review : B, Condensed matter and materials physics}, volume = {96}, journal = {Physical review : B, Condensed matter and materials physics}, publisher = {American Physical Society}, address = {College Park}, issn = {2469-9950}, doi = {10.1103/PhysRevB.96.245204}, pages = {11}, year = {2017}, abstract = {Charge carrier recombination in organic disordered semiconductors is strongly influenced by the thermalization of charge carriers in the density of states (DOS). Measurements of recombination dynamics, conducted under transient or steady-state conditions, can easily be misinterpreted when a detailed understanding of the interplay of thermalization and recombination is missing. To enable adequate measurement analysis, we solve the multiple-trapping problem for recombining charge carriers and analyze it in the transient and steady excitation paradigm for different DOS distributions. We show that recombination rates measured after pulsed excitation are inherently time dependent since recombination gradually slows down as carriers relax in the DOS. When measuring the recombination order after pulsed excitation, this leads to an apparent high-order recombination at short times. As times goes on, the recombination order approaches an asymptotic value. For the Gaussian and the exponential DOS distributions, this asymptotic value equals the recombination order of the equilibrated system under steady excitation. For a more general DOS distribution, the recombination order can also depend on the carrier density, under both transient and steady-state conditions. We conclude that transient experiments can provide rich information about recombination in and out of equilibrium and the underlying DOS occupation provided that consistent modeling of the system is performed.}, language = {en} } @article{ShpritsKellermanAseevetal.2017, author = {Shprits, Yuri Y. and Kellerman, Adam C . and Aseev, Nikita and Drozdov, Alexander and Michaelis, Ingo}, title = {Multi-MeV electron loss in the heart of the radiation belts}, series = {Geophysical research letters}, volume = {44}, journal = {Geophysical research letters}, number = {3}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1002/2016GL072258}, pages = {1204 -- 1209}, year = {2017}, abstract = {Significant progress has been made in recent years in understanding acceleration mechanisms in the Earth's radiation belts. In particular, a number of studies demonstrated the importance of the local acceleration by analyzing the radial profiles of phase space density (PSD) and observing building up peaks in PSD. In this study, we focus on understanding of the local loss using very similar tools. The profiles of PSD for various values of the first adiabatic invariants during the previously studied 17 January 2013 storm are presented and discussed. The profiles of PSD show clear deepening minimums consistent with the scattering by electromagnetic ion cyclotron waves. Long-term evolution shows that local minimums in PSD can persist for relatively long times. During considered interval of time the deepening minimums were observed around L* = 4 during 17 January 2013 storm and around L* = 3.5 during 1 March 2013 storm. This study shows a new method that can help identify the location, magnitude, and time of the local loss and will help quantify local loss in the future. This study also provides additional clear and definitive evidence that local loss plays a major role for the dynamics of the multi-MeV electrons.}, language = {en} } @article{SteteKoopmanBargheer2017, author = {Stete, Felix and Koopman, Wouter-Willem Adriaan and Bargheer, Matias}, title = {Signatures of strong coupling on nanoparticles}, series = {ACS Photonics}, volume = {4}, journal = {ACS Photonics}, publisher = {American Chemical Society}, address = {Washington}, issn = {2330-4022}, doi = {10.1021/acsphotonics.7b00113}, pages = {1669 -- 1676}, year = {2017}, abstract = {In the strong coupling regime, exciton and plasmon excitations are hybridized into combined system excitations. The correct identification of the coupling regime in these systems is currently debated, from both experimental and theoretical perspectives. In this article we show that the extinction spectra may show a large peak splitting, although the energy loss encoded in the absorption spectra clearly rules out the strong coupling regime. We investigate the coupling of J-aggregate excitons to the localized surface plasmon polaritons on gold nanospheres and nanorods by fine-tuning the plasmon resonance via layer-by-layer deposition of polyelectrolytes. While both structures show a characteristic anticrossing in extinction and scattering experiments, the careful assessment of the systems' light absorption reveals that strong coupling of the plasmon to the exciton is not present in the nanosphere system. In a phenomenological model of two classical coupled oscillators, a Fano-like regime causes only the resonance of the light-driven oscillator to split up, while the other one still dissipates energy at its original frequency. Only in the strong-coupling limit do both oscillators split up the frequencies at which they dissipate energy, qualitatively explaining our experimental finding.}, language = {en} } @article{StolterfohtWolffAmiretal.2017, author = {Stolterfoht, Martin and Wolff, Christian Michael and Amir, Yohai and Paulke, Andreas and Perdig{\´o}n-Toro, Lorena and Caprioglio, Pietro and Neher, Dieter}, title = {Approaching the fill factor Shockley-Queisser limit in stable, dopant-free triple cation perovskite solar cells}, series = {Energy \& Environmental Science}, volume = {10}, journal = {Energy \& Environmental Science}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1754-5692}, doi = {10.1039/c7ee00899f}, pages = {1530 -- 1539}, year = {2017}, abstract = {Perovskite solar cells now compete with their inorganic counterparts in terms of power conversion efficiency, not least because of their small open-circuit voltage (V-OC) losses. A key to surpass traditional thin-film solar cells is the fill factor (FF). Therefore, more insights into the physical mechanisms that define the bias dependence of the photocurrent are urgently required. In this work, we studied charge extraction and recombination in efficient triple cation perovskite solar cells with undoped organic electron/hole transport layers (ETL/HTL). Using integral time of flight we identify the transit time through the HTL as the key figure of merit for maximizing the fill factor (FF) and efficiency. Complementarily, intensity dependent photocurrent and V-OC measurements elucidate the role of the HTL on the bias dependence of non-radiative and transport-related loss channels. We show that charge transport losses can be completely avoided under certain conditions, yielding devices with FFs of up to 84\%. Optimized cells exhibit power conversion efficiencies of above 20\% for 6 mm(2) sized pixels and 18.9\% for a device area of 1 cm(2). These are record efficiencies for hybrid perovskite devices with dopant-free transport layers, highlighting the potential of this device technology to avoid charge-transport limitations and to approach the Shockley-Queisser limit.}, language = {en} }