@article{SeilerSeissHoffmannetal.2019, author = {Seiler, Michael and Seiß, Martin and Hoffmann, Holger and Spahn, Frank}, title = {Hydrodynamic Simulations of Asymmetric Propeller Structures in Saturn's Rings}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Supplement series}, volume = {243}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Supplement series}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0067-0049}, doi = {10.3847/1538-4365/ab26b0}, pages = {16}, year = {2019}, abstract = {The observation of the non-Keplerian behavior of propeller structures in Saturn's outer A ring raises the question: how does the propeller respond to the wandering of the central embedded moonlet? Here, we study numerically how the structural imprint of the propeller changes for a libration of the moonlet. It turns out that the libration induces an asymmetry in the propeller, which depends on the libration period and amplitude of the moonlet. Further, we study the dependence of the asymmetry on the libration period and amplitude for a moonlet with a 400 m Hill radius, which is located in the outer A ring. This allows us to apply our findings to the largest known propeller Bl{\´e}riot, which is expected to be of a similar size. For Bl{\´e}riot, we can conclude that, supposing the moonlet is librating with the largest observed period of 11.1 yr and an azimuthal amplitude of about 1845 km, a small asymmetry should be measurable but depends on the moonlet's libration phase at the observation time. The longitude residuals of other trans-Encke propellers (e.g., Earhart) show amplitudes similar to Bl{\´e}riot, which might allow us to observe larger asymmetries due to their smaller azimuthal extent, allowing us to scan the whole gap structure for asymmetries in one observation. Although the librational model of the moonlet is a simplification, our results are a first step toward the development of a consistent model for the description of the formation of asymmetric propellers caused by a freely moving moonlet.}, language = {en} } @article{RichterVollhardt2006, author = {Richter, Lothar and Vollhardt, Dieter}, title = {Force measuring methods for determination of surface tension of liquids: A comparison}, series = {Tenside, surfactants, detergents}, volume = {43}, journal = {Tenside, surfactants, detergents}, number = {5}, publisher = {Hanser}, address = {M{\"u}nchen}, issn = {0932-3414}, doi = {10.3139/113.100314}, pages = {256 -- 261}, year = {2006}, abstract = {Three methods for the determination of the surface tension of liquids based on force measurements namely, the vertical plate method of Wilhelmy, the frame method of Lenard and the ring method of du Nouy are compared and studied in respect of a common principle of correction. It is shown that these three most important force-based methods allow the determination of the surface tension under static conditions. The force components of the corresponding liquid column below the measuring wire obtained for the straight part of the withdrawal curve up to the transition in its curved part provides exact surface tension values. The experimentally accessible value of the force component describes the physical background of the measured value correction contrary to the approximate equations obtained by mathematical way. Usually the determination of surface tension of liquids is based merely at the vertical plate method on exact equations thermodynamically derived whereas in the case of the frame and ring methods correction factors in approximate equations are used. At usual application of the force-based methods under the non-static condition of the withdrawal of a liquid column, the force maximum measured at withdrawal of the measuring object (plate, frame, or ring) is the basis for the determination of surface tension. In these cases, the measured surface tension values are compensated by correction equations for the frame and ring methods which are based on an correction factor and correction tables empirically obtained. The surface tension values obtained in this usual way agree with those obtained by using the force component of the corresponding liquid column below the measuring wire for the straight part of the withdrawal curve up to the transition in its curved part. Problems arising at the force measurements with increasing thickness of the measuring wires inside and outside the rings are discussed.}, language = {en} } @article{AssmannThielRomanoetal.2006, author = {Assmann, Birte and Thiel, Marco and Romano, Maria Carmen and Niemitz, Carsten}, title = {Recurrence plot analyses suggest a novel reference system involved in newborn spontaneous movements}, series = {Behavior research methods : a journal of the Psychonomic Society}, volume = {38}, journal = {Behavior research methods : a journal of the Psychonomic Society}, number = {3}, publisher = {Springer}, address = {New York}, issn = {1554-351X}, doi = {10.3758/BF03192793}, pages = {400 -- 406}, year = {2006}, abstract = {The movements of newborns have been thoroughly studied in terms of reflexes, muscle synergies, leg coordination, and target-directed arm/hand movements. Since these approaches have concentrated mainly on separate accomplishments, there has remained a clear need for more integrated investigations. Here, we report an inquiry in which we explicitly concentrated on taking such a perspective and, additionally, were guided by the methodological concept of home base behavior, which Ilan Golard developed for studies of exploratory behavior in animals. Methods from nonlinear dynamics, such as symbolic dynamics and recurrence plot analyses of kinematic data received from audiovisual newborn recordings, yielded new insights into the spatial and temporal organization of limb movements. In the framework of home base behavior, our approach uncovered a novel reference system of spontaneous newborn movements.}, language = {en} } @article{DiezTauerSchulz2006, author = {Diez, Isabel and Tauer, Klaus and Schulz, Burkhard}, title = {Unusual polymer dispersions-polypyrrole suspensions made of rings, frames, and platelets}, series = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, volume = {284}, journal = {Colloid and polymer science : official journal of the Kolloid-Gesellschaft}, publisher = {Springer}, address = {New York}, issn = {0303-402X}, doi = {10.1007/s00396-006-1521-8}, pages = {1431 -- 1442}, year = {2006}, abstract = {Experimental results show that the polymerization of pyrrole in the presence of beta-naphthalenesulfonic acid and different fluorosurfactants like perfluorooctanesulfonic acid, perfluorooctyldiethanolamide, and ammonium perfluorooctanoate leads to polypyrrole with special morphologies, such as rings or disks and rectangular frames or plates. The formation of these unusually shaped particles of polymer dispersions is explained by the chemical and colloidal peculiarities of the oxidative pyrrole polymerization with ammonium peroxodisulfate in aqueous medium.}, language = {en} } @article{GiesersKamannDreizleretal.2019, author = {Giesers, Benjamin David and Kamann, Sebastian and Dreizler, Stefan and Husser, Tim-Oliver and Askar, Abbas and G{\"o}ttgens, Fabian and Brinchmann, Jarle and Latour, Marilyn and Weilbacher, Peter Michael and Wendt, Martin and Roth, Martin M.}, title = {A stellar census in globular clusters with MUSE: Binaries in NGC 3201}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {632}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201936203}, pages = {20}, year = {2019}, abstract = {We utilise multi-epoch MUSE spectroscopy to study binary stars in the core of the Galactic globular cluster NGC 3201. Our sample consists of 3553 stars with 54 883 spectra in total comprising 3200 main-sequence stars up to 4 magnitudes below the turn-off. Each star in our sample has between 3 and 63 (with a median of 14) reliable radial velocity measurements within five years of observations. We introduce a statistical method to determine the probability of a star showing radial velocity variations based on the whole inhomogeneous radial velocity sample. Using HST photometry and an advanced dynamical MOCCA simulation of this specific cluster we overcome observational biases that previous spectroscopic studies had to deal with. This allows us to infer a binary frequency in the MUSE field of view and enables us to deduce the underlying true binary frequency of (6.75 +/- 0.72)\% in NGC 3201. The comparison of the MUSE observations with the MOCCA simulation suggests a large portion of primordial binaries. We can also confirm a radial increase in the binary fraction towards the cluster centre due to mass segregation. We discovered that in the core of NGC 3201 at least (57.5 +/- 7.9)\% of blue straggler stars are in a binary system. For the first time in a study of globular clusters, we were able to fit Keplerian orbits to a significant sample of 95 binaries. We present the binary system properties of eleven blue straggler stars and the connection to SX Phoenicis-type stars. We show evidence that two blue straggler formation scenarios, the mass transfer in binary (or triple) star systems and the coalescence due to binary-binary interactions, are present in our data. We also describe the binary and spectroscopic properties of four sub-subgiant (or red straggler) stars. Furthermore, we discovered two new black hole candidates with minimum masses (M sin i) of (7.68 +/- 0.50)M-circle dot, (4.4 +/- 2.8)M-circle dot, and refine the minimum mass estimate on the already published black hole to (4.53 +/- 0.21)M-circle dot, These black holes are consistent with an extensive black hole subsystem hosted by NGC 3201.}, language = {en} } @article{LatourHusserGiesersetal.2019, author = {Latour, Marlyn and Husser, Tim Oliver and Giesers, Benjamin David and Kamann, S. and G{\"o}ttgens, Fabian and Dreizler, Stefan and Brinchmann, Jan and Bastian, Nate and Wendt, Martin and Weilbacher, Peter Michael and Molinski, N. S.}, title = {A stellar census in globular clusters with MUSE: multiple populations chemistry in NGC 2808 star star star}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {631}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201936242}, pages = {14}, year = {2019}, abstract = {Context. Galactic globular clusters (GCs) are now known to host multiple populations displaying particular abundance variations. The different populations within a GC can be well distinguished following their position in the pseudo two-colors diagrams, also referred to as "chromosome maps". These maps are constructed using optical and near-UV photometry available from the Hubble Space Telescope (HST) UV survey of GCs. However, the chemical tagging of the various populations in the chromosome maps is hampered by the fact that HST photometry and elemental abundances are both only available for a limited number of stars. Aims. The spectra collected as part of the MUSE survey of globular clusters provide a spectroscopic counterpart to the HST photometric catalogs covering the central regions of GCs. In this paper, we use the MUSE spectra of 1115 red giant branch (RGB) stars in NGC 2808 to characterize the abundance variations seen in the multiple populations of this cluster. Methods. We used the chromosome map of NGC 2808 to divide the RGB stars into their respective populations. We then combined the spectra of all stars belonging to a given population, resulting in one high signal-to-noise ratio spectrum representative of each population. Results. Variations in the spectral lines of O, Na, Mg, and Al are clearly detected among four of the populations. In order to quantify these variations, we measured equivalent width differences and created synthetic populations spectra that were used to determine abundance variations with respect to the primordial population of the cluster. Our results are in good agreement with the values expected from previous studies based on high-resolution spectroscopy. We do not see any significant variations in the spectral lines of Ca, K, and Ba. We also do not detect abundance variations among the stars belonging to the primordial population of NGC 2808. Conclusions. We demonstrate that in spite of their low resolution, the MUSE spectra can be used to investigate abundance variations in the context of multiple populations.}, language = {en} } @article{FoxRichterAshleyetal.2019, author = {Fox, Andrew J. and Richter, Philipp and Ashley, Trisha and Heckman, Timothy M. and Lehner, Nicolas and Werk, Jessica K. and Bordoloi, Rongmon and Peeples, Molly S.}, title = {The Mass Inflow and Outflow Rates of the Milky Way}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {884}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/ab40ad}, pages = {7}, year = {2019}, abstract = {We present new calculations of the mass inflow and outflow rates around the Milky Way (MW), derived from a catalog of ultraviolet metal-line high-velocity clouds (HVCs). These calculations are conducted by transforming the HVC velocities into the Galactic standard of rest (GSR) reference frame, identifying inflowing (vGSR.<.0 km s(-1)) and outflowing (vGSR > 0 km s(-1)) populations, and using observational constraints on the distance, metallicity, dust content, covering fractions, and total silicon column density of each population. After removing HVCs associated with the Magellanic Stream and the Fermi Bubbles, we find inflow and outflow rates in cool (T similar to 10(4) K) ionized gas of dM(in)/dt greater than or similar to.(0.53 +/- 0.23)(d/12 kpc)(Z/0.2Z(circle dot))-1M(circle dot) yr(-1) and dM(out)/dt greater than or similar to (0.16 +/- 0.07)(d/12 kpc)(Z/0.5Z(circle dot))M--1(circle dot) yr(-1). The apparent excess of inflowing over outflowing gas suggests that the MW is currently in an inflow-dominated phase, but the presence of substantial mass flux in both directions supports a Galactic fountain model, in which gas is constantly recycled between the disk and the halo. We also find that the metal flux in both directions (in and out) is indistinguishable. By comparing the outflow rate to the Galactic star formation rate, we present the first estimate of the mass loading factor (eta(HVC)) of the disk-wide MW wind, finding eta(HVC) greater than or similar to (0.10 +/- 0.06)(d/12 kpc)(Z/0.5Z(circle dot))(-1). Including the contributions from low- and intermediatevelocity clouds and from hot gas would increase these inflow and outflow estimates.}, language = {en} } @article{MeiKochovskiRoaetal.2019, author = {Mei, Shilin and Kochovski, Zdravko and Roa, Rafael and Gu, Sasa and Xu, Xiaohui and Yu, Hongtao and Dzubiella, Joachim and Ballauff, Matthias and Lu, Yan}, title = {Enhanced Catalytic Activity of Gold@Polydopamine Nanoreactors with Multi-compartment Structure Under NIR Irradiation}, series = {Nano-Micro Letters}, volume = {11}, journal = {Nano-Micro Letters}, number = {1}, publisher = {Shanghai JIAO TONG univ press}, address = {Shanghai}, issn = {2311-6706}, doi = {10.1007/s40820-019-0314-9}, pages = {16}, year = {2019}, abstract = {Photothermal conversion (PTC) nanostructures have great potential for applications in many fields, and therefore, they have attracted tremendous attention. However, the construction of a PTC nanoreactor with multi-compartment structure to achieve the combination of unique chemical properties and structural feature is still challenging due to the synthetic difficulties. Herein, we designed and synthesized a catalytically active, PTC gold (Au)@polydopamine (PDA) nanoreactor driven by infrared irradiation using assembled PS-b-P2VP nanosphere as soft template. The particles exhibit multi-compartment structure which is revealed by 3D electron tomography characterization technique. They feature permeable shells with tunable shell thickness. Full kinetics for the reduction reaction of 4-nitrophenol has been investigated using these particles as nanoreactors and compared with other reported systems. Notably, a remarkable acceleration of the catalytic reaction upon near-infrared irradiation is demonstrated, which reveals for the first time the importance of the synergistic effect of photothermal conversion and complex inner structure to the kinetics of the catalytic reduction. The ease of synthesis and fresh insights into catalysis will promote a new platform for novel nanoreactor studies.}, language = {en} } @article{SahaOwenOrretal.2019, author = {Saha, Sourav and Owen, Lewis A. and Orr, Elizabeth N. and Caffee, Marc W.}, title = {Cosmogenic Be-10 and equilibrium-line altitude dataset of Holocene glacier advances in the Himalayan-Tibetan orogen}, series = {Data in brief}, volume = {26}, journal = {Data in brief}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2352-3409}, doi = {10.1016/j.dib.2019.104412}, pages = {13}, year = {2019}, abstract = {A comprehensive analysis of the variable temporal and spatial responses of tropical-subtropical high-altitude glaciers to climate change is critical for successful model predictions and environmental risk assessment in the Himalayan-Tibetan orogen. High-frequency Holocene glacier chronostratigraphies are therefore reconstructed in 79 glaciated valleys across the orogen using 519 published and 16 new terrestrial cosmogenic 10Be exposure age dataset. Published 10Be ages are compiled only for moraine boulders (excluding bedrock ages). These ages are recalculated using the latest ICE-D production rate calibration database and the scaling scheme models. Outliers for the individual moraine are detected using the Chauvenet's criterion. In addition, past equilibrium-line altitudes (ELAs) are determined using the area-altitude (AA), area accumulation ratio (AAR), and toe-headwall accumulation ratio (THAR) methods for each glacier advance. The modern maximum elevations of lateral moraines (MELM) are also used to estimate modern ELAs and as an independent check on mean ELAs derived using the above three methods. These data may serve as an essential archive for future studies focusing on the cryospheric and environmental changes in the Himalayan-Tibetan orogen. A more comprehensive analysis of the published and new 10Be ages and ELA results and a list of references are presented in Saha et al. (2019, High-frequency Holocene glacier fluctuations in the Himalayan-Tibetan orogen. Quaternary Science Reviews, 220, 372-400).}, language = {en} } @article{TeomyMetzler2019, author = {Teomy, Eial and Metzler, Ralf}, title = {Transport in exclusion processes with one-step memory: density dependence and optimal acceleration}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {52}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {38}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8121/ab37e4}, pages = {19}, year = {2019}, abstract = {We study a lattice gas of persistent walkers, in which each site is occupied by at most one particle and the direction each particle attempts to move to depends on its last step. We analyse the mean squared displacement (MSD) of the particles as a function of the particle density and their persistence (the tendency to continue moving in the same direction). For positive persistence the MSD behaves as expected: it increases with the persistence and decreases with the density. However, for strong anti-persistence we find two different regimes, in which the dependence of the MSD on the density is non-monotonic. For very strong anti-persistence there is an optimal density at which the MSD reaches a maximum. In an intermediate regime, the MSD as a function of the density exhibits both a minimum and a maximum, a phenomenon which has not been observed before. We derive a mean-field theory which qualitatively explains this behaviour.}, language = {en} } @article{PalyulinBlackburnLomholtetal.2019, author = {Palyulin, Vladimir V. and Blackburn, George and Lomholt, Michael A. and Watkins, Nicholas W. and Metzler, Ralf and Klages, Rainer and Chechkin, Aleksei V.}, title = {First passage and first hitting times of Levy flights and Levy walks}, series = {New journal of physics : the open-access journal for physics}, volume = {21}, journal = {New journal of physics : the open-access journal for physics}, number = {10}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/ab41bb}, pages = {23}, year = {2019}, abstract = {For both L{\´e}vy flight and L{\´e}vy walk search processes we analyse the full distribution of first-passage and first-hitting (or first-arrival) times. These are, respectively, the times when the particle moves across a point at some given distance from its initial position for the first time, or when it lands at a given point for the first time. For L{\´e}vy motions with their propensity for long relocation events and thus the possibility to jump across a given point in space without actually hitting it ('leapovers'), these two definitions lead to significantly different results. We study the first-passage and first-hitting time distributions as functions of the L{\´e}vy stable index, highlighting the different behaviour for the cases when the first absolute moment of the jump length distribution is finite or infinite. In particular we examine the limits of short and long times. Our results will find their application in the mathematical modelling of random search processes as well as computer algorithms.}, language = {en} } @article{TeomyMetzler2019, author = {Teomy, Eial and Metzler, Ralf}, title = {Correlations and transport in exclusion processes with general finite memory}, series = {Journal of statistical mechanics: theory and experiment}, volume = {2019}, journal = {Journal of statistical mechanics: theory and experiment}, number = {10}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1742-5468}, doi = {10.1088/1742-5468/ab47fb}, pages = {31}, year = {2019}, language = {en} } @article{KurzkeKietheHeueretal.2017, author = {Kurzke, Henning and Kiethe, Jan and Heuer, Axel and Jechow, Andreas}, title = {Frequency doubling of incoherent light from a superluminescent diode in a periodically poled lithium niobate waveguide crystal}, series = {Laser physics letters}, volume = {14}, journal = {Laser physics letters}, publisher = {IOP Publ.}, address = {Bristol}, issn = {1612-2011}, doi = {10.1088/1612-202X/aa6889}, pages = {5}, year = {2017}, abstract = {The amplified spontaneous emission from a superluminescent diode was frequency doubled in a periodically poled lithium niobate waveguide crystal. The temporally incoherent radiation of such a superluminescent diode is characterized by a relatively broad spectral bandwidth and thermal-like photon statistics, as the measured degree of second order coherence, g((2))(0)= 1.9 +/- 0.1, indicates. Despite the non-optimized scenario in the spectral domain, we achieve six orders of magnitude higher conversion efficiency than previously reported with truly incoherent light. This is possible by using single spatial mode radiation and quasi phase matched material with a waveguide architecture. This work is a principle step towards efficient frequency conversion of temporally incoherent radiation in one spatial mode to access wavelengths where no radiation from superluminescent diodes is available, especially with tailored quasi phase matched crystals. The frequency doubled light might find application in imaging, metrology and quantum optics experiments.}, language = {en} } @phdthesis{Schmoll2001, author = {Schmoll, J{\"u}rgen}, title = {3D-Spektrofotometrie extragalaktischer Emissionslinienobjekte}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000372}, school = {Universit{\"a}t Potsdam}, year = {2001}, abstract = {Popul{\"a}rwissenschaftlicher Abstract: Bislang gibt es in der beobachtenden optischen Astronomie zwei verschiedene Herangehensweisen: Einerseits werden Objekte durch Kameras abbildend erfaßt, andererseits werden durch die wellenl{\"a}ngenabh{\"a}ngige Zerlegung ihres Lichtes Spektren gewonnen. Das Integral - Field - Verfahren ist eine relativ neue Technik, welche die genannten Beobachtungsmethoden vereint. Das Objektbild im Teleskopfokus wird in r{\"a}umlich zerlegt und jedes Ortselement einem gemeinsamen Spektrografen zugef{\"u}hrt. Hierdurch wird das Objekt nicht nur zweidimensional r{\"a}umlich erfaßt, sondern zus{\"a}tzlich die spektrale Kompenente als dritte Dimension erhalten, weswegen das Verfahren auch als 3D-Methode bezeichnet wird. Anschaulich kann man sich das Datenresultat als eine Abbildung vorstellen, in der jeder einzelne Bildpunkt nicht mehr nur einen Intensit{\"a}tswert enth{\"a}lt, sondern gleich ein ganzes Spektrum. Diese Technik erm{\"o}glicht es, ausgedehnte Objekte im Unterschied zu g{\"a}ngigen Spaltspektrografen komplett zu erfassen. Die besondere St{\"a}rke der Methode ist die M{\"o}glichkeit, die Hintergrundkontamination der unmittelbaren Umgebung des Objektes zu erfassen und in der Auswertung zu ber{\"u}cksichtigen. Durch diese F{\"a}higkeit erscheint die 3D-Methode pr{\"a}destiniert f{\"u}r den durch moderne Großteleskope erschlossenen Bereich der extragalaktischen Stellarastronomie. Die detaillierte Untersuchung aufgel{\"o}ster stellare Populationen in nahegelegenen Galaxien ist erst seit kurzer Zeit dank der Fortschritte mit modernen Grossteleskopen und fortschrittlicher Instrumentierung m{\"o}glich geworden. Wegen der Bedeutung f{\"u}r die Entstehung und Evolution von Galaxien werden diese Arbeiten zuk{\"u}nftig weiter an Bedeutung gewinnen. In der vorliegenden Arbeit wurde die Integral-Field-Spektroskopie an zwei planetarischen Nebeln in der n{\"a}chstgelegenen großen Spiralgalaxie M31 (NGC 224) getestet, deren Helligkeiten und Koordinaten aus einer Durchmusterung vorlagen. Hierzu wurden Beobachtungen mit dem MPFS-Instrument am russischen 6m - Teleskop in Selentschuk/Kaukasus sowie mit INTEGRAL/WYFFOS am englischen William-Herschel-Teleskop auf La Palma gewonnen. Ein {\"u}berraschendes Ergebnis war, daß eins der beiden Objekte falsch klassifiziert wurde. Sowohl die meßbare r{\"a}umliche Ausdehnung des Objektes als auch das spektrale Erscheinungsbild schlossen die Identit{\"a}t mit einem planetarischen Nebel aus. Mit hoher Wahrscheinlichkeit handelt es sich um einen Supernova{\"u}berrest, zumal im Rahmen der Fehler an gleicher Stelle eine vom R{\"o}ntgensatelliten ROSAT detektierte R{\"o}ntgenquelle liegt. Die in diesem Projekt verwendeten Integral-Field-Instrumente wiesen zwei verschiedene Bauweisen auf, die sich miteinander vergleichen ließen. Ein Hauptkritikpunkt der verwendeten Instrumente war ihre geringe Lichtausbeute. Die gesammelten Erfahrung fanden Eingang in das Konzept des derzeit in Potsdam in der Fertigung befindlichen 3D-Instruments PMAS (Potsdamer Multi - Apertur - Spektrophotometer), welcher zun{\"a}chst f{\"u}r das 3.5m-Teleskop des Calar - Alto - Observatoriums in S{\"u}dspanien vorgesehen ist. Um die Effizienz dieses Instrumentes zu verbessern, wurde in dieser Arbeit die Kopplung der zum Bildrasterung verwendeten Optik zu den Lichtleitfasern im Labor untersucht. Die Untersuchungen zur Maximierung von Lichtausbeute und Stabilit{\"a}t zeigen, daß sich die Effizienz durch Auswahl einer geeigneten Koppelmethode um etwa 20 Prozent steigern l{\"a}sst.}, language = {de} } @article{KamannHusserDreizleretal.2017, author = {Kamann, Sebastian and Husser, T. -O. and Dreizler, S. and Emsellem, E. and Weilbacher, Peter Michael and Martens, S. and Bacon, R. and den Brok, M. and Giesers, B. and Krajnovic, Davor and Roth, Martin M. and Wendt, Martin and Wisotzki, Lutz}, title = {A stellar census in globular clusters with MUSE}, series = {Monthly notices of the Royal Astronomical Society}, volume = {473}, journal = {Monthly notices of the Royal Astronomical Society}, number = {4}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stx2719}, pages = {5591 -- 5616}, year = {2017}, abstract = {This is the first of a series of papers presenting the results from our survey of 25 Galactic globular clusters with the MUSE integral-field spectrograph. In combination with our dedicated algorithm for source deblending, MUSE provides unique multiplex capabilities in crowded stellar fields and allows us to acquire samples of up to 20 000 stars within the half-light radius of each cluster. The present paper focuses on the analysis of the internal dynamics of 22 out of the 25 clusters, using about 500 000 spectra of 200 000 individual stars. Thanks to the large stellar samples per cluster, we are able to perform a detailed analysis of the central rotation and dispersion fields using both radial profiles and two-dimensional maps. The velocity dispersion profiles we derive show a good general agreement with existing radial velocity studies but typically reach closer to the cluster centres. By comparison with proper motion data, we derive or update the dynamical distance estimates to 14 clusters. Compared to previous dynamical distance estimates for 47 Tuc, our value is in much better agreement with other methods. We further find significant (>3 sigma) rotation in the majority (13/22) of our clusters. Our analysis seems to confirm earlier findings of a link between rotation and the ellipticities of globular clusters. In addition, we find a correlation between the strengths of internal rotation and the relaxation times of the clusters, suggesting that the central rotation fields are relics of the cluster formation that are gradually dissipated via two-body relaxation.}, language = {en} } @phdthesis{Stoll2022, author = {Stoll, Andreas}, title = {Advanced spectroscopic instruments enabled by integrated optics}, school = {Universit{\"a}t Potsdam}, pages = {97, XV}, year = {2022}, abstract = {The aim of this work is the study of silica Arrayed Waveguide Gratings (AWGs) in the context of applications in astronomy. The specific focus lies on the investigation of the feasibility and technology limits of customized silica AWG devices for high resolution near-infrared spectroscopy. In a series of theoretical and experimental studies, AWG devices of varying geometry, foot-print and spectral resolution are constructed, simulated using a combination of a numerical beam propagation method and Fraunhofer diffraction and fabricated devices are characterized with respect to transmission efficiency, spectral resolution and polarization sensitivity. The impact of effective index non-uniformities on the performance of high-resolution AWG devices is studied numerically. Characterization results of fabricated devices are used to extrapolate the technology limits of the silica platform. The important issues of waveguide birefringence and defocus aberration are discussed theoretically and addressed experimentally by selection of an appropriate aberration-minimizing anastigmatic AWG layout structure. The drawbacks of the anastigmatic AWG geometry are discussed theoretically. From the results of the experimental studies, it is concluded that fabrication-related phase errors and waveguide birefringence are the primary limiting factors for the growth of AWG spectral resolution. It is shown that, without post-processing, the spectral resolving power is phase-error-limited to R < 40, 000 and, in the case of unpolarized light, birefringence-limited to R < 30, 000 in the AWG devices presented in this work. Necessary measures, such as special waveguide geometries and post-fabrication phase error correction are proposed for future designs. The elimination of defocus aberration using an anastigmatic AWG geometry is successfully demonstrated in experiment. Finally, a novel, non-planar dispersive in-fibre waveguide structure is proposed, discussed and studied theoretically.}, language = {en} } @article{MarschallSkorovZakharovetal.2020, author = {Marschall, Raphael and Skorov, Yuri and Zakharov, Vladimir and Rezac, Ladislav and Gerig, Selina-Barbara and Christou, Chariton and Dadzie, S. Kokou and Migliorini, Alessandra and Rinaldi, Giovanna and Agarwal, Jessica and Vincent, Jean-Baptiste and Kappel, David}, title = {Cometary comae-surface links the physics of gas and dust from the surface to a spacecraft}, series = {Space science reviews}, volume = {216}, journal = {Space science reviews}, number = {8}, publisher = {Springer}, address = {Dordrecht}, issn = {0038-6308}, doi = {10.1007/s11214-020-00744-0}, pages = {53}, year = {2020}, abstract = {A comet is a highly dynamic object, undergoing a permanent state of change. These changes have to be carefully classified and considered according to their intrinsic temporal and spatial scales. The Rosetta mission has, through its contiguous in-situ and remote sensing coverage of comet 67P/Churyumov-Gerasimenko (hereafter 67P) over the time span of August 2014 to September 2016, monitored the emergence, culmination, and winding down of the gas and dust comae. This provided an unprecedented data set and has spurred a large effort to connect in-situ and remote sensing measurements to the surface. In this review, we address our current understanding of cometary activity and the challenges involved when linking comae data to the surface. We give the current state of research by describing what we know about the physical processes involved from the surface to a few tens of kilometres above it with respect to the gas and dust emission from cometary nuclei. Further, we describe how complex multidimensional cometary gas and dust models have developed from the Halley encounter of 1986 to today. This includes the study of inhomogeneous outgassing and determination of the gas and dust production rates. Additionally, the different approaches used and results obtained to link coma data to the surface will be discussed. We discuss forward and inversion models and we describe the limitations of the respective approaches. The current literature suggests that there does not seem to be a single uniform process behind cometary activity. Rather, activity seems to be the consequence of a variety of erosion processes, including the sublimation of both water ice and more volatile material, but possibly also more exotic processes such as fracture and cliff erosion under thermal and mechanical stress, sub-surface heat storage, and a complex interplay of these processes. Seasons and the nucleus shape are key factors for the distribution and temporal evolution of activity and imply that the heliocentric evolution of activity can be highly individual for every comet, and generalisations can be misleading.}, language = {en} } @article{RousseauErardBecketal.2018, author = {Rousseau, Batiste and Erard, St{\´e}phane and Beck, P. and Quirico, Eric and Schmitt, B. and Brissaud, O. and Montes-Hernandez, G. and Capaccioni, F. and Filacchione, Gianrico and Bockelee-Morvan, Dominique and Leyrat, C. and Ciarniello, M. and Raponi, Andrea and Kappel, David and Arnold, G. and Moroz, L. V. and Palomba, Ernesto and Tosi, Federico}, title = {Laboratory simulations of the Vis-NIR spectra of comet 67P using sub-mu m sized cosmochemical analogues}, series = {Icarus : international journal of solar system studies}, volume = {306}, journal = {Icarus : international journal of solar system studies}, publisher = {Elsevier}, address = {San Diego}, organization = {VIRTIS Team}, issn = {0019-1035}, doi = {10.1016/j.icarus.2017.10.015}, pages = {306 -- 318}, year = {2018}, abstract = {Laboratory spectral measurements of relevant analogue materials were performed in the framework of the Rosetta mission in order to explain the surface spectral properties of comet 67P. Fine powders of coal, iron sulphides, silicates and their mixtures were prepared and their spectra measured in the Vis-IR range. These spectra are compared to a reference spectrum of 67P nucleus obtained with the VIRTIS/Rosetta instrument up to 2.7 mu m, excluding the organics band centred at 3.2 mu m. The species used are known to be chemical analogues for cometary materials which could be present at the surface of 67P. Grain sizes of the powders range from tens of nanometres to hundreds of micrometres. Some of the mixtures studied here actually reach the very low reflectance level observed by VIRTIS on 67P. The best match is provided by a mixture of sub-micron coal, pyrrhotite, and silicates. Grain sizes are in agreement with the sizes of the dust particles detected by the GIADA, MIDAS and COSIMA instruments on board Rosetta. The coal used in the experiment is responsible for the spectral slope in the visible and infrared ranges. Pyrrhotite, which is strongly absorbing, is responsible for the low albedo observed in the NIR. The darkest components dominate the spectra, especially within intimate mixtures. Depending on sample preparation, pyrrhotite can coat the coal and silicate aggregates. Such coating effects can affect the spectra as much as particle size. In contrast, silicates seem to play a minor role. (c) 2017 Elsevier Inc. All rights reserved.}, language = {en} } @article{HouCherstvyMetzleretal.2018, author = {Hou, Ru and Cherstvy, Andrey G. and Metzler, Ralf and Akimoto, Takuma}, title = {Biased continuous-time random walks for ordinary and equilibrium cases}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {20}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {32}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c8cp01863d}, pages = {20827 -- 20848}, year = {2018}, abstract = {We examine renewal processes with power-law waiting time distributions (WTDs) and non-zero drift via computing analytically and by computer simulations their ensemble and time averaged spreading characteristics. All possible values of the scaling exponent alpha are considered for the WTD psi(t) similar to 1/t(1+alpha). We treat continuous-time random walks (CTRWs) with 0 < alpha < 1 for which the mean waiting time diverges, and investigate the behaviour of the process for both ordinary and equilibrium CTRWs for 1 < alpha < 2 and alpha > 2. We demonstrate that in the presence of a drift CTRWs with alpha < 1 are ageing and non-ergodic in the sense of the non-equivalence of their ensemble and time averaged displacement characteristics in the limit of lag times much shorter than the trajectory length. In the sense of the equivalence of ensemble and time averages, CTRW processes with 1 < alpha < 2 are ergodic for the equilibrium and non-ergodic for the ordinary situation. Lastly, CTRW renewal processes with alpha > 2-both for the equilibrium and ordinary situation-are always ergodic. For the situations 1 < alpha < 2 and alpha > 2 the variance of the diffusion process, however, depends on the initial ensemble. For biased CTRWs with alpha > 1 we also investigate the behaviour of the ergodicity breaking parameter. In addition, we demonstrate that for biased CTRWs the Einstein relation is valid on the level of the ensemble and time averaged displacements, in the entire range of the WTD exponent alpha.}, language = {en} } @phdthesis{Keles2021, author = {Keles, Engin}, title = {Atmospheric properties and dynamics of gaseous exoplanets inferred from high-resolution alkali line transmission spectroscopy}, school = {Universit{\"a}t Potsdam}, year = {2021}, abstract = {The characterization of exoplanets applying high-resolution transmission spectroscopy ini- tiated a new era making it possible to trace atmospheric signature at high altitudes in exoplanet atmospheres and to determine atmospheric properties which enrich our under- standing of the formation and evolution of the solar system. In contrast to what is observed in our solar system, where gaseous planets orbit at wide orbits, Jupiter type exoplanets were detected in foreign stellar systems surrounding their host stars within few days, in close orbits, the so called hot- and ultra-hot Jupiters. The most well studied ones are HD209458b and HD189733b, which are the first exoplanets where absorption is detected in their atmospheres, namely from the alkali line sodium. For hot Jupiters, the resonant alkali lines are the atmospheric species with one of the strongest absorption signatures, due to their large absorption cross-section. However, al- though the alkali lines sodium and potassium were detected in low-resolution observations for various giant exoplanets, potassium was absent in different high-resolution investiga- tions in contrast to sodium. The reason for this is quite puzzling, since both alkalis have very similar physical and chemical properties (e.g. condensation and ionization proper- ties). Obtaining high-resolution transit observations of HD189733b and HD209458b, we were able to detect potassium on HD189733b (Manuscript 1), which was the first high-resolution detection of potassium on an exoplanet. The absence of potassium on HD209458b could be reasoned by depletion processes, such as condensation or photo-ionization or high-altitude clouds. In a further study (Manuscript II), we resolved the potassium line and compared this to a previously detected sodium absorption on this planet. The comparison showed, that the potassium lines are either tracing different altitudes and temperatures compared to the sodium lines, or are depleted so that the planetary Na/K- ratio is way larger than the stellar one. A comparison of the alkali lines with synthetic line profiles showed that the sodium lines were much broader than the potassium lines, probably being induced by winds. To investigate this, the effect of zonal streaming winds on the sodium lines on Jupiter-type planets is investigated in a further study (Manuscript III), showing that such winds can significantly broaden the Na- lines and that high-resolution observations can trace such winds with different properties. Furthermore, investigating the Na-line observations for different exoplanets, I showed that the Na-line broadening follows a trend with cooler planets showing stronger line broadening and so hinting on stronger winds, matching well into theoretical predictions. Each presented manuscript depends on the re- sults published within the previous manuscript, yielding a unitary study of the exoplanet HD189733b. The investigation of the potassium absorption required to account for different effects: The telluric lines removal and the effect of center-to-limb variation (see Manuscript I), the residual Rossiter-Mc-Laughlin effect (see Manuscript II) and the broadening of spectral lines on a translucent atmospheric ring by zonal jet streams (see Manuscript III). This thesis shows that high-resolution transmission spectroscopy is a powerful tool to probe sharp alkali line absorption on giant exoplanet atmospheres and to investigate on the properties and dynamics of hot Jupiter type atmospheres.}, language = {en} }