@article{KniepertPaulkePerdigonToroetal.2019, author = {Kniepert, Juliane and Paulke, Andreas and Perdig{\´o}n-Toro, Lorena and Kurpiers, Jona and Zhang, Huotian and Gao, Feng and Yuan, Jun and Zou, Yingping and Le Corre, Vincent M. and Koster, Lambert Jan Anton and Neher, Dieter}, title = {Reliability of charge carrier recombination data determined with charge extraction methods}, series = {Journal of applied physics}, volume = {126}, journal = {Journal of applied physics}, number = {20}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-8979}, doi = {10.1063/1.5129037}, pages = {15}, year = {2019}, abstract = {Charge extraction methods are popular for measuring the charge carrier density in thin film organic solar cells and to draw conclusions about the order and coefficient of nongeminate charge recombination. However, results from such studies may be falsified by inhomogeneous steady state carrier profiles or surface recombination. Here, we present a detailed drift-diffusion study of two charge extraction methods, bias-assisted charge extraction (BACE) and time-delayed collection field (TDCF). Simulations are performed over a wide range of the relevant parameters. Our simulations reveal that both charge extraction methods provide reliable information about the recombination order and coefficient if the measurements are performed under appropriate conditions. However, results from BACE measurements may be easily affected by surface recombination, in particular for small active layer thicknesses and low illumination densities. TDCF, on the other hand, is more robust against surface recombination due to its transient nature but also because it allows for a homogeneous high carrier density to be inserted into the active layer. Therefore, TDCF is capable to provide meaningful information on the order and coefficient of recombination even if the model conditions are not exactly fulfilled. We demonstrate this for an only 100 nm thick layer of a highly efficient nonfullerene acceptor (NFA) blend, comprising the donor polymer PM6 and the NFA Y6. TDCF measurements were performed as a function of delay time for different laser fluences and bias conditions. The full set of data could be consistently fitted by a strict second order recombination process, with a bias- and fluence-independent bimolecular recombination coefficient k(2) = 1.7 x 10(-17)m(3) s(-1). BACE measurements performed on the very same layer yielded the identical result, despite the very different excitation conditions. This proves that recombination in this blend is mostly through processes in the bulk and that surface recombination is of minor importance despite the small active layer thickness. Published under license by AIP Publishing.}, language = {en} } @article{FruebingKremmerGerhardetal.2006, author = {Fr{\"u}bing, Peter and Kremmer, Alexander and Gerhard, Reimund and Spanoudaki, Anna and Pissis, Polycarpos}, title = {Relaxation processes at the glass transition in polyamide 11: From rigidity to viscoelasticity}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {125}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {12}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.2360266}, pages = {8}, year = {2006}, abstract = {Relaxation processes associated with the glass transition in nonferroelectric and ferroelectric polyamide (PA) 11 are investigated by means of differential scanning calorimetry, dynamic mechanical analysis, and dielectric relaxation spectroscopy (DRS) in order to obtain information about the molecular mobility within the amorphous phase. In particular, the effects of melt quenching, cold drawing, and annealing just below the melting region are studied with respect to potential possibilities and limitations for improving the piezoelectric and pyroelectric properties of PA 11. A relaxation map is obtained from DRS that shows especially the crossover region where the cooperative alpha relaxation and the local beta relaxation merge into a single high-temperature process. No fundamental difference between quenched, cold-drawn, and annealed films is found, though in the cold-drawn (ferroelectric) film the alpha relaxation is suppressed and slowed down, but it is at least partly recovered by subsequent annealing. It is concluded that there exists an amorphous phase in all structures, even in the cold-drawn film. The amorphous phase can be more rigid or more viscoelastic depending on preparation. Cold drawing not only leads to crystallization in a ferroelectric form but also to higher rigidity of the remaining amorphous phase. Annealing just below the melting region after cold drawing causes a stronger phase separation between the crystalline phase and a more viscoelastic amorphous phase.}, language = {en} } @article{RamanVenkatesanGulyakovaFruebingetal.2018, author = {Raman Venkatesan, Thulasinath and Gulyakova, Anna A. and Fr{\"u}bing, Peter and Gerhard, Reimund}, title = {Relaxation processes and structural transitions in poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) relaxor-ferroelectric terpolymers as seen in dielectric spectroscopy}, series = {IEEE transactions on dielectrics and electrical insulation}, volume = {25}, journal = {IEEE transactions on dielectrics and electrical insulation}, number = {6}, publisher = {Institut of Electrical and Electronics Engineers}, address = {Piscataway}, issn = {1070-9878}, doi = {10.1109/TDEI.2018.007440}, pages = {2229 -- 2235}, year = {2018}, abstract = {Dielectric relaxation processes and structural transitions in Poly(vinylidenefluoride-trifluoroethylene-chlorofluoroethylene) (P(VDF-TrFE-CFE)) terpolymer films with two different monomer compositions were investigated in comparison with Poly(vinylidenefluoride-trifluoroethylene) (P(VDF-TrFE)) copolymer films as reference material. Differential Scanning Calorimetry was employed to assess annealing effects on phase transitions and crystalline structure, while relaxation processes were investigated by means of Dielectric Relaxation Spectroscopy, the results of which indicate the existence of two separate dispersion regions, denoted as processes A and B, respectively. Process A appears at a certain temperature independent of frequency, but is strongly influenced by the crystallisation temperature and the CFE content, while peak B shows typical features of a relaxation process and is less influenced by crystallisation temperature and CFE content. Furthermore, peak B is related to the glass transition which is more pronounced in the terpolymer than in P(VDF-TrFE). A closer analysis indicates that the addition of CFE and thermal annealing gradually shift the ferro-to-paraelectric transition in P(VDF-TrFE) to lower temperatures, while the phase transition is transformed more and more into a relaxation.}, language = {en} } @article{ChechkinSokolov2021, author = {Chechkin, Aleksei V. and Sokolov, Igor M.}, title = {Relation between generalized diffusion equations and subordination schemes}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {103}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {3}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.103.032133}, pages = {10}, year = {2021}, abstract = {Generalized (non-Markovian) diffusion equations with different memory kernels and subordination schemes based on random time change in the Brownian diffusion process are popular mathematical tools for description of a variety of non-Fickian diffusion processes in physics, biology, and earth sciences. Some of such processes (notably, the fluid limits of continuous time random walks) allow for either kind of description, but other ones do not. In the present work we discuss the conditions under which a generalized diffusion equation does correspond to a subordination scheme, and the conditions under which a subordination scheme does possess the corresponding generalized diffusion equation. Moreover, we discuss examples of random processes for which only one, or both kinds of description are applicable.}, language = {en} } @article{KrylovDylovRosenblum2020, author = {Krylov, Dmitrii and Dylov, Dmitry V. and Rosenblum, Michael}, title = {Reinforcement learning for suppression of collective activity in oscillatory ensembles}, series = {Chaos : an interdisciplinary journal of nonlinear science}, volume = {30}, journal = {Chaos : an interdisciplinary journal of nonlinear science}, number = {3}, publisher = {American Institute of Physics}, address = {Melville}, issn = {1054-1500}, doi = {10.1063/1.5128909}, pages = {10}, year = {2020}, abstract = {We present the use of modern machine learning approaches to suppress self-sustained collective oscillations typically signaled by ensembles of degenerative neurons in the brain. The proposed hybrid model relies on two major components: an environment of oscillators and a policy-based reinforcement learning block. We report a model-agnostic synchrony control based on proximal policy optimization and two artificial neural networks in an Actor-Critic configuration. A class of physically meaningful reward functions enabling the suppression of collective oscillatory mode is proposed. The synchrony suppression is demonstrated for two models of neuronal populations-for the ensembles of globally coupled limit-cycle Bonhoeffer-van der Pol oscillators and for the bursting Hindmarsh-Rose neurons using rectangular and charge-balanced stimuli.}, language = {en} } @phdthesis{Mientus2023, author = {Mientus, Lukas}, title = {Reflexion und Reflexivit{\"a}t}, doi = {10.25932/publishup-61000}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-610003}, school = {Universit{\"a}t Potsdam}, pages = {121}, year = {2023}, abstract = {Reflexion gilt in der Lehrkr{\"a}ftebildung als eine Schl{\"u}sselkategorie der professionellen Entwicklung. Entsprechend wird auf vielf{\"a}ltige Weise die Qualit{\"a}t reflexionsbezogener Kompetenzen untersucht. Eine Herausforderung hierbei kann in der Annahme bestehen, von der Analyse schriftlicher Reflexionen unmittelbar auf die Reflexivit{\"a}t einer Person zu schließen, da Reflexion stets kontextspezifisch als Abbild reflexionsbezogener Argumentationsprozesse angesehen werden sollte und reflexionsbezogenen Dispositionen unterliegt. Auch kann die Qualit{\"a}t einer Reflexion auf mehreren Dimensionen bewertet werden, ohne quantifizierbare, absolute Aussagen treffen zu k{\"o}nnen. Daher wurden im Rahmen einer Physik-Videovignette N = 134 schriftliche Fremdreflexionen verfasst und kontextspezifische reflexionsbezogene Dispositionen erhoben. Expert*innen erstellten theoriegeleitet Qualit{\"a}tsbewertungen zur Breite, Tiefe, Koh{\"a}renz und Spezifit{\"a}t eines jeden Reflexionstextes. Unter Verwendung computerbasierter Klassifikations- und Analyseverfahren wurden weitere Textmerkmale erhoben. Mittels explorativer Faktorenanalyse konnten die Faktoren Qualit{\"a}t, Quantit{\"a}t und Deskriptivit{\"a}t gefunden werden. Da alle konventionell eingesch{\"a}tzten Qualit{\"a}tsbewertungen durch einen Faktor repr{\"a}sentiert wurden, konnte ein maximales Qualit{\"a}tskorrelat kalkuliert werden, zu welchem jede schriftliche Fremdreflexion im Rahmen der vorliegenden Vignette eine computerbasiert bestimmbare Distanz aufweist. Diese Distanz zum maximalen Qualit{\"a}tskorrelat konnte validiert werden und kann die Qualit{\"a}t der schriftlichen Reflexionen unabh{\"a}ngig von menschlichen Ressourcen quantifiziert repr{\"a}sentieren. Abschließend konnte identifiziert werden, dass ausgew{\"a}hlte Dispositionen in unterschiedlichem Maße mit der Reflexionsqualit{\"a}t zusammenh{\"a}ngen. So konnten beispielsweise bezogen auf das Physik-Fachwissen minimale Zusammenh{\"a}nge identifiziert werden, wohingegen Werthaltung sowie wahrgenommene Unterrichtsqualit{\"a}t eng mit der Qualit{\"a}t einer schriftlichen Reflexion in Verbindung stehen k{\"o}nnen. Es wird geschlussfolgert, dass reflexionsbezogene Dispositionen moderierenden Einfluss auf Reflexionen nehmen k{\"o}nnen. Es wird empfohlen bei der Erhebung von Reflexion mit dem Ziel der Kompetenzmessung ausgew{\"a}hlte Dispositionen mit zu erheben. Weiter verdeutlicht diese Arbeit die M{\"o}glichkeit, aussagekr{\"a}ftige Quantifizierungen auch in der Analyse komplexer Konstrukte vorzunehmen. Durch computerbasierte Qualit{\"a}tsabsch{\"a}tzungen k{\"o}nnen objektive und individuelle Analysen und differenzierteres automatisiertes Feedback erm{\"o}glicht werden.}, language = {de} } @article{WaldripNivenAbeletal.2017, author = {Waldrip, S. H. and Niven, Robert K. and Abel, Markus and Schlegel, M.}, title = {Reduced-Parameter Method for Maximum Entropy Analysis of Hydraulic Pipe Flow Networks}, series = {Journal of hydraulic engineering}, volume = {144}, journal = {Journal of hydraulic engineering}, number = {2}, publisher = {American Society of Civil Engineers}, address = {Reston}, issn = {0733-9429}, doi = {10.1061/(ASCE)HY.1943-7900.0001379}, pages = {10}, year = {2017}, abstract = {A maximum entropy (MaxEnt) method is developed to predict flow rates or pressure gradients in hydraulic pipe networks without sufficient information to give a closed-form (deterministic) solution. This methodology substantially extends existing deterministic flow network analysis methods. It builds on the MaxEnt framework previously developed by the authors. This study uses a continuous relative entropy defined on a reduced parameter set, here based on the external flow rates. This formulation ensures consistency between different representations of the same network. The relative entropy is maximized subject to observable constraints on the mean values of a subset of flow rates or potential differences, the frictional properties of each pipe, and physical constraints arising from Kirchhoff's first and second laws. The new method is demonstrated by application to a simple one-loop network and a 1,123-node, 1,140-pipe water distribution network in the suburb of Torrens, Australian Capital Territory, Australia.}, language = {en} } @phdthesis{Clodong2004, author = {Clodong, S{\´e}bastien}, title = {Recurrent outbreaks in ecology : chaotic dynamics in complex networks}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001626}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {Gegenstand der Dissertation ist die Untersuchung von wiederkehrenden Ausbr{\"u}chen (wie z.B. Epidemien) in der Natur. Dies gelang anhand von Modellen, die die Dynamik von Phytoplankton und die Ausbreitung von Krankheiten zwischen St{\"a}dten beschreiben. Diese beide Systeme bilden hervorragende Beispiele f{\"u}r solche Ph{\"a}nomene. Die Frage, ob die in der Zeit wiederkehrenden Ausbr{\"u}che ein Ausdruck chaotischer Dynamik sein k{\"o}nnen, ist aktuell in der {\"O}kologie und fasziniert Wissenschaftler dieser Disziplin. Wir konnten zeigen, dass sich das Plankton-Modell im Falle von periodischem Antreiben {\"u}ber die N{\"a}hrstoffe in einem chaotischen Regime befindet. Diese Dynamik wurde als die komplexe Wechselwirkung zweier Oszillatoren verstanden. Ebenfalls wurde die Ausbreitung von Epidemien in Netzwerken wechselwirkender St{\"a}dte mit unterschiedlichen Gr{\"o}ssen untersucht. Daf{\"u}r wurde zun{\"a}chst die Kopplung zwischen zwei St{\"a}dten als Verh{\"a}ltnis der Stadtgr{\"o}ssen eingef{\"u}hrt. Es konnte gezeigt werden, dass das System sich in einem globalen zweij{\"a}hrigen Zyklus, der auch in den realen Daten beobachtet wird, befinden kann. Der Effekt von Heterogenit{\"a}t in der Gr{\"o}sseverteilung ist durch gewichtete Kopplung von generischen Modellen (Zelt- und Logistische Abbildung) in Netzwerken im Detail untersucht worden. Eine neue Art von Kopplungsfunktion mit nichtlinearer S{\"a}ttigung wurde eingef{\"u}hrt, um die Stabilit{\"a}t des Systems zu gew{\"a}hrleisten. Diese Kopplung beinhaltet einen Parameter, der es erlaubt, die Netzwerktopologie von globaler Kopplung in gerichtete Netzwerke gleichm{\"a}ssig umzuwandeln. Die Dynamik des Systems wurde anhand von Bifurkationsdiagrammen untersucht. Zum Verst{\"a}ndnis dieser Dynamik wurde eine effektive Theorie, die die beobachteten Bifurkationen sehr gut nachahmt, entwickelt.}, language = {en} } @phdthesis{Braun2023, author = {Braun, Tobias}, title = {Recurrences in past climates}, doi = {10.25932/publishup-58690}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-586900}, school = {Universit{\"a}t Potsdam}, pages = {xxviii, 251}, year = {2023}, abstract = {Our ability to predict the state of a system relies on its tendency to recur to states it has visited before. Recurrence also pervades common intuitions about the systems we are most familiar with: daily routines, social rituals and the return of the seasons are just a few relatable examples. To this end, recurrence plots (RP) provide a systematic framework to quantify the recurrence of states. Despite their conceptual simplicity, they are a versatile tool in the study of observational data. The global climate is a complex system for which an understanding based on observational data is not only of academical relevance, but vital for the predurance of human societies within the planetary boundaries. Contextualizing current global climate change, however, requires observational data far beyond the instrumental period. The palaeoclimate record offers a valuable archive of proxy data but demands methodological approaches that adequately address its complexities. In this regard, the following dissertation aims at devising novel and further developing existing methods in the framework of recurrence analysis (RA). The proposed research questions focus on using RA to capture scale-dependent properties in nonlinear time series and tailoring recurrence quantification analysis (RQA) to characterize seasonal variability in palaeoclimate records ('Palaeoseasonality'). In the first part of this thesis, we focus on the methodological development of novel approaches in RA. The predictability of nonlinear (palaeo)climate time series is limited by abrupt transitions between regimes that exhibit entirely different dynamical complexity (e.g. crossing of 'tipping points'). These possibly depend on characteristic time scales. RPs are well-established for detecting transitions and capture scale-dependencies, yet few approaches have combined both aspects. We apply existing concepts from the study of self-similar textures to RPs to detect abrupt transitions, considering the most relevant time scales. This combination of methods further results in the definition of a novel recurrence based nonlinear dependence measure. Quantifying lagged interactions between multiple variables is a common problem, especially in the characterization of high-dimensional complex systems. The proposed 'recurrence flow' measure of nonlinear dependence offers an elegant way to characterize such couplings. For spatially extended complex systems, the coupled dynamics of local variables result in the emergence of spatial patterns. These patterns tend to recur in time. Based on this observation, we propose a novel method that entails dynamically distinct regimes of atmospheric circulation based on their recurrent spatial patterns. Bridging the two parts of this dissertation, we next turn to methodological advances of RA for the study of Palaeoseasonality. Observational series of palaeoclimate 'proxy' records involve inherent limitations, such as irregular temporal sampling. We reveal biases in the RQA of time series with a non-stationary sampling rate and propose a correction scheme. In the second part of this thesis, we proceed with applications in Palaeoseasonality. A review of common and promising time series analysis methods shows that numerous valuable tools exist, but their sound application requires adaptions to archive-specific limitations and consolidating transdisciplinary knowledge. Next, we study stalagmite proxy records from the Central Pacific as sensitive recorders of mid-Holocene El Ni{\~n}o-Southern Oscillation (ENSO) dynamics. The records' remarkably high temporal resolution allows to draw links between ENSO and seasonal dynamics, quantified by RA. The final study presented here examines how seasonal predictability could play a role for the stability of agricultural societies. The Classic Maya underwent a period of sociopolitical disintegration that has been linked to drought events. Based on seasonally resolved stable isotope records from Yok Balum cave in Belize, we propose a measure of seasonal predictability. It unveils the potential role declining seasonal predictability could have played in destabilizing agricultural and sociopolitical systems of Classic Maya populations. The methodological approaches and applications presented in this work reveal multiple exciting future research avenues, both for RA and the study of Palaeoseasonality.}, language = {en} } @phdthesis{Thiel2004, author = {Thiel, Marco}, title = {Recurrences : exploiting naturally occurring analogues}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001633}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {In der vorliegenden Arbeit wird die Wiederkehr im Phasenraum ausgenutzt. Dabei werden drei Hauptresultate besprochen. 1. Die Wiederkehr erlaubt die Vorhersagbarkeit des Systems zu quantifizieren. 2. Die Wiederkehr enthaelt (unter bestimmten Voraussetzungen) s{\"a}mtliche relevante Information {\"u}ber die Dynamik im Phasenraum 3. Die Wiederkehr erlaubt die Erzeugung dynamischer Ersatzdaten.}, language = {en} } @article{AssmannThielRomanoetal.2006, author = {Assmann, Birte and Thiel, Marco and Romano, Maria Carmen and Niemitz, Carsten}, title = {Recurrence plot analyses suggest a novel reference system involved in newborn spontaneous movements}, series = {Behavior research methods : a journal of the Psychonomic Society}, volume = {38}, journal = {Behavior research methods : a journal of the Psychonomic Society}, number = {3}, publisher = {Springer}, address = {New York}, issn = {1554-351X}, doi = {10.3758/BF03192793}, pages = {400 -- 406}, year = {2006}, abstract = {The movements of newborns have been thoroughly studied in terms of reflexes, muscle synergies, leg coordination, and target-directed arm/hand movements. Since these approaches have concentrated mainly on separate accomplishments, there has remained a clear need for more integrated investigations. Here, we report an inquiry in which we explicitly concentrated on taking such a perspective and, additionally, were guided by the methodological concept of home base behavior, which Ilan Golard developed for studies of exploratory behavior in animals. Methods from nonlinear dynamics, such as symbolic dynamics and recurrence plot analyses of kinematic data received from audiovisual newborn recordings, yielded new insights into the spatial and temporal organization of limb movements. In the framework of home base behavior, our approach uncovered a novel reference system of spontaneous newborn movements.}, language = {en} } @article{RamosBuilesJaramilloPovedaetal.2017, author = {Ramos, Antonio M. T. and Builes-Jaramillo, Alejandro and Poveda, German and Goswami, Bedartha and Macau, Elbert E. N. and Kurths, J{\"u}rgen and Marwan, Norbert}, title = {Recurrence measure of conditional dependence and applications}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {95}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.95.052206}, pages = {8}, year = {2017}, abstract = {Identifying causal relations from observational data sets has posed great challenges in data-driven causality inference studies. One of the successful approaches to detect direct coupling in the information theory framework is transfer entropy. However, the core of entropy-based tools lies on the probability estimation of the underlying variables. Herewe propose a data-driven approach for causality inference that incorporates recurrence plot features into the framework of information theory. We define it as the recurrence measure of conditional dependence (RMCD), and we present some applications. The RMCD quantifies the causal dependence between two processes based on joint recurrence patterns between the past of the possible driver and present of the potentially driven, excepting the contribution of the contemporaneous past of the driven variable. Finally, it can unveil the time scale of the influence of the sea-surface temperature of the Pacific Ocean on the precipitation in the Amazonia during recent major droughts.}, language = {en} } @misc{WeberBahrsAlirezaeizanjanietal.2019, author = {Weber, Ariane and Bahrs, Marco and Alirezaeizanjani, Zahra and Zhang, Xingyu and Beta, Carsten and Zaburdaev, Vasily}, title = {Rectification of Bacterial Diffusion in Microfluidic Labyrinths}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {801}, issn = {1866-8372}, doi = {10.25932/publishup-44122}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-441222}, pages = {11}, year = {2019}, abstract = {In nature as well as in the context of infection and medical applications, bacteria often have to move in highly complex environments such as soil or tissues. Previous studies have shown that bacteria strongly interact with their surroundings and are often guided by confinements. Here, we investigate theoretically how the dispersal of swimming bacteria can be augmented by microfluidic environments and validate our theoretical predictions experimentally. We consider a system of bacteria performing the prototypical run-and-tumble motion inside a labyrinth with square lattice geometry. Narrow channels between the square obstacles limit the possibility of bacteria to reorient during tumbling events to an area where channels cross. Thus, by varying the geometry of the lattice it might be possible to control the dispersal of cells. We present a theoretical model quantifying diffusive spreading of a run-and-tumble random walker in a square lattice. Numerical simulations validate our theoretical predictions for the dependence of the diffusion coefficient on the lattice geometry. We show that bacteria moving in square labyrinths exhibit enhanced dispersal as compared to unconfined cells. Importantly, confinement significantly extends the duration of the phase with strongly non-Gaussian diffusion, when the geometry of channels is imprinted in the density profiles of spreading cells. Finally, in good agreement with our theoretical findings, we observe the predicted behaviors in experiments with E. coli bacteria swimming in a square lattice labyrinth created in amicrofluidic device. Altogether, our comprehensive understanding of bacterial dispersal in a simple two-dimensional labyrinth makes the first step toward the analysis of more complex geometries relevant for real world applications.}, language = {en} } @article{WeberBahrsAlirezaeizanjanietal.2019, author = {Weber, Ariane and Bahrs, Marco and Alirezaeizanjani, Zahra and Zhang, Xingyu and Beta, Carsten and Zaburdaev, Vasily}, title = {Rectification of Bacterial Diffusion in Microfluidic Labyrinths}, series = {Frontiers in Physics}, volume = {7}, journal = {Frontiers in Physics}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-424X}, doi = {10.3389/fphy.2019.00148}, pages = {11}, year = {2019}, abstract = {In nature as well as in the context of infection and medical applications, bacteria often have to move in highly complex environments such as soil or tissues. Previous studies have shown that bacteria strongly interact with their surroundings and are often guided by confinements. Here, we investigate theoretically how the dispersal of swimming bacteria can be augmented by microfluidic environments and validate our theoretical predictions experimentally. We consider a system of bacteria performing the prototypical run-and-tumble motion inside a labyrinth with square lattice geometry. Narrow channels between the square obstacles limit the possibility of bacteria to reorient during tumbling events to an area where channels cross. Thus, by varying the geometry of the lattice it might be possible to control the dispersal of cells. We present a theoretical model quantifying diffusive spreading of a run-and-tumble random walker in a square lattice. Numerical simulations validate our theoretical predictions for the dependence of the diffusion coefficient on the lattice geometry. We show that bacteria moving in square labyrinths exhibit enhanced dispersal as compared to unconfined cells. Importantly, confinement significantly extends the duration of the phase with strongly non-Gaussian diffusion, when the geometry of channels is imprinted in the density profiles of spreading cells. Finally, in good agreement with our theoretical findings, we observe the predicted behaviors in experiments with E. coli bacteria swimming in a square lattice labyrinth created in amicrofluidic device. Altogether, our comprehensive understanding of bacterial dispersal in a simple two-dimensional labyrinth makes the first step toward the analysis of more complex geometries relevant for real world applications.}, language = {en} } @article{MeyerVelazquezPetruketal.2022, author = {Meyer, Dominique M.-A. and Velazquez, Pablo F. and Petruk, Oleh and Chiotellis, Alexandros and Pohl, Martin and Camps-Farina, Artemi and Petrov, Miroslav and Reynoso, Estela M. and Toledo-Roy, Juan C. and Schneiter, E. Matias and Castellanos-Ramirez, Antonio and Esquivel, Alejandro}, title = {Rectangular core-collapse supernova remnants}, series = {Monthly notices of the Royal Astronomical Society}, volume = {515}, journal = {Monthly notices of the Royal Astronomical Society}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stac1832}, pages = {594 -- 605}, year = {2022}, abstract = {Core-collapse supernova remnants are the gaseous nebulae of galactic interstellar media (ISM) formed after the explosive death of massive stars. Their morphology and emission properties depend both on the surrounding circumstellar structure shaped by the stellar wind-ISM interaction of the progenitor star and on the local conditions of the ambient medium. In the warm phase of the Galactic plane (n approximate to 1 cm(-3), T approximate to 8000 K), an organized magnetic field of strength 7 mu G has profound consequences on the morphology of the wind bubble of massive stars at rest. In this paper, we show through 2.5D magnetohydrodynamical simulations, in the context of a Wolf-Rayet-evolving 35 M 0 star, that it affects the development of its supernova remnant. When the supernova remnant reaches its middle age (15-20 kyr), it adopts a tubular shape that results from the interaction between the isotropic supernova ejecta and the anisotropic, magnetized, shocked stellar progenitor bubble into which the supernova blast wave expands. Our calculations for non-thermal emission, i.e. radio synchrotron and inverse-Compton radiation, reveal that such supernova remnants can, due to projection effects, appear as rectangular objects in certain cases. This mechanism for shaping a supernova remnant is similar to the bipolar and elliptical planetary nebula production by wind-wind interaction in the low-mass regime of stellar evolution. If such a rectangular core-collapse supernova remnant is created, the progenitor star must not have been a runaway star. We propose that such a mechanism is at work in the shaping of the asymmetric core-collapse supernova remnant Puppis A.}, language = {en} } @unpublished{VossKurthsSchwarz1996, author = {Voss, Henning and Kurths, J{\"u}rgen and Schwarz, Udo}, title = {Reconstruction of grand minima of solar activity from Delta 14 C data : linear and nonlinear signal analysis}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-14083}, year = {1996}, abstract = {Using a special technique of data analysis, we have found out 34 grand minima of solar activity obtained from a 7,700 years long Δ14C record. The method used rests on a proper filtering of the Δ14C record and the extrapolation of verifiable results for the later history back in time. Additionally, we use a method of nonlinear dynamics, the recurrence rate, to back up the results. Our findings are not contradictory to the record of solar maxima resp. minima by Eddy [5], but constitute a considerable extension. Hence, it has become possible to look closer at the validity of models. This way, we have tested several models for solar activity, esp. the model of Barnes et al. [1]. There are hints for that the grand minima might solely be driven by the 209 year period found in the Δ14C record.}, language = {en} } @article{SysoevPonomarenkoPikovskij2017, author = {Sysoev, Ilya V. and Ponomarenko, Vladimir I. and Pikovskij, Arkadij}, title = {Reconstruction of coupling architecture of neural field networks from vector time series}, series = {Communications in nonlinear science \& numerical simulation}, volume = {57}, journal = {Communications in nonlinear science \& numerical simulation}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1007-5704}, doi = {10.1016/j.cnsns.2017.10.006}, pages = {342 -- 351}, year = {2017}, abstract = {We propose a method of reconstruction of the network coupling matrix for a basic voltage-model of the neural field dynamics. Assuming that the multivariate time series of observations from all nodes are available, we describe a technique to find coupling constants which is unbiased in the limit of long observations. Furthermore, the method is generalized for reconstruction of networks with time-delayed coupling, including the reconstruction of unknown time delays. The approach is compared with other recently proposed techniques.}, language = {en} } @article{Pikovskij2018, author = {Pikovskij, Arkadij}, title = {Reconstruction of a random phase dynamics network from observations}, series = {Physics letters : A}, volume = {382}, journal = {Physics letters : A}, number = {4}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0375-9601}, doi = {10.1016/j.physleta.2017.11.012}, pages = {147 -- 152}, year = {2018}, abstract = {We consider networks of coupled phase oscillators of different complexity: Kuramoto-Daido-type networks, generalized Winfree networks, and hypernetworks with triple interactions. For these setups an inverse problem of reconstruction of the network connections and of the coupling function from the observations of the phase dynamics is addressed. We show how a reconstruction based on the minimization of the squared error can be implemented in all these cases. Examples include random networks with full disorder both in the connections and in the coupling functions, as well as networks where the coupling functions are taken from experimental data of electrochemical oscillators. The method can be directly applied to asynchronous dynamics of units, while in the case of synchrony, additional phase resettings are necessary for reconstruction.}, language = {en} } @article{YazmaciyanStolterfohtBurnetal.2018, author = {Yazmaciyan, Aren and Stolterfoht, Martin and Burn, Paul L. and Lin, Qianqian and Meredith, Paul and Armin, Ardalan}, title = {Recombination losses above and below the transport percolation threshold in bulk heterojunction organic solar cells}, series = {Advanced energy materials}, volume = {8}, journal = {Advanced energy materials}, number = {18}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.201703339}, pages = {8}, year = {2018}, abstract = {Achieving the highest power conversion efficiencies in bulk heterojunction organic solar cells requires a morphology that delivers electron and hole percolation pathways for optimized transport, plus sufficient donor:acceptor contact area for near unity charge transfer state formation. This is a significant structural challenge, particularly in semiconducting polymer:fullerene systems. This balancing act in the model high efficiency PTB7:PC70BM blend is studied by tuning the donor:acceptor ratio, with a view to understanding the recombination loss mechanisms above and below the fullerene transport percolation threshold. The internal quantum efficiency is found to be strongly correlated to the slower carrier mobility in agreement with other recent studies. Furthermore, second-order recombination losses dominate the shape of the current density-voltage curve in efficient blend combinations, where the fullerene phase is percolated. However, below the charge transport percolation threshold, there is an electric-field dependence of first-order losses, which includes electric-field-dependent photogeneration. In the intermediate regime, the fill factor appears to be limited by both first- and second-order losses. These findings provide additional basic understanding of the interplay between the bulk heterojunction morphology and the order of recombination in organic solar cells. They also shed light on the limitations of widely used transport models below the percolation threshold.}, language = {en} } @article{WuerfelPerdigonToroKurpiersetal.2019, author = {W{\"u}rfel, Uli and Perdig{\´o}n-Toro, Lorena and Kurpiers, Jona and Wolff, Christian Michael and Caprioglio, Pietro and Rech, Jeromy James and Zhu, Jingshuai and Zhan, Xiaowei and You, Wei and Shoaee, Safa and Neher, Dieter and Stolterfoht, Martin}, title = {Recombination between Photogenerated and Electrode-Induced Charges Dominates the Fill Factor Losses in Optimized Organic Solar Cells}, series = {The journal of physical chemistry letters}, volume = {10}, journal = {The journal of physical chemistry letters}, number = {12}, publisher = {American Chemical Society}, address = {Washington}, issn = {1948-7185}, doi = {10.1021/acs.jpclett.9b01175}, pages = {3473 -- 3480}, year = {2019}, abstract = {Charge extraction in organic solar cells (OSCs) is commonly believed to be limited by bimolecular recombination of photogenerated charges. However, the fill factor of OSCs is usually almost entirely governed by recombination processes that scale with the first order of the light intensity. This linear loss was often interpreted to be a consequence of geminate or trap-assisted recombination. Numerical simulations show that this linear dependence is a direct consequence of the large amount of excess dark charge near the contact. The first-order losses increase with decreasing mobility of minority carriers, and we discuss the impact of several material and device parameters on this loss mechanism. This work highlights that OSCs are especially vulnerable to injected charges as a result of their poor charge transport properties. This implies that dark charges need to be better accounted for when interpreting electro-optical measurements and charge collection based on simple figures of merit.}, language = {en} } @article{LiuVazdaCruzPolyutovetal.2019, author = {Liu, Ji-Cai and Vaz da Cruz, Vinicius and Polyutov, Sergey and F{\"o}hlisch, Alexander}, title = {Recoil-induced dissociation in hard-x-ray photoionization}, series = {Physical review : A, Atomic, molecular, and optical physics}, volume = {100}, journal = {Physical review : A, Atomic, molecular, and optical physics}, number = {5}, publisher = {American Physical Society}, address = {College Park}, issn = {2469-9926}, doi = {10.1103/PhysRevA.100.053408}, pages = {7}, year = {2019}, abstract = {We predict the recoil-induced molecular dissociation in hard-x-ray photoionization. The recoil effect is caused by electronic and photon momentum exchange with the molecule. We show the strong role of relativistic effects for the studied molecular fragmentation. The recoil-induced fragmentation of the molecule is caused by elongation of the bond due to the vibrational recoil effect and because of the centrifugal force caused by the rotational recoil. The calculations of the x-ray photoelectron spectra of the H-2 and NO molecules show that the predicted effects can be observed in high-energy synchrotrons like SOLEIL, SPring-8, PETRA, and XFEL SACLA. The relativistic effect enhances the recoil momentum transfer and makes it strongly sensitive to the direction of ejection of the fast photoelectron with respect to the photon momentum.}, language = {en} } @misc{ZeuschnerMatternPudelletal.2021, author = {Zeuschner, Steffen Peer and Mattern, Maximilian and Pudell, Jan-Etienne and Reppert, Alexander von and R{\"o}ssle, Matthias and Leitenberger, Wolfram and Schwarzkopf, Jutta and Boschker, Jos and Herzog, Marc and Bargheer, Matias}, title = {Reciprocal space slicing}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1137}, issn = {1866-8372}, doi = {10.25932/publishup-49976}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-499761}, pages = {13}, year = {2021}, abstract = {An experimental technique that allows faster assessment of out-of-plane strain dynamics of thin film heterostructures via x-ray diffraction is presented. In contrast to conventional high-speed reciprocal space-mapping setups, our approach reduces the measurement time drastically due to a fixed measurement geometry with a position-sensitive detector. This means that neither the incident (ω) nor the exit (2θ) diffraction angle is scanned during the strain assessment via x-ray diffraction. Shifts of diffraction peaks on the fixed x-ray area detector originate from an out-of-plane strain within the sample. Quantitative strain assessment requires the determination of a factor relating the observed shift to the change in the reciprocal lattice vector. The factor depends only on the widths of the peak along certain directions in reciprocal space, the diffraction angle of the studied reflection, and the resolution of the instrumental setup. We provide a full theoretical explanation and exemplify the concept with picosecond strain dynamics of a thin layer of NbO2.}, language = {en} } @article{ZeuschnerMatternPudelletal.2021, author = {Zeuschner, Steffen Peer and Mattern, Maximilian and Pudell, Jan-Etienne and Reppert, Alexander von and R{\"o}ssle, Matthias and Leitenberger, Wolfram and Schwarzkopf, Jutta and Boschker, Jos and Herzog, Marc and Bargheer, Matias}, title = {Reciprocal space slicing}, series = {Structural dynamics}, volume = {8}, journal = {Structural dynamics}, number = {1}, publisher = {AIP Publishing LLC}, address = {Melville, NY}, issn = {2329-7778}, doi = {10.1063/4.0000040}, pages = {10}, year = {2021}, abstract = {An experimental technique that allows faster assessment of out-of-plane strain dynamics of thin film heterostructures via x-ray diffraction is presented. In contrast to conventional high-speed reciprocal space-mapping setups, our approach reduces the measurement time drastically due to a fixed measurement geometry with a position-sensitive detector. This means that neither the incident (ω) nor the exit (2θ) diffraction angle is scanned during the strain assessment via x-ray diffraction. Shifts of diffraction peaks on the fixed x-ray area detector originate from an out-of-plane strain within the sample. Quantitative strain assessment requires the determination of a factor relating the observed shift to the change in the reciprocal lattice vector. The factor depends only on the widths of the peak along certain directions in reciprocal space, the diffraction angle of the studied reflection, and the resolution of the instrumental setup. We provide a full theoretical explanation and exemplify the concept with picosecond strain dynamics of a thin layer of NbO2.}, language = {en} } @article{HaeneBruehwilerEckeretal.2019, author = {Haene, Janick and Bruehwiler, Dominik and Ecker, Achim and Hass, Roland}, title = {Real-time inline monitoring of zeolite synthesis by Photon Density Wave spectroscopy}, series = {Microporous and mesoporous materials : zeolites, clays, carbons and related materials}, volume = {288}, journal = {Microporous and mesoporous materials : zeolites, clays, carbons and related materials}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1387-1811}, doi = {10.1016/j.micromeso.2019.109580}, pages = {6}, year = {2019}, abstract = {The formation process of zeolite A (Linde Type A) was monitored inline at 1.5 L scale by Photon Density Wave (PDW) spectroscopy as novel process analytical technology for highly turbid liquid suspensions. As a result, the reduced scattering coefficient, being a measure for particle number, size, and morphology, provides distinct process information, including the formation of amorphous particles and their transfer into crystalline zeolite structures. The onset and end of the crystallization process can be detected inline and in real-time. Analyses by powder X-ray diffraction and electron microscopy, based on a sampling approach, support the interpretation of the results obtained by PDW spectroscopy. In addition, the influence of the molar water content was investigated, indicating a linear increase of the time needed to reach the end of the zeolite A crystallization with increasing molar water content. Further experiments indicate a strong influence of the silica source on the course of the crystallization. The applicability of PDW spectroscopy under even more demanding chemical and physical conditions was investigated by monitoring the synthesis of zeolite L (Linde Type L).}, language = {en} } @article{MetzlerBauerRasmussenetal.2015, author = {Metzler, Ralf and Bauer, Maximilian and Rasmussen, Emil S. and Lomholt, Michael A.}, title = {Real sequence effects on the search dynamics of transcription factors on DNA}, series = {Scientific Reports}, volume = {5}, journal = {Scientific Reports}, number = {10072}, publisher = {Nature Publishing Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/srep10072}, year = {2015}, abstract = {Recent experiments show that transcription factors (TFs) indeed use the facilitated diffusion mechanism to locate their target sequences on DNA in living bacteria cells: TFs alternate between sliding motion along DNA and relocation events through the cytoplasm. From simulations and theoretical analysis we study the TF-sliding motion for a large section of the DNA-sequence of a common E. coli strain, based on the two-state TF-model with a fast-sliding search state and a recognition state enabling target detection. For the probability to detect the target before dissociating from DNA the TF-search times self-consistently depend heavily on whether or not an auxiliary operator (an accessible sequence similar to the main operator) is present in the genome section. Importantly, within our model the extent to which the interconversion rates between search and recognition states depend on the underlying nucleotide sequence is varied. A moderate dependence maximises the capability to distinguish between the main operator and similar sequences. Moreover, these auxiliary operators serve as starting points for DNA looping with the main operator, yielding a spectrum of target detection times spanning several orders of magnitude. Auxiliary operators are shown to act as funnels facilitating target detection by TFs.}, language = {en} } @misc{MetzlerBauerRasmussenetal.2015, author = {Metzler, Ralf and Bauer, Maximilian and Rasmussen, Emil S. and Lomholt, Michael A.}, title = {Real sequence effects on the search dynamics of transcription factors on DNA}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-79411}, year = {2015}, abstract = {Recent experiments show that transcription factors (TFs) indeed use the facilitated diffusion mechanism to locate their target sequences on DNA in living bacteria cells: TFs alternate between sliding motion along DNA and relocation events through the cytoplasm. From simulations and theoretical analysis we study the TF-sliding motion for a large section of the DNA-sequence of a common E. coli strain, based on the two-state TF-model with a fast-sliding search state and a recognition state enabling target detection. For the probability to detect the target before dissociating from DNA the TF-search times self-consistently depend heavily on whether or not an auxiliary operator (an accessible sequence similar to the main operator) is present in the genome section. Importantly, within our model the extent to which the interconversion rates between search and recognition states depend on the underlying nucleotide sequence is varied. A moderate dependence maximises the capability to distinguish between the main operator and similar sequences. Moreover, these auxiliary operators serve as starting points for DNA looping with the main operator, yielding a spectrum of target detection times spanning several orders of magnitude. Auxiliary operators are shown to act as funnels facilitating target detection by TFs.}, language = {en} } @article{DobyndeEffenbergerKartashovetal.2019, author = {Dobynde, M. I. and Effenberger, Frederic and Kartashov, D. A. and Shprits, Yuri and Shurshakov, V. A.}, title = {Ray-tracing simulation of the radiation dose distribution on the surface of the spherical phantom of the MATROSHKA-R experiment onboard the ISS}, series = {Life sciences in space research}, volume = {21}, journal = {Life sciences in space research}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2214-5524}, doi = {10.1016/j.lssr.2019.04.001}, pages = {65 -- 72}, year = {2019}, abstract = {Space radiation is one of the main concerns for human space flights. The prediction of the radiation dose for the actual spacecraft geometry is very important for the planning of long-duration missions. We present a numerical method for the fast calculation of the radiation dose rate during a space flight. We demonstrate its application for dose calculations during the first and the second sessions of the MATROSHKA-R space experiment with a spherical tissue-equivalent phantom. The main advantage of the method is the short simulation time, so it can be applied for urgent radiation dose calculations for low-Earth orbit space missions. The method uses depth-dose curve and shield-and-composition distribution functions to calculate a radiation dose at the point of interest. The spacecraft geometry is processed into a shield-and-composition distribution function using a ray-tracing method. Depth-dose curves are calculated using the GEANT4 Monte-Carlo code (version 10.00.P02) for a double-layer aluminum-water shielding. Aluminum-water shielding is a good approximation of the real geometry, as water is a good equivalent for biological tissues, and aluminum is the major material of spacecraft bodies.}, language = {en} } @article{WangMosconiWolffetal.2019, author = {Wang, Qiong and Mosconi, Edoardo and Wolff, Christian Michael and Li, Junming and Neher, Dieter and De Angelis, Filippo and Suranna, Gian Paolo and Grisorio, Roberto and Abate, Antonio}, title = {Rationalizing the molecular design of hole-selective contacts to improve charge extraction in Perovskite solar cells}, series = {dvanced energy materials}, volume = {9}, journal = {dvanced energy materials}, number = {28}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.201900990}, pages = {9}, year = {2019}, abstract = {Two new hole selective materials (HSMs) based on dangling methylsulfanyl groups connected to the C-9 position of the fluorene core are synthesized and applied in perovskite solar cells. Being structurally similar to a half of Spiro-OMeTAD molecule, these HSMs (referred as FS and DFS) share similar redox potentials but are endowed with slightly higher hole mobility, due to the planarity and large extension of their structure. Competitive power conversion efficiency (up to 18.6\%) is achieved by using the new HSMs in suitable perovskite solar cells. Time-resolved photoluminescence decay measurements and electrochemical impedance spectroscopy show more efficient charge extraction at the HSM/perovskite interface with respect to Spiro-OMeTAD, which is reflected in higher photocurrents exhibited by DFS/FS-integrated perovskite solar cells. Density functional theory simulations reveal that the interactions of methylammonium with methylsulfanyl groups in DFS/FS strengthen their electrostatic attraction with the perovskite surface, providing an additional path for hole extraction compared to the sole presence of methoxy groups in Spiro-OMeTAD. Importantly, the low-cost synthesis of FS makes it significantly attractive for the future commercialization of perovskite solar cells.}, language = {en} } @article{DoerriesChechkinSchumeretal.2022, author = {Doerries, Timo J. and Chechkin, Aleksei and Schumer, Rina and Metzler, Ralf}, title = {Rate equations, spatial moments, and concentration profiles for mobile-immobile models with power-law and mixed waiting time distributions}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {105}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {1}, publisher = {The American Institute of Physics}, address = {Woodbury, NY}, issn = {2470-0045}, doi = {10.1103/PhysRevE.105.014105}, pages = {24}, year = {2022}, abstract = {We present a framework for systems in which diffusion-advection transport of a tracer substance in a mobile zone is interrupted by trapping in an immobile zone. Our model unifies different model approaches based on distributed-order diffusion equations, exciton diffusion rate models, and random-walk models for multirate mobile-immobile mass transport. We study various forms for the trapping time dynamics and their effects on the tracer mass in the mobile zone. Moreover, we find the associated breakthrough curves, the tracer density at a fixed point in space as a function of time, and the mobile and immobile concentration profiles and the respective moments of the transport. Specifically, we derive explicit forms for the anomalous transport dynamics and an asymptotic power-law decay of the mobile mass for a Mittag-Leffler trapping time distribution. In our analysis we point out that even for exponential trapping time densities, transient anomalous transport is observed. Our results have direct applications in geophysical contexts, but also in biological, soft matter, and solid state systems.}, language = {en} } @phdthesis{Jaster2003, author = {Jaster, Nicole}, title = {Ratchet models of molecular motors}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000867}, school = {Universit{\"a}t Potsdam}, year = {2003}, abstract = {Transportvorg{\"a}nge in und von Zellen sind von herausragender Bedeutung f{\"u}r das {\"U}berleben des Organismus. Muskeln m{\"u}ssen sich kontrahieren k{\"o}nnen, Chromosomen w{\"a}hrend der Mitose an entgegengesetzte Enden der Zelle bewegt und Organellen, das sind von Membranen umschlossene Kompartimente, entlang molekularer Schienen transportiert werden. Molekulare Motoren sind Proteine, deren Hauptaufgabe es ist, andere Molek{\"u}le zu bewegen. Dazu wandeln sie die bei der ATP-Hydrolyse freiwerdende chemische Energie in mechanische Arbeit um. Die Motoren des Zellskeletts geh{\"o}ren zu den drei Superfamilien Myosin, Kinesin und Dynein. Ihre Schienen sind Filamente des Zellskeletts, Actin und die Microtubuli. In dieser Arbeit werden stochastische Modelle untersucht, welche dazu dienen, die Fortbewegung dieser linearen molekularen Motoren zu beschreiben. Die Skala, auf der wir die Bewegung betrachten, reicht von einzelnen Schritten eines Motorproteins bis in den Bereich der gerichteten Bewegung entlang eines Filaments. Ein Einzelschritt {\"u}berbr{\"u}ckt je nach Protein etwa 10 nm und wird in ungef{\"a}hr 10 ms zur{\"u}ckgelegt. Unsere Modelle umfassen M Zust{\"a}nde oder Konformationen, die der Motor annehmen kann, w{\"a}hrend er sich entlang einer eindimensionalen Schiene bewegt. An K Orten dieser Schiene sind {\"U}berg{\"a}nge zwischen den Zust{\"a}nden m{\"o}glich. Die Geschwindigkeit des Proteins l{\"a}sst sich in Abh{\"a}ngigkeit von den vertikalen {\"U}bergangsraten zwischen den einzelnen Zust{\"a}nden analytisch bestimmen. Wir berechnen diese Geschwindigkeit f{\"u}r Systeme mit bis zu vier Zust{\"a}nden und Orten und k{\"o}nnen weiterhin eine Reihe von Regeln ableiten, die uns einsch{\"a}tzen helfen, wie sich ein beliebiges vorgegebenes System verhalten wird. Dar{\"u}ber hinaus betrachten wir entkoppelte Subsysteme, also einen oder mehrere Zust{\"a}nde, die keine Verbindung zum {\"u}brigen System haben. Mit einer bestimmten Wahrscheinlichkeit kann ein Motor einen Zyklus von Konformationen durchlaufen, mit einer anderen Wahrscheinlichkeit einen davon unabh{\"a}ngigen anderen. Aktive Elemente werden in realen Transportvorg{\"a}ngen durch Motorproteine nicht auf die {\"U}berg{\"a}nge zwischen den Zust{\"a}nden beschr{\"a}nkt sein. In verzerrten Netzwerken oder ausgehend von der diskreten Mastergleichung des Systems k{\"o}nnen auch horizontale Raten spezifiziert werden und m{\"u}ssen weiterhin nicht mehr die Bedingungen der detaillierten Balance erf{\"u}llen. Damit ergeben sich eindeutige, komplette Pfade durch das jeweilige Netzwerk und Regeln f{\"u}r die Abh{\"a}ngigkeit des Gesamtstroms von allen Raten des Systems. Außerdem betrachten wir die zeitliche Entwicklung f{\"u}r vorgegebene Anfangsverteilungen. Bei Enzymreaktionen gibt es die Idee des Hauptpfades, dem diese bevorzugt folgen. Wir bestimmen optimale Pfade und den maximalen Fluss durch vorgegebene Netzwerke. Um dar{\"u}ber hinaus die Geschwindigkeit des Motors in Abh{\"a}ngigkeit von seinem Treibstoff ATP angeben zu k{\"o}nnen, betrachten wir m{\"o}gliche Reaktionskinetiken, die den Zusammenhang zwischen den unbalancierten {\"U}bergangsraten und der ATP-Konzentration bestimmen. Je nach Typ der Reaktionskinetik und Anzahl unbalancierter Raten ergeben sich qualitativ unterschiedliche Verl{\"a}ufe der Geschwindigkeitskurven in Abh{\"a}ngigkeit von der ATP-Konzentration. Die molekularen Wechselwirkungspotentiale, die der Motor entlang seiner Schiene erf{\"a}hrt, sind unbekannt.Wir vergleichen unterschiedliche einfache Potentiale und die Auswirkungen auf die Transportkoeffizienten, die sich durch die Lokalisation der vertikalen {\"U}berg{\"a}nge im Netzwerkmodell im Vergleich zu anderen Ans{\"a}tzen ergeben.}, language = {en} } @article{WoodfieldGlauertMeniettietal.2019, author = {Woodfield, Emma E. and Glauert, Saraha A. and Menietti, J. Douglas and Averkamp, Terrance F. and Horne, Richard B. and Shprits, Yuri}, title = {Rapid Electron Acceleration in Low-Density Regions of Saturn's Radiation Belt by Whistler Mode Chorus Waves}, series = {Geophysical research letters}, volume = {46}, journal = {Geophysical research letters}, number = {13}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1029/2019GL083071}, pages = {7191 -- 7198}, year = {2019}, abstract = {Electron acceleration at Saturn due to whistler mode chorus waves has previously been assumed to be ineffective; new data closer to the planet show it can be very rapid (factor of 104 flux increase at 1 MeV in 10 days compared to factor of 2). A full survey of chorus waves at Saturn is combined with an improved plasma density model to show that where the plasma frequency falls below the gyrofrequency additional strong resonances are observed favoring electron acceleration. This results in strong chorus acceleration between approximately 2.5 R-S and 5.5 R-S outside which adiabatic transport may dominate. Strong pitch angle dependence results in butterfly pitch angle distributions that flatten over a few days at 100s keV, tens of days at MeV energies which may explain observations of butterfly distributions of MeV electrons near L = 3. Including cross terms in the simulations increases the tendency toward butterfly distributions. Plain Language Summary Radiation belts are hazardous regions found around several of the planets in our Solar System. They consist of very hot, electrically charged particles trapped in the magnetic field of the planet. At Saturn the most important way to heat these particles has for many years been thought to involve the particles drifting closer toward the planet. This paper adds to the emerging idea at Saturn that a different way to heat the particles is also possible where the heating is done by waves, in a similar way to what we find at the Earth. We use recent information from the Cassini spacecraft on the number and location of particles and also of the waves strength and location combined with computer simulations to show that a particular wave called chorus is excellent at heating the particles where the surrounding number of cold particles is low.}, language = {en} } @phdthesis{Dahlke2020, author = {Dahlke, Sandro}, title = {Rapid climate changes in the arctic region of Svalbard}, doi = {10.25932/publishup-44554}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-445542}, school = {Universit{\"a}t Potsdam}, pages = {xv, 123}, year = {2020}, abstract = {Over the last decades, the Arctic regions of the earth have warmed at a rate 2-3 times faster than the global average- a phenomenon called Arctic Amplification. A complex, non-linear interplay of physical processes and unique pecularities in the Arctic climate system is responsible for this, but the relative role of individual processes remains to be debated. This thesis focuses on the climate change and related processes on Svalbard, an archipelago in the North Atlantic sector of the Arctic, which is shown to be a "hotspot" for the amplified recent warming during winter. In this highly dynamical region, both oceanic and atmospheric large-scale transports of heat and moisture interfere with spatially inhomogenous surface conditions, and the corresponding energy exchange strongly shapes the atmospheric boundary layer. In the first part, Pan-Svalbard gradients in the surface air temperature (SAT) and sea ice extent (SIE) in the fjords are quantified and characterized. This analysis is based on observational data from meteorological stations, operational sea ice charts, and hydrographic observations from the adjacent ocean, which cover the 1980-2016 period. It is revealed that typical estimates of SIE during late winter range from 40-50\% (80-90\%) in the western (eastern) parts of Svalbard. However, strong SAT warming during winter of the order of 2-3K per decade dictates excessive ice loss, leaving fjords in the western parts essentially ice-free in recent winters. It is further demostrated that warm water currents on the west coast of Svalbard, as well as meridional winds contribute to regional differences in the SIE evolution. In particular, the proximity to warm water masses of the West Spitsbergen Current can explain 20-37\% of SIE variability in fjords on west Svalbard, while meridional winds and associated ice drift may regionally explain 20-50\% of SIE variability in the north and northeast. Strong SAT warming has overruled these impacts in recent years, though. In the next part of the analysis, the contribution of large-scale atmospheric circulation changes to the Svalbard temperature development over the last 20 years is investigated. A study employing kinematic air-back trajectories for Ny-{\AA}lesund reveals a shift in the source regions of lower-troposheric air over time for both the winter and the summer season. In winter, air in the recent decade is more often of lower-latitude Atlantic origin, and less frequent of Arctic origin. This affects heat- and moisture advection towards Svalbard, potentially manipulating clouds and longwave downward radiation in that region. A closer investigation indicates that this shift during winter is associated with a strengthened Ural blocking high and Icelandic low, and contributes about 25\% to the observed winter warming on Svalbard over the last 20 years. Conversely, circulation changes during summer include a strengthened Greenland blocking high which leads to more frequent cold air advection from the central Arctic towards Svalbard, and less frequent air mass origins in the lower latitudes of the North Atlantic. Hence, circulation changes during winter are shown to have an amplifying effect on the recent warming on Svalbard, while summer circulation changes tend to mask warming. An observational case study using upper air soundings from the AWIPEV research station in Ny-{\AA}lesund during May-June 2017 underlines that such circulation changes during summer are associated with tropospheric anomalies in temperature, humidity and boundary layer height. In the last part of the analysis, the regional representativeness of the above described changes around Svalbard for the broader Arctic is investigated. Therefore, the terms in the diagnostic temperature equation in the Arctic-wide lower troposphere are examined for the Era-Interim atmospheric reanalysis product. Significant positive trends in diabatic heating rates, consistent with latent heat transfer to the atmosphere over regions of increasing ice melt, are found for all seasons over the Barents/Kara Seas, and in individual months in the vicinity of Svalbard. The above introduced warm (cold) advection trends during winter (summer) on Svalbard are successfully reproduced. Regarding winter, they are regionally confined to the Barents Sea and Fram Strait, between 70°-80°N, resembling a unique feature in the whole Arctic. Summer cold advection trends are confined to the area between eastern Greenland and Franz Josef Land, enclosing Svalbard.}, language = {en} } @article{ChechkinSokolov2018, author = {Chechkin, Aleksei V. and Sokolov, Igor M.}, title = {Random search with resetting}, series = {Physical review letters}, volume = {121}, journal = {Physical review letters}, number = {5}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.121.050601}, pages = {5}, year = {2018}, abstract = {We provide a unified renewal approach to the problem of random search for several targets under resetting. This framework does not rely on specific properties of the search process and resetting procedure, allows for simpler derivation of known results, and leads to new ones. Concentrating on minimizing the mean hitting time, we show that resetting at a constant pace is the best possible option if resetting helps at all, and derive the equation for the optimal resetting pace. No resetting may be a better strategy if without resetting the probability of not finding a target decays with time to zero exponentially or faster. We also calculate splitting probabilities between the targets, and define the limits in which these can be manipulated by changing the resetting procedure. We moreover show that the number of moments of the hitting time distribution under resetting is not less than the sum of the numbers of moments of the resetting time distribution and the hitting time distribution without resetting.}, language = {en} } @article{EstradaDelvenneHatanoetal.2018, author = {Estrada, Ernesto and Delvenne, Jean-Charles and Hatano, Naomichi and Mateos, Jose L. and Metzler, Ralf and Riascos, Alejandro P. and Schaub, Michael T.}, title = {Random multi-hopper model}, series = {Journal of Complex Networks}, volume = {6}, journal = {Journal of Complex Networks}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {2051-1310}, doi = {10.1093/comnet/cnx043}, pages = {382 -- 403}, year = {2018}, abstract = {We develop a mathematical model considering a random walker with long-range hops on arbitrary graphs. The random multi-hopper can jump to any node of the graph from an initial position, with a probability that decays as a function of the shortest-path distance between the two nodes in the graph. We consider here two decaying functions in the form of Laplace and Mellin transforms of the shortest-path distances. We prove that when the parameters of these transforms approach zero asymptotically, the hitting time in the multi-hopper approaches the minimum possible value for a normal random walker. We show by computational experiments that the multi-hopper explores a graph with clusters or skewed degree distributions more efficiently than a normal random walker. We provide computational evidences of the advantages of the random multi-hopper model with respect to the normal random walk by studying deterministic, random and real-world networks.}, language = {en} } @article{KlugeSocolarSchoell2021, author = {Kluge, Lucas and Socolar, Joshua E. S. and Sch{\"o}ll, Eckehard}, title = {Random logic networks}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {104}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {6}, publisher = {American Physical Society}, address = {Woodbury, NY}, issn = {2470-0045}, doi = {10.1103/PhysRevE.104.064308}, pages = {10}, year = {2021}, abstract = {We investigate dynamical properties of a quantum generalization of classical reversible Boolean networks. The state of each node is encoded as a single qubit, and classical Boolean logic operations are supplemented by controlled bit-flip and Hadamard operations. We consider synchronous updating schemes in which each qubit is updated at each step based on stored values of the qubits from the previous step. We investigate the periodic or quasiperiodic behavior of quantum networks, and we analyze the propagation of single site perturbations through the quantum networks with input degree one. A nonclassical mechanism for perturbation propagation leads to substantially different evolution of the Hamming distance between the original and perturbed states.}, language = {en} } @phdthesis{Mardoukhi2020, author = {Mardoukhi, Yousof}, title = {Random environments and the percolation model}, doi = {10.25932/publishup-47276}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-472762}, school = {Universit{\"a}t Potsdam}, pages = {xxii, 103}, year = {2020}, abstract = {Percolation process, which is intrinsically a phase transition process near the critical point, is ubiquitous in nature. Many of its applications embrace a wide spectrum of natural phenomena ranging from the forest fires, spread of contagious diseases, social behaviour dynamics to mathematical finance, formation of bedrocks and biological systems. The topology generated by the percolation process near the critical point is a random (stochastic) fractal. It is fundamental to the percolation theory that near the critical point, a unique infinite fractal structure, namely the infinite cluster, would emerge. As de Gennes suggested, the properties of the infinite cluster could be deduced by studying the dynamical behaviour of the random walk process taking place on it. He coined the term the ant in the labyrinth. The random walk process on such an infinite fractal cluster exhibits a subdiffusive dynamics in the sense that the mean squared displacement grows as ~t2/dw, where dw, called the fractal dimension of the random walk path, is greater than 2. Thus, the random walk process on the infinite cluster is classified as a process exhibiting the properties of anomalous diffusions. Yet near the critical point, the infinite cluster is not the sole emergent topology, but it coexists with other clusters whose size is finite. Though finite, on specific length scales these finite clusters exhibit fractal properties as well. In this work, it is assumed that the random walk process could take place on these finite size objects as well. Bearing this assumption in mind requires one address the non-equilibrium initial condition. Due to the lack of knowledge on the propagator of the random walk process in stochastic random environments, a phenomenological correspondence between the renowned Ornstein-Uhlenbeck process and the random walk process on finite size clusters is established. It is elucidated that when an ensemble of these finite size clusters and the infinite cluster is considered, the anisotropy and size of these finite clusters effects the mean squared displacement and its time averaged counterpart to grow in time as ~t(d+df (t-2))/dw, where d is the embedding Euclidean dimension, df is the fractal dimension of the infinite cluster, and , called the Fisher exponent, is a critical exponent governing the power-law distribution of the finite size clusters. Moreover, it is demonstrated that, even though the random walk process on a specific finite size cluster is ergodic, it exhibits a persistent non-ergodic behaviour when an ensemble of finite size and the infinite clusters is considered.}, language = {en} } @article{SposiniChechkinSenoetal.2018, author = {Sposini, Vittoria and Chechkin, Aleksei V. and Seno, Flavio and Pagnini, Gianni and Metzler, Ralf}, title = {Random diffusivity from stochastic equations}, series = {New Journal of Physics}, journal = {New Journal of Physics}, publisher = {Deutsche Physikalische Gesellschaft / Institute of Physics}, address = {Bad Honnef und London}, issn = {1367-2630}, doi = {10.1088/1367-2630/aab696}, pages = {1 -- 33}, year = {2018}, abstract = {A considerable number of systems have recently been reported in which Brownian yet non-Gaussian dynamics was observed. These are processes characterised by a linear growth in time of the mean squared displacement, yet the probability density function of the particle displacement is distinctly non-Gaussian, and often of exponential(Laplace) shape. This apparently ubiquitous behaviour observed in very different physical systems has been interpreted as resulting from diffusion in inhomogeneous environments and mathematically represented through a variable, stochastic diffusion coefficient. Indeed different models describing a fluctuating diffusivity have been studied. Here we present a new view of the stochastic basis describing time dependent random diffusivities within a broad spectrum of distributions. Concretely, our study is based on the very generic class of the generalised Gamma distribution. Two models for the particle spreading in such random diffusivity settings are studied. The first belongs to the class of generalised grey Brownian motion while the second follows from the idea of diffusing diffusivities. The two processes exhibit significant characteristics which reproduce experimental results from different biological and physical systems. We promote these two physical models for the description of stochastic particle motion in complex environments.}, language = {en} } @misc{SposiniChechkinFlavioetal.2018, author = {Sposini, Vittoria and Chechkin, Aleksei V. and Flavio, Seno and Pagnini, Gianni and Metzler, Ralf}, title = {Random diffusivity from stochastic equations}, series = {New Journal of Physics}, journal = {New Journal of Physics}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-409743}, pages = {33}, year = {2018}, abstract = {Brownian yet non-Gaussian dynamics was observed. These are processes characterised by a linear growth in time of the mean squared displacement, yet the probability density function of the particle displacement is distinctly non-Gaussian, and often of exponential(Laplace) shape. This apparently ubiquitous behaviour observed in very different physical systems has been interpreted as resulting from diffusion in inhomogeneous environments and mathematically represented through a variable, stochastic diffusion coefficient. Indeed different models describing a fluctuating diffusivity have been studied. Here we present a new view of the stochastic basis describing time dependent random diffusivities within a broad spectrum of distributions. Concretely, our study is based on the very generic class of the generalised Gamma distribution. Two models for the particle spreading in such random diffusivity settings are studied. The first belongs to the class of generalised grey Brownian motion while the second follows from the idea of diffusing diffusivities. The two processes exhibit significant characteristics which reproduce experimental results from different biological and physical systems. We promote these two physical models for the description of stochastic particle motion in complex environments.}, language = {en} } @misc{ŚlęzakBurneckiMetzler2019, author = {Ślęzak, Jakub and Burnecki, Krzysztof and Metzler, Ralf}, title = {Random coefficient autoregressive processes describe Brownian yet non-Gaussian diffusion in heterogeneous systems}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {765}, issn = {1866-8372}, doi = {10.25932/publishup-43792}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-437923}, pages = {18}, year = {2019}, abstract = {Many studies on biological and soft matter systems report the joint presence of a linear mean-squared displacement and a non-Gaussian probability density exhibiting, for instance, exponential or stretched-Gaussian tails. This phenomenon is ascribed to the heterogeneity of the medium and is captured by random parameter models such as 'superstatistics' or 'diffusing diffusivity'. Independently, scientists working in the area of time series analysis and statistics have studied a class of discrete-time processes with similar properties, namely, random coefficient autoregressive models. In this work we try to reconcile these two approaches and thus provide a bridge between physical stochastic processes and autoregressive models.Westart from the basic Langevin equation of motion with time-varying damping or diffusion coefficients and establish the link to random coefficient autoregressive processes. By exploring that link we gain access to efficient statistical methods which can help to identify data exhibiting Brownian yet non-Gaussian diffusion.}, language = {en} } @article{ŚlęzakBurneckiMetzler2019, author = {Ślęzak, Jakub and Burnecki, Krzysztof and Metzler, Ralf}, title = {Random coefficient autoregressive processes describe Brownian yet non-Gaussian diffusion in heterogeneous systems}, series = {New Journal of Physics}, volume = {21}, journal = {New Journal of Physics}, publisher = {Deutsche Physikalische Gesellschaft ; IOP, Institute of Physics}, address = {Bad Honnef und London}, issn = {1367-2630}, doi = {10.1088/1367-2630/ab3366}, pages = {18}, year = {2019}, abstract = {Many studies on biological and soft matter systems report the joint presence of a linear mean-squared displacement and a non-Gaussian probability density exhibiting, for instance, exponential or stretched-Gaussian tails. This phenomenon is ascribed to the heterogeneity of the medium and is captured by random parameter models such as 'superstatistics' or 'diffusing diffusivity'. Independently, scientists working in the area of time series analysis and statistics have studied a class of discrete-time processes with similar properties, namely, random coefficient autoregressive models. In this work we try to reconcile these two approaches and thus provide a bridge between physical stochastic processes and autoregressive models.Westart from the basic Langevin equation of motion with time-varying damping or diffusion coefficients and establish the link to random coefficient autoregressive processes. By exploring that link we gain access to efficient statistical methods which can help to identify data exhibiting Brownian yet non-Gaussian diffusion.}, language = {en} } @phdthesis{Sander2015, author = {Sander, Andreas Alexander Christoph}, title = {Radiatively driven winds of hot stars}, school = {Universit{\"a}t Potsdam}, pages = {153}, year = {2015}, language = {en} } @article{OchmannVazdaCruzEckertetal.2022, author = {Ochmann, Miguel and Vaz da Cruz, Vinicius and Eckert, Sebastian and Huse, Nils and F{\"o}hlisch, Alexander}, title = {R-Group stabilization in methylated formamides observed by resonant inelastic X-ray scattering}, series = {Chemical communications: ChemComm}, volume = {58}, journal = {Chemical communications: ChemComm}, number = {63}, publisher = {The Royal Society of Chemistry}, address = {Cambridge}, issn = {1359-7345}, doi = {10.1039/d2cc00053a}, pages = {8834 -- 8837}, year = {2022}, abstract = {The inherent stability of methylated formamides is traced to a stabilization of the deep-lying sigma-framework by resonant inelastic X-ray scattering at the nitrogen K-edge. Charge transfer from the amide nitrogen to the methyl groups underlie this stabilization mechanism that leaves the aldehyde group essentially unaltered and explains the stability of secondary and tertiary amides.}, language = {en} } @misc{Sauer2015, type = {Master Thesis}, author = {Sauer, Tim-Oliver}, title = {Quasi-condensation in low-dimensional Bose gases}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87247}, school = {Universit{\"a}t Potsdam}, pages = {154}, year = {2015}, abstract = {The subject of the present thesis is the one-dimensional Bose gas. Since long-rang order is destroyed by infra-red fluctuations in one dimension, only the formation of a quasi-condensate is possible, which exhibits suppressed density fluctuations, but whose phase fluctuates strongly. It is shown that modified mean-field theories based on a symmetry-breaking approach can even characterise phase coherence properties of such a quasi-condensate properly. A correct description of the transition from the degenerate ideal Bose gas to the quasi-condensate, which is a smooth cross-over rather than a phase transition, is not possible though. Basic conditions for the applicability of the theories are not fulfilled in this regime, such that the existence of a critical point is predicted. The theories are compared on the basis of their excitation sprectum, equation of state, density fluctuations and related correlation functions. High-temperature expansions of the corresponding integrals are derived analytically for the numerical evaluation of the self-consistent integral equations. Apart from that, the Stochastic Gross-Pitaevskii equation (SGPE), a non-linear Langevin equation, is analysed numerically by means of Monte-Carlo simulations and the results are compared to those of the mean-field theories. In this context, a lot of attention is payed to the appropriate choice of the parameters. The simulations prove that the SGPE is capable of describing the cross-over properly, but highlight the limitations of the widely used local density approximation as well.}, language = {en} } @phdthesis{Varykhalov2005, author = {Varykhalov, Andrei}, title = {Quantum-size effects in the electronic structure of novel self-organized systems with reduced dimensionality}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-5784}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {The Thesis is focused on the properties of self-organized nanostructures. Atomic and electronic properties of different systems have been investigated using methods of electron diffraction, scanning tunneling microscopy and photoelectron spectroscopy. Implementation of the STM technique (including design, construction, and tuning of the UHV experimental set-up) has been done in the framework of present work. This time-consuming work is reported to greater detail in the experimental part of this Thesis. The scientific part starts from the study of quantum-size effects in the electronic structure of a two-dimensional Ag film on the supporting substrate Ni(111). Distinct quantum well states in the sp-band of Ag were observed in photoelectron spectra. Analysis of thickness- and angle-dependent photoemission supplies novel information on the properties of the interface. For the first time the Ni(111) relative band gap was indirectly probed in the ground-state through the electronic structure of quantum well states in the adlayer. This is particularly important for Ni where valence electrons are strongly correlated. Comparison of the experiment with calculations performed in the formalism of the extended phase accumulation model gives the substrate gap which is fully consistent with the one obtained by ab-initio LDA calculations. It is, however, in controversy to the band structure of Ni measured directly by photoemission. These results lend credit to the simplest view of photoemission from Ni, assigning early observed contradictions between theory and experiments to electron correlation effects in the final state of photoemission. Further, nanosystems of lower dimensionality have been studied. Stepped surfaces W(331) and W(551) were used as one-dimensional model systems and as templates for self-organization of Au nanoclusters. Photon energy dependent photoemission revealed a surface resonance which was never observed before on W(110) which is the base plane of the terrace microsurfaces. The dispersion E(k) of this state measured on stepped W(331) and W(551) with angle-resolved photoelectron spectroscopy is modified by a strong umklapp effect. It appears as two parabolas shifted symmetrically relative to the microsurface normal by half of the Brillouin zone of the step superlattice. The reported results are very important for understanding of the electronic properties of low-dimensional nanostructures. It was also established that W(331) and W(551) can serve as templates for self-organization of metallic nanostructures. A combined study of electronic and atomic properties of sub-monolayer amounts of gold deposited on these templates have shown that if the substrate is slightly pre-oxidized and the temperature is elevated, then Au can alloy with the first monolayer of W. As a result, a nanostructure of uniform clusters of a surface alloy is produced all over the steps. Such clusters feature a novel sp-band in the vicinity of the Fermi level, which appears split into constant energy levels due to effects of lateral quantization. The last and main part of this work is devoted to large-scale reconstructions on surfaces and nanostructures self-assembled on top. The two-dimensional surface carbide W(110)/C-R(15x3) has been extensively investigated. Photoemission studies of quantum size effects in the electronic structure of this reconstruction, combined with an investigation of its surface geometry, lead to an advanced structural model of the carbide overlayer. It was discovered that W(110)/C-R(15x3) can control self-organization of adlayers into nanostructures with extremely different electronic and structural properties. Thus, it was established that at elevated temperature the R(15x3) superstructure controls the self-assembly of sub-monolayer amounts of Au into nm-wide nanostripes. Based on the results of core level photoemission, the R(15x3)-induced surface alloying which takes place between Au and W can be claimed as driving force of self-organization. The observed stripes exhibit a characteristic one-dimensional electronic structure with laterally quantized d-bands. Obviously, these are very important for applications, since dimensions of electronic devices have already stepped into the nm-range, where quantum-size phenomena must undoubtedly be considered. Moreover, formation of perfectly uniform molecular clusters of C60 was demonstrated and described in terms of the van der Waals formalism. It is the first experimental observation of two-dimensional fullerene nanoclusters with "magic numbers". Calculations of the cluster potentials using the static approach have revealed characteristic minima in the interaction energy. They are achieved for 4 and 7 molecules per cluster. The obtained "magic numbers" and the corresponding cluster structures are fully consistent with the results of the STM measurements.}, subject = {Nanostruktur}, language = {en} } @misc{Goychuk2016, author = {Goychuk, Igor}, title = {Quantum ergodicity breaking in semi-classical electron transfer dynamics}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-102264}, pages = {11}, year = {2016}, abstract = {Can the statistical properties of single-electron transfer events be correctly predicted within a common equilibrium ensemble description? This fundamental in nanoworld question of ergodic behavior is scrutinized within a very basic semi-classical curve-crossing problem. It is shown that in the limit of non-adiabatic electron transfer (weak tunneling) well-described by the Marcus-Levich-Dogonadze(MLD) rate the answer is yes. However, in the limit of the so-called solvent-controlled adiabatic electron transfer, a profound breaking of ergodicity occurs. Namely, a common description based on the ensemble reduced density matrix with an initial equilibrium distribution of the reaction coordinate is not able to reproduce the statistics of single-trajectory events in this seemingly classical regime. For sufficiently large activation barriers, the ensemble survival probability in a state remains nearly exponential with the inverse rate given by the sum of the adiabatic curve crossing (Kramers) time and the inverse MLD rate. In contrast, near to the adiabatic regime, the single-electron survival probability is clearly non-exponential, even though it possesses an exponential tail which agrees well with the ensemble description. Initially, it is well described by a Mittag-Leffler distribution with a fractional rate. Paradoxically, the mean transfer time in this classical on the ensemble level regime is well described by the inverse of the nonadiabatic quantum tunneling rate on a single particle level. An analytical theory is developed which perfectly agrees with stochastic simulations and explains our findings.}, language = {en} } @article{Goychuk2017, author = {Goychuk, Igor}, title = {Quantum ergodicity breaking in semi-classical electron transfer dynamics}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {19}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c6cp07206b}, pages = {3056 -- 3066}, year = {2017}, abstract = {Can the statistical properties of single-electron transfer events be correctly predicted within a common equilibrium ensemble description? This fundamental in nanoworld question of ergodic behavior is scrutinized within a very basic semi-classical curve-crossing problem. It is shown that in the limit of non-adiabatic electron transfer (weak tunneling) well-described by the Marcus-Levich-Dogonadze (MLD) rate the answer is yes. However, in the limit of the so-called solvent-controlled adiabatic electron transfer, a profound breaking of ergodicity occurs. Namely, a common description based on the ensemble reduced density matrix with an initial equilibrium distribution of the reaction coordinate is not able to reproduce the statistics of single-trajectory events in this seemingly classical regime. For sufficiently large activation barriers, the ensemble survival probability in a state remains nearly exponential with the inverse rate given by the sum of the adiabatic curve crossing (Kramers) time and the inverse MLD rate. In contrast, near to the adiabatic regime, the single-electron survival probability is clearly non-exponential, even though it possesses an exponential tail which agrees well with the ensemble description. Initially, it is well described by a Mittag-Leffler distribution with a fractional rate. Paradoxically, the mean transfer time in this classical on the ensemble level regime is well described by the inverse of the nonadiabatic quantum tunneling rate on a single particle level. An analytical theory is developed which perfectly agrees with stochastic simulations and explains our findings.}, language = {en} } @article{SaalfrankNestAndrianovetal.2006, author = {Saalfrank, Peter and Nest, Mathias and Andrianov, Igor V. and Klamroth, Tillmann and Kroner, Dominic and Beyvers, Stephanie}, title = {Quantum dynamics of laser-induced desorption from metal and semiconductor surfaces, and related phenomena}, volume = {18}, number = {30}, publisher = {IOP Publ.}, address = {Bristol}, issn = {1361-648X}, doi = {10.1088/0953-8984/18/30/S05}, pages = {S1425 -- S1459}, year = {2006}, abstract = {Recent progress towards a quantum theory of laser-induced desorption and related phenomena is reviewed, for specific examples. These comprise the photodesorption of NO from Pt(111), the scanning tunnelling microscope and laser- induced desorption and switching of H at Si(100), and the electron stimulated desorption and dissociation of CO at Ru(0001). The theoretical methods used for nuclear dynamics range from open-system density matrix theory over nonadiabatically coupled multi-state models to electron-nuclear wavepackets. Also, aspects of time-dependent spectroscopy to probe ultrafast nonadiabatic processes at surfaces will be considered for the example of two-photon photoemission of solvated electrons in ice layers on Cu(111)}, language = {en} } @article{FumaniNematiMahdavifar2020, author = {Fumani, F. Khastehdel and Nemati, Somayyeh and Mahdavifar, Saeed}, title = {Quantum critical lines in the ground state phase diagram of spin-1/2 frustrated transverse-field ising chains}, series = {Annalen der Physik}, volume = {533}, journal = {Annalen der Physik}, number = {2}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0003-3804}, doi = {10.1002/andp.202000384}, pages = {8}, year = {2020}, abstract = {This paper focuses on the ground state phase diagram of a 1D spin-1/2 quantum Ising model with competing first and second nearest neighbour interactions known as the axial next nearest neighbour Ising model in the presence of a transverse magnetic field. Here, using quantum correlations, both numerically and analytically, some evidence is provided to clarify the identification of the ground state phase diagram. Local quantum correlations play a crucial role in detecting the critical lines either revealed or hidden by symmetry-breaking. A non-symmetry-breaking disorder transition line can be identified by the first derivative of both entanglement of formation and quantum discord between nearest neighbour spins. In addition, the quantum correlations between the second neighbour spins can also be used to reveal Kosterlitz-Thouless phase transition when their interaction strength grows and becomes closer to the first nearest neighbour one. The results obtained using the Jordan-Wigner transformation confirm the accuracy of the numerical case.}, language = {en} } @article{AndersSaitHorsley2022, author = {Anders, Janet and Sait, Connor R. J. and Horsley, Simon A. R.}, title = {Quantum Brownian motion for magnets}, series = {New journal of physics : the open-access journal for physics}, volume = {24}, journal = {New journal of physics : the open-access journal for physics}, number = {3}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/ac4ef2}, pages = {21}, year = {2022}, abstract = {Spin precession in magnetic materials is commonly modelled with the classical phenomenological Landau-Lifshitz-Gilbert (LLG) equation. Based on a quantized three-dimensional spin + environment Hamiltonian, we here derive a spin operator equation of motion that describes precession and includes a general form of damping that consistently accounts for memory, coloured noise and quantum statistics. The LLG equation is recovered as its classical, Ohmic approximation. We further introduce resonant Lorentzian system-reservoir couplings that allow a systematic comparison of dynamics between Ohmic and non-Ohmic regimes. Finally, we simulate the full non-Markovian dynamics of a spin in the semi-classical limit. At low temperatures, our numerical results demonstrate a characteristic reduction and flattening of the steady state spin alignment with an external field, caused by the quantum statistics of the environment. The results provide a powerful framework to explore general three-dimensional dissipation in quantum thermodynamics.}, language = {en} } @article{JayEckertMitzneretal.2020, author = {Jay, Raphael M. and Eckert, Sebastian and Mitzner, Rolf and Fondell, Mattis and F{\"o}hlisch, Alexander}, title = {Quantitative evaluation of transient valence orbital occupations in a 3d transition metal complex as seen from the metal and ligand perspective}, series = {Chemical physics letters}, volume = {754}, journal = {Chemical physics letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0009-2614}, doi = {10.1016/j.cplett.2020.137681}, pages = {5}, year = {2020}, abstract = {It is demonstrated for the case of photo-excited ferrocyanide how time-resolved soft X-ray absorption spectroscopy in transmission geometry at the ligand K-edge and metal L-3-edge provides quantitatively equivalent valence electronic structure information, where signatures of photo-oxidation are assessed locally at the metal as well as the ligand. This allows for a direct and independent quantification of the number of photo-oxidized molecules at two soft X-ray absorption edges highlighting the sensitivity of X-ray absorption spectroscopy to the valence orbital occupation of 3d transition metal complexes throughout the soft X-ray range.}, language = {en} } @unpublished{KurthsVossWittetal.1994, author = {Kurths, J{\"u}rgen and Voss, A. and Witt, Annette and Saparin, P. and Kleiner, H. J. and Wessel, Niels}, title = {Quantitative analysis of heart rate variability}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-13470}, year = {1994}, abstract = {In the modern industrialized countries every year several hundred thousands of people die due to the sudden cardiac death. The individual risk for this sudden cardiac death cannot be defined precisely by common available, non-invasive diagnostic tools like Holter-monitoring, highly amplified ECG and traditional linear analysis of heart rate variability (HRV). Therefore, we apply some rather unconventional methods of nonlinear dynamics to analyse the HRV. Especially, some complexity measures that are basing on symbolic dynamics as well as a new measure, the renormalized entropy, detect some abnormalities in the HRV of several patients who have been classified in the low risk group by traditional methods. A combination of these complexity measures with the parameters in the frequency domain seems to be a promising way to get a more precise definition of the individual risk. These findings have to be validated by a representative number of patients.}, language = {en} } @article{CervantesVillaShpritsAseevetal.2020, author = {Cervantes Villa, Juan Sebastian and Shprits, Yuri and Aseev, Nikita and Allison, Hayley J.}, title = {Quantifying the effects of EMIC wave scattering and magnetopause shadowing in the outer electron radiation belt by means of data assimilation}, series = {Journal of geophysical research : Space physics}, volume = {125}, journal = {Journal of geophysical research : Space physics}, number = {8}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9380}, doi = {10.1029/2020JA028208}, pages = {23}, year = {2020}, abstract = {In this study we investigate two distinct loss mechanisms responsible for the rapid dropouts of radiation belt electrons by assimilating data from Van Allen Probes A and B and Geostationary Operational Environmental Satellites (GOES) 13 and 15 into a 3-D diffusion model. In particular, we examine the respective contribution of electromagnetic ion cyclotron (EMIC) wave scattering and magnetopause shadowing for values of the first adiabatic invariant mu ranging from 300 to 3,000 MeV G(-1). We inspect the innovation vector and perform a statistical analysis to quantitatively assess the effect of both processes as a function of various geomagnetic indices, solar wind parameters, and radial distance from the Earth. Our results are in agreement with previous studies that demonstrated the energy dependence of these two mechanisms. We show that EMIC wave scattering tends to dominate loss at lower L shells, and it may amount to between 10\%/hr and 30\%/hr of the maximum value of phase space density (PSD) over all L shells for fixed first and second adiabatic invariants. On the other hand, magnetopause shadowing is found to deplete electrons across all energies, mostly at higher L shells, resulting in loss from 50\%/hr to 70\%/hr of the maximum PSD. Nevertheless, during times of enhanced geomagnetic activity, both processes can operate beyond such location and encompass the entire outer radiation belt.}, language = {en} } @article{PhuongHosseiniSandbergetal.2020, author = {Phuong, Le Quang and Hosseini, Seyed Mehrdad and Sandberg, Oskar J. and Zou, Yingping and Woo, Han Young and Neher, Dieter and Shoaee, Safa}, title = {Quantifying quasi-fermi level splitting and open-circuit voltage losses in highly efficient nonfullerene organic solar cells}, series = {Solar RRL}, volume = {5}, journal = {Solar RRL}, number = {1}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2367-198X}, doi = {10.1002/solr.202000649}, pages = {6}, year = {2020}, abstract = {The power conversion efficiency (PCE) of state-of-the-art organic solar cells is still limited by significant open-circuit voltage (V-OC) losses, partly due to the excitonic nature of organic materials and partly due to ill-designed architectures. Thus, quantifying different contributions of the V-OC losses is of importance to enable further improvements in the performance of organic solar cells. Herein, the spectroscopic and semiconductor device physics approaches are combined to identify and quantify losses from surface recombination and bulk recombination. Several state-of-the-art systems that demonstrate different V-OC losses in their performance are presented. By evaluating the quasi-Fermi level splitting (QFLS) and the V-OC as a function of the excitation fluence in nonfullerene-based PM6:Y6, PM6:Y11, and fullerene-based PPDT2FBT:PCBM devices with different architectures, the voltage losses due to different recombination processes occurring in the active layers, the transport layers, and at the interfaces are assessed. It is found that surface recombination at interfaces in the studied solar cells is negligible, and thus, suppressing the non-radiative recombination in the active layers is the key factor to enhance the PCE of these devices. This study provides a universal tool to explain and further improve the performance of recently demonstrated high-open-circuit-voltage organic solar cells.}, language = {en} } @misc{PhuongHosseiniSandbergetal.2020, author = {Phuong, Le Quang and Hosseini, Seyed Mehrdad and Sandberg, Oskar J. and Zou, Yingping and Woo, Han Young and Neher, Dieter and Shoaee, Safa}, title = {Quantifying quasi-fermi level splitting and open-circuit voltage losses in highly efficient nonfullerene organic solar cells}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-57001}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-570018}, pages = {8}, year = {2020}, abstract = {The power conversion efficiency (PCE) of state-of-the-art organic solar cells is still limited by significant open-circuit voltage (V-OC) losses, partly due to the excitonic nature of organic materials and partly due to ill-designed architectures. Thus, quantifying different contributions of the V-OC losses is of importance to enable further improvements in the performance of organic solar cells. Herein, the spectroscopic and semiconductor device physics approaches are combined to identify and quantify losses from surface recombination and bulk recombination. Several state-of-the-art systems that demonstrate different V-OC losses in their performance are presented. By evaluating the quasi-Fermi level splitting (QFLS) and the V-OC as a function of the excitation fluence in nonfullerene-based PM6:Y6, PM6:Y11, and fullerene-based PPDT2FBT:PCBM devices with different architectures, the voltage losses due to different recombination processes occurring in the active layers, the transport layers, and at the interfaces are assessed. It is found that surface recombination at interfaces in the studied solar cells is negligible, and thus, suppressing the non-radiative recombination in the active layers is the key factor to enhance the PCE of these devices. This study provides a universal tool to explain and further improve the performance of recently demonstrated high-open-circuit-voltage organic solar cells.}, language = {en} } @article{SchwarzlGodecMetzler2017, author = {Schwarzl, Maria and Godec, Aljaž and Metzler, Ralf}, title = {Quantifying non-ergodicity of anomalous diffusion with higher order moments}, series = {Scientific reports}, volume = {7}, journal = {Scientific reports}, publisher = {Macmillan Publishers Limited}, address = {London}, doi = {10.1038/s41598-017-03712-x}, pages = {18}, year = {2017}, abstract = {Anomalous diffusion is being discovered in a fast growing number of systems. The exact nature of this anomalous diffusion provides important information on the physical laws governing the studied system. One of the central properties analysed for finite particle motion time series is the intrinsic variability of the apparent diffusivity, typically quantified by the ergodicity breaking parameter EB. Here we demonstrate that frequently EB is insufficient to provide a meaningful measure for the observed variability of the data. Instead, important additional information is provided by the higher order moments entering by the skewness and kurtosis. We analyse these quantities for three popular anomalous diffusion models. In particular, we find that even for the Gaussian fractional Brownian motion a significant skewness in the results of physical measurements occurs and needs to be taken into account. Interestingly, the kurtosis and skewness may also provide sensitive estimates of the anomalous diffusion exponent underlying the data. We also derive a new result for the EB parameter of fractional Brownian motion valid for the whole range of the anomalous diffusion parameter. Our results are important for the analysis of anomalous diffusion but also provide new insights into the theory of anomalous stochastic processes.}, language = {en} } @misc{SchwarzlGodecMetzler2017, author = {Schwarzl, Maria and Godec, Aljaž and Metzler, Ralf}, title = {Quantifying non-ergodicity of anomalous diffusion with higher order moments}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-402109}, pages = {18}, year = {2017}, abstract = {Anomalous diffusion is being discovered in a fast growing number of systems. The exact nature of this anomalous diffusion provides important information on the physical laws governing the studied system. One of the central properties analysed for finite particle motion time series is the intrinsic variability of the apparent diffusivity, typically quantified by the ergodicity breaking parameter EB. Here we demonstrate that frequently EB is insufficient to provide a meaningful measure for the observed variability of the data. Instead, important additional information is provided by the higher order moments entering by the skewness and kurtosis. We analyse these quantities for three popular anomalous diffusion models. In particular, we find that even for the Gaussian fractional Brownian motion a significant skewness in the results of physical measurements occurs and needs to be taken into account. Interestingly, the kurtosis and skewness may also provide sensitive estimates of the anomalous diffusion exponent underlying the data. We also derive a new result for the EB parameter of fractional Brownian motion valid for the whole range of the anomalous diffusion parameter. Our results are important for the analysis of anomalous diffusion but also provide new insights into the theory of anomalous stochastic processes.}, language = {en} } @article{KunertPangTewsetal.2022, author = {Kunert, Nina and Pang, Peter T. H. and Tews, Ingo and Coughlin, Michael W. and Dietrich, Tim}, title = {Quantifying modeling uncertainties when combining multiple gravitational-wave detections from binary neutron star sources}, series = {Physical review D}, volume = {105}, journal = {Physical review D}, number = {6}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0010}, doi = {10.1103/PhysRevD.105.L061301}, pages = {7}, year = {2022}, abstract = {With the increasing sensitivity of gravitational-wave detectors, we expect to observe multiple binary neutron-star systems through gravitational waves in the near future. The combined analysis of these gravitational-wave signals offers the possibility to constrain the neutron-star radius and the equation of state of dense nuclear matter with unprecedented accuracy. However, it is crucial to ensure that uncertainties inherent in the gravitational-wave models will not lead to systematic biases when information from multiple detections is combined. To quantify waveform systematics, we perform an extensive simulation campaign of binary neutron-star sources and analyze them with a set of four different waveform models. For our analysis with 38 simulations, we find that statistical uncertainties in the neutron-star radius decrease to 1250 m (2\% at 90\% credible interval) but that systematic differences between currently employed waveform models can be twice as large. Hence, it will be essential to ensure that systematic biases will not become dominant in inferences of the neutron-star equation of state when capitalizing on future developments.}, language = {en} } @article{KunnusJosefssonSchrecketal.2017, author = {Kunnus, Kristjan and Josefsson, I. and Schreck, Simon Frederik and Quevedo, W. and Miedema, P. S. and Techert, S. and de Groot, F. M. F. and F{\"o}hlisch, Alexander and Odelius, M. and Wernet, Ph.}, title = {Quantifying covalent interactions with resonant inelastic soft X-ray scattering}, series = {Chemical physics letters}, volume = {669}, journal = {Chemical physics letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0009-2614}, doi = {10.1016/j.cplett.2016.12.046}, pages = {196 -- 201}, year = {2017}, abstract = {We analyze the effects of covalent interactions in Ni 2p3d resonant inelastic X-ray scattering (RIXS) spectra from aqueous Ni2+ ions and find that the relative RIXS intensities of ligand-to-metal charge-transfer final states with respect to the ligand-field final states reflect the covalent mixing between Ni 3d and water orbitals. Specifically, the experimental intensity ratio at the Ni L-3-edge allows to determine that the Ni 3d orbitals have on average 5.5\% of water character. We propose that 2p3d RIXS at the Ni L-3-edge can be utilized to quantify covalency in Ni complexes without the use of external references or simulations.}, language = {en} } @phdthesis{Kotha2018, author = {Kotha, Sreeram Reddy}, title = {Quantification of uncertainties in seismic ground-motion prediction}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-415743}, school = {Universit{\"a}t Potsdam}, pages = {xii, 101}, year = {2018}, abstract = {The purpose of Probabilistic Seismic Hazard Assessment (PSHA) at a construction site is to provide the engineers with a probabilistic estimate of ground-motion level that could be equaled or exceeded at least once in the structure's design lifetime. A certainty on the predicted ground-motion allows the engineers to confidently optimize structural design and mitigate the risk of extensive damage, or in worst case, a collapse. It is therefore in interest of engineering, insurance, disaster mitigation, and security of society at large, to reduce uncertainties in prediction of design ground-motion levels. In this study, I am concerned with quantifying and reducing the prediction uncertainty of regression-based Ground-Motion Prediction Equations (GMPEs). Essentially, GMPEs are regressed best-fit formulae relating event, path, and site parameters (predictor variables) to observed ground-motion values at the site (prediction variable). GMPEs are characterized by a parametric median (μ) and a non-parametric variance (σ) of prediction. μ captures the known ground-motion physics i.e., scaling with earthquake rupture properties (event), attenuation with distance from source (region/path), and amplification due to local soil conditions (site); while σ quantifies the natural variability of data that eludes μ. In a broad sense, the GMPE prediction uncertainty is cumulative of 1) uncertainty on estimated regression coefficients (uncertainty on μ,σ_μ), and 2) the inherent natural randomness of data (σ). The extent of μ parametrization, the quantity, and quality of ground-motion data used in a regression, govern the size of its prediction uncertainty: σ_μ and σ. In the first step, I present the impact of μ parametrization on the size of σ_μ and σ. Over-parametrization appears to increase the σ_μ, because of the large number of regression coefficients (in μ) to be estimated with insufficient data. Under-parametrization mitigates σ_μ, but the reduced explanatory strength of μ is reflected in inflated σ. For an optimally parametrized GMPE, a ~10\% reduction in σ is attained by discarding the low-quality data from pan-European events with incorrect parametric values (of predictor variables). In case of regions with scarce ground-motion recordings, without under-parametrization, the only way to mitigate σ_μ is to substitute long-term earthquake data at a location with short-term samples of data across several locations - the Ergodic Assumption. However, the price of ergodic assumption is an increased σ, due to the region-to-region and site-to-site differences in ground-motion physics. σ of an ergodic GMPE developed from generic ergodic dataset is much larger than that of non-ergodic GMPEs developed from region- and site-specific non-ergodic subsets - which were too sparse to produce their specific GMPEs. Fortunately, with the dramatic increase in recorded ground-motion data at several sites across Europe and Middle-East, I could quantify the region- and site-specific differences in ground-motion scaling and upgrade the GMPEs with 1) substantially more accurate region- and site-specific μ for sites in Italy and Turkey, and 2) significantly smaller prediction variance σ. The benefit of such enhancements to GMPEs is quite evident in my comparison of PSHA estimates from ergodic versus region- and site-specific GMPEs; where the differences in predicted design ground-motion levels, at several sites in Europe and Middle-Eastern regions, are as large as ~50\%. Resolving the ergodic assumption with mixed-effects regressions is feasible when the quantified region- and site-specific effects are physically meaningful, and the non-ergodic subsets (regions and sites) are defined a priori through expert knowledge. In absence of expert definitions, I demonstrate the potential of machine learning techniques in identifying efficient clusters of site-specific non-ergodic subsets, based on latent similarities in their ground-motion data. Clustered site-specific GMPEs bridge the gap between site-specific and fully ergodic GMPEs, with their partially non-ergodic μ and, σ ~15\% smaller than the ergodic variance. The methodological refinements to GMPE development produced in this study are applicable to new ground-motion datasets, to further enhance certainty of ground-motion prediction and thereby, seismic hazard assessment. Advanced statistical tools show great potential in improving the predictive capabilities of GMPEs, but the fundamental requirement remains: large quantity of high-quality ground-motion data from several sites for an extended time-period.}, language = {en} } @phdthesis{Sommerfeld2015, author = {Sommerfeld, Anja}, title = {Quantification of internal variability of the arctic summer atmosphere based on HIRHAM5 ensemble simulations}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-85347}, school = {Universit{\"a}t Potsdam}, pages = {VII, 110, vi}, year = {2015}, abstract = {The non-linear behaviour of the atmospheric dynamics is not well understood and makes the evaluation and usage of regional climate models (RCMs) difficult. Due to these non-linearities, chaos and internal variability (IV) within the RCMs are induced, leading to a sensitivity of RCMs to their initial conditions (IC). The IV is the ability of RCMs to realise different solutions of simulations that differ in their IC, but have the same lower and lateral boundary conditions (LBC), hence can be defined as the across-member spread between the ensemble members. For the investigation of the IV and the dynamical and diabatic contributions generating the IV four ensembles of RCM simulations are performed with the atmospheric regional model HIRHAM5. The integration area is the Arctic and each ensemble consists of 20 members. The ensembles cover the time period from July to September for the years 2006, 2007, 2009 and 2012. The ensemble members have the same LBC and differ in their IC only. The different IC are arranged by an initialisation time that shifts successively by six hours. Within each ensemble the first simulation starts on 1st July at 00 UTC and the last simulation starts on 5th July at 18 UTC and each simulation runs until 30th September. The analysed time period ranges from 6th July to 30th September, the time period that is covered by all ensemble members. The model runs without any nudging to allow a free development of each simulation to get the full internal variability within the HIRHAM5. As a measure of the model generated IV, the across-member standard deviation and the across-member variance is used and the dynamical and diabatic processes influencing the IV are estimated by applying a diagnostic budget study for the IV tendency of the potential temperature developed by Nikiema and Laprise [2010] and Nikiema and Laprise [2011]. The diagnostic budget study is based on the first law of thermodynamics for potential temperature and the mass-continuity equation. The resulting budget equation reveals seven contributions to the potential temperature IV tendency. As a first study, this work analyses the IV within the HIRHAM5. Therefore, atmospheric circulation parameters and the potential temperature for all four ensemble years are investigated. Similar to previous studies, the IV fluctuates strongly in time. Further, due to the fact that all ensemble members are forced with the same LBC, the IV depends on the vertical level within the troposphere, with high values in the lower troposphere and at 500 hPa and low values in the upper troposphere and at the surface. By the same reason, the spatial distribution shows low values of IV at the boundaries of the model domain. The diagnostic budget study for the IV tendency of potential temperature reveals that the seven contributions fluctuate in time like the IV. However, the individual terms reach different absolute magnitudes. The budget study identifies the horizontal and vertical 'baroclinic' terms as the main contributors to the IV tendency, with the horizontal 'baroclinic' term producing and the vertical 'baroclinic' term reducing the IV. The other terms fluctuate around zero, because they are small in general or are balanced due to the domain average. The comparison of the results obtained for the four different ensembles (summers 2006, 2007, 2009 and 2012) reveals that on average the findings for each ensemble are quite similar concerning the magnitude and the general pattern of IV and its contributions. However, near the surface a weaker IV is produced with decreasing sea ice extent. This is caused by a smaller impact of the horizontal 'baroclinic' term over some regions and by the changing diabatic processes, particularly a more intense reducing tendency of the IV due to condensative heating. However, it has to be emphasised that the behaviour of the IV and its dynamical and diabatic contributions are influenced mainly by complex atmospheric feedbacks and large-scale processes and not by the sea ice distribution. Additionally, a comparison with a second RCM covering the Arctic and using the same LBCs and IC is performed. For both models very similar results concerning the IV and its dynamical and diabatic contributions are found. Hence, this investigation leads to the conclusion that the IV is a natural phenomenon and is independent from the applied RCM.}, language = {en} } @article{LeCorreDiekmannPenaCamargoetal.2022, author = {Le Corre, Vincent M. and Diekmann, Jonas and Pe{\~n}a-Camargo, Francisco and Thiesbrummel, Jarla and Tokmoldin, Nurlan and Gutierrez-Partida, Emilio and Peters, Karol Pawel and Perdig{\´o}n-Toro, Lorena and Futscher, Moritz H. and Lang, Felix and Warby, Jonathan and Snaith, Henry J. and Neher, Dieter and Stolterfoht, Martin}, title = {Quantification of efficiency losses due to mobile ions in Perovskite solar cells via fast hysteresis measurements}, series = {Solar RRL}, volume = {6}, journal = {Solar RRL}, number = {4}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2367-198X}, doi = {10.1002/solr.202100772}, pages = {10}, year = {2022}, abstract = {Perovskite semiconductors differ from most inorganic and organic semiconductors due to the presence of mobile ions in the material. Although the phenomenon is intensively investigated, important questions such as the exact impact of the mobile ions on the steady-state power conversion efficiency (PCE) and stability remain. Herein, a simple method is proposed to estimate the efficiency loss due to mobile ions via "fast-hysteresis" measurements by preventing the perturbation of mobile ions out of their equilibrium position at fast scan speeds (approximate to 1000 V s(-1)). The "ion-free" PCE is between 1\% and 3\% higher than the steady-state PCE, demonstrating the importance of ion-induced losses, even in cells with low levels of hysteresis at typical scan speeds (approximate to 100mv s(-1)). The hysteresis over many orders of magnitude in scan speed provides important information on the effective ion diffusion constant from the peak hysteresis position. The fast-hysteresis measurements are corroborated by transient charge extraction and capacitance measurements and numerical simulations, which confirm the experimental findings and provide important insights into the charge carrier dynamics. The proposed method to quantify PCE losses due to field screening induced by mobile ions clarifies several important experimental observations and opens up a large range of future experiments.}, language = {en} } @phdthesis{Hammoudeh2002, author = {Hammoudeh, Ismail}, title = {Qualitative nichtlineare Zeitreihenanalyse mit Anwendung auf das Problem der Polbewegung}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000640}, school = {Universit{\"a}t Potsdam}, year = {2002}, abstract = {In der nichtlinearen Datenreihenanalyse hat sich seit etwa 10 Jahren eine Monte-Carlo-Testmethode etabliert, die Theiler-surrogatmethode, mit Hilfe derer entschieden werden kann, ob eine Datenreihe nichtlinearen Ursprungs sei. Diese Methode wird kritisiert, modifiziert und verallgemeinert. Das, was Theiler untersuchen will braucht andere Surrogatmethoden, die hier konstruiert werden. Und das, was Theiler untersucht braucht gar keine Monte-Carlo-Methoden. Mit Hilfe des in der Arbeit eingef{\"u}hrten Begriffs des Phasensignals werden Testm{\"o}glichkeiten dargelegt und Beziehungen zwischen den nichtlinearen Eigenschaften der Zeitreihe und deren Phasenspektrum erforscht. Das Phasensignal wird aus dem Phasenspektrum der Zeitreihe hergeleitet und registriert außerordentliche Geschehnisse im Zeitbereich sowie Phasenkopplungen im Frequenzbereich. Die gewonnenen Erkenntnisse werden auf das Problem der Polbewegung angewendet. Die Hypothese einer nichtlinearen Beziehung zwischen der atmosph{\"a}rischen Erregung und der Polbewegung wird untersucht. Eine nichtlineare Behandlung wird nicht f{\"u}r n{\"o}tig gehalten.}, subject = {Nichtlineare Zeitreihenanalyse ; Signalanalyse - Polbewegung ; Chandler-Periode ; Nichtlineares Ph{\"a}nomen}, language = {de} } @misc{Kurcz2005, type = {Master Thesis}, author = {Kurcz, Andreas}, title = {Qed in periodischen und absorbierenden Medien}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-35280}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {Das Strahlungsfeld in einem absorbierenden, periodischen Dielektrikum ist kanonisch quantisiert worden. Dabei wurde ein eindimensionales Modell mit punktf{\"o}rmigen Streuern betrachtet, deren Polarisierbarkeit den Kramers-Kronig Relationen gehorcht. Es wurde ein Quantisierungsverfahren nach Kn{\"o}ll, Scheel und Welsch [1] verwendet, das als eine Erg{\"a}nzung zum mikroskopischen Huttner-Barnett Schema [2] aufgefaßt werden kann und in dem auf der Basis der ph{\"a}nomenologischen Maxwell Gleichungen eine bosonische Rauschpolarisation als die Quelle des Feldes auftritt. Das Problem reduziert sich dabei auf die Bestimmung der klassischenGreens Funktion. Die Kramers-Kronig Relationen der komplexen Polarisierbarkeit der Punktstreuer sichert die korrekte Verkn{\"u}pfung zwischen Dispersion und Absorption. Der Punktstreuer ist dabei ein idealisiertes Modell, um periodische Hintergrundmedien, denen das Strahlungsfeld ausgesetzt ist, zu beschreiben. Er bedarf jedoch eines Kompromisses, um die entsprechenden Rauschquellen zu konstruieren. Es konnte gezeigt werden, daß der Punktstreuer dasselbe Streuverhalten wie eine d{\"u}nne Potentialschwelle besitzt und damit die technischen Schwierigkeiten f{\"u}r den Fall eines absorptiven Punktstreuers {\"u}berwunden werden k{\"o}nnen. An Hand dieses Beispiels konnte das Quantisierungsschema nach Kn{\"o}ll, Scheel und Welsch auf periodische und absorbierende Strukturen angewendet werden. Es ist bekannt, daß die Bestimmung der Modenstruktur f{\"u}r den Fall der Modenzerlegung des Strahlungsfeldes ein rein klassisches Problem darstellt. Mit Ausnahme des Vakuums ist eine zweckm{\"a}ßige Modenzerlegung nur dann durchf{\"u}hrbar, wenn mit einer reellen Polarisierbarkeit die Absorption vernachl{\"a}ssigt werden kann. Aus den Kramers-Kronig Relationen wird klar, daß solch eine Annahme nur in bestimmten Intervallen des Frequenzspektrums gerechtfertigt werden kann. Es wurde gezeigt, daß auch das quantisierte Strahlungsfeld in Anwesenheit der Punktstreuer in eben solchen Intervallen in Quasimoden entwickelt werden kann, wenn man neue Quasioperatoren als Erzeuger und Vernichter einf{\"u}hrt. Die bosonischen Vertauschungsrelationen dieser Operatoren konnten best{\"a}tigt werden. Die allgemeine Vertauschungsrelation kanonisch konjugierter Variablen im Sinne der kanonischen Quantisierung kann f{\"u}r das elektrische Feld und das Vektorpotential beibehalten werden. In der Greens Funktion sind s{\"a}mtliche Informationen {\"u}ber die dispersiven und absorptiven Eigenschaften des Dielektrikums sowie {\"u}ber die r{\"a}umliche Struktur enthalten. Die wesentlichen Merkmale werden dabei durch den Reflexionskoeffizienten nach Boedecker und Henkel [3] bestimmt, der das Reflexionsverhalten an einem unendlich ausgedehnten Halbraum aus periodisch angeordneten Punktstreuern beschreibt. Mit Hilfe des Transfermatrixformalismus war es m{\"o}glich einen allgemeinen Zugang zum Reflexionsverhalten zun{\"a}chst endlicher Strukturen zu erhalten. Die Ausdehnung auf den Halbraum mit Hilfe der Klassifizierung in Untergruppen der Transfermatrizen nach erm{\"o}glichte es, den Reflexionskoeffizienten nach Boedecker und Henkel [3] auch geometrisch plausibel zu machen. Ein wesentlicher Aspekt von periodischen Systemen ist die Translationssymmetrie, die im Fall unendlich ausgedehnter, verlustfreier Systeme auf eine ideale Bandstruktur f{\"u}hrt. Mit Hilfe der Untergruppenklassifizierung kann im verlustfreien Fall die Geometrie der Anordnung indirekt mit der Bandstruktur verkn{\"u}pft werden. Es konnte nachgewiesen werden, daß auch der einzelne Punktstreuer immer in einer dieser Untergruppen zu finden ist. Dabei besitzt die Bandstruktur der unendlich periodischen Anordnung dieser Streuer immer eine von der Polarisierbarkeit abh{\"a}ngige Bandkante und eine von der Polarisierbarkeit unabh{\"a}ngige Bandkante. Die Bandstruktur, die mit den verlustbehafteten Feldern einhergeht, ist eine doppelt komplexe. Alternativ zu dieser nur schwer zu interpretierenden Bandstruktur wurden die Feldfluktuationen selektiv nach reellen Frequenzen und Wellenzahlen sondiert. Es zeigt sich, daß Absorption besonders in der N{\"a}he der Bandkanten die B{\"a}nder verbreitert. Die Ergebnisse, die mit Hilfe der lokalen Zustandsdichtefunktion gewonnen wurden, konnten dabei best{\"a}tigt werden. [1] S. Scheel, L. Kn{\"o}ll and D. G. Welsch, Phys.Rev. A 58, 700 (1998). [2] B. Huttner and S. M. Barnett, Phys. Rev. A 46, 4306 (1992). [3] G. Boedecker and C. Henkel, OPTICS EXPRESS 11, 1590 (2003).}, language = {de} } @article{HosseiniTokmoldinLeeetal.2020, author = {Hosseini, Seyed Mehrdad and Tokmoldin, Nurlan and Lee, Young Woong and Zou, Yingping and Woo, Han Young and Neher, Dieter and Shoaee, Safa}, title = {Putting order into PM6:Y6 solar cells to reduce the langevin recombination in 400 nm thick junction}, series = {Solar RRL}, volume = {4}, journal = {Solar RRL}, number = {11}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2367-198X}, doi = {10.1002/solr.202000498}, pages = {7}, year = {2020}, abstract = {Increasing the active layer thickness without sacrificing the power conversion efficiency (PCE) is one of the great challenges faced by organic solar cells (OSCs) for commercialization. Recently, PM6:Y6 as an OSC based on a non-fullerene acceptor (NFA) has excited the community because of its PCE reaching as high as 15.9\%; however, by increasing the thickness, the PCE drops due to the reduction of the fill factor (FF). This drop is attributed to change in mobility ratio with increasing thickness. Furthermore, this work demonstrates that by regulating the packing and the crystallinity of the donor and the acceptor, through volumetric content of chloronaphthalene (CN) as a solvent additive, one can improve the FF of a thick PM6:Y6 device (approximate to 400 nm) from 58\% to 68\% (PCE enhances from 12.2\% to 14.4\%). The data indicate that the origin of this enhancement is the reduction of the structural and energetic disorders in the thick device with 1.5\% CN compared with 0.5\% CN. This correlates with improved electron and hole mobilities and a 50\% suppressed bimolecular recombination, such that the non-Langevin reduction factor is 180 times. This work reveals the role of disorder on the charge extraction and bimolecular recombination of NFA-based OSCs.}, language = {en} } @article{SmithBarlowRosenthaletal.2022, author = {Smith, Bryce A. and Barlow, Brad N. and Rosenthal, Benjamin and Hermes, J. J. and Schaffenroth, Veronika}, title = {Pulse Timing Discovery of a Three-day Companion to the Hot Subdwarf BPM 36430}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {939}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/ac9384}, pages = {6}, year = {2022}, abstract = {Hot subdwarf B stars are core-helium-burning objects that have undergone envelope stripping, likely by a binary companion. Using high-speed photometry from the Transiting Exoplanet Survey Satellite, we have discovered the hot subdwarf BPM 36430 is a hybrid sdBV(rs) pulsator exhibiting several low-amplitude g-modes and a strong p-mode pulsation. The latter shows a clear, periodic variation in its pulse arrival times. Fits to this phase oscillation imply BPM 36430 orbits a barycenter approximately 10 light-seconds away once every 3.1 days. Using the CHIRON echelle spectrograph on the CTIO 1.5 m telescope, we confirm the reflex motion by detecting a radial-velocity variation with semiamplitude, period, and phase in agreement with the pulse timings. We conclude that a white dwarf companion with minimum mass of approximate to 0.42 M (circle dot) orbits BPM 36430. Our study represents only the second time a companion orbiting a pulsating hot subdwarf or white dwarf has been detected from pulse timings and confirmed with radial velocities.}, language = {en} } @article{BaranOstensenTeltingetal.2018, author = {Baran, Andrzej S. and Ostensen, R. H. and Telting, J. H. and Vos, Joris and Kilkenny, D. and Vuckovic, Maja and Reed, M. D. and Silvotti, R. and Jeffery, C. Simon and Parsons, Steven G. and Dhillon, V. S. and Marsh, T. R.}, title = {Pulsations and eclipse-time analysis of HW Vir}, series = {Monthly notices of the Royal Astronomical Society}, volume = {481}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/sty2473}, pages = {2721 -- 2735}, year = {2018}, abstract = {We analysed recent K2 data of the short-period eclipsing binary system HW Vir, which consists of a hot subdwarf-B type primary with an M-dwarf companion. We determined the mid-times of eclipses, calculated O-C diagrams, and an average shift of the secondary minimum. Our results show that the orbital period is stable within the errors over the course of the 70 days of observations. Interestingly, the offset from mid-orbital phase between the primary and the secondary eclipses is found to be 1.62 s. If the shift is explained solely by light-travel time, the mass of the sdB primary must be 0.26 M-circle dot, which is too low for the star to be core-helium burning. However, we argue that this result is unlikely to be correct and that a number of effects caused by the relative sizes of the stars conspire to reduce the effective light-travel time measurement. After removing the flux variation caused by the orbit, we calculated the amplitude spectrum to search for pulsations. The spectrum clearly shows periodic signal from close to the orbital frequency up to 4600 mu Hz, with the majority of peaks found below 2600 mu Hz. The amplitudes are below 0.1 part-per-thousand, too low to be detected with ground-based photometry. Thus, the high-precision data from the Kepler spacecraft has revealed that the primary of the HW Vir system is a pulsating sdBV star. We argue that the pulsation spectrum of the primary in HW Vir differs from that in other sdB stars due to its relatively fast rotation that is (nearly) phase-locked with the orbit.}, language = {en} } @article{PopovychLysyanskyRosenblumetal.2017, author = {Popovych, Oleksandr V. and Lysyansky, Borys and Rosenblum, Michael and Pikovskij, Arkadij and Tass, Peter A.}, title = {Pulsatile desynchronizing delayed feedback for closed-loop deep brain stimulation}, series = {PLoS one}, volume = {12}, journal = {PLoS one}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0173363}, pages = {29}, year = {2017}, abstract = {High-frequency (HF) deep brain stimulation (DBS) is the gold standard for the treatment of medically refractory movement disorders like Parkinson's disease, essential tremor, and dystonia, with a significant potential for application to other neurological diseases. The standard setup of HF DBS utilizes an open-loop stimulation protocol, where a permanent HF electrical pulse train is administered to the brain target areas irrespectively of the ongoing neuronal dynamics. Recent experimental and clinical studies demonstrate that a closed-loop, adaptive DBS might be superior to the open-loop setup. We here combine the notion of the adaptive high-frequency stimulation approach, that aims at delivering stimulation adapted to the extent of appropriately detected biomarkers, with specifically desynchronizing stimulation protocols. To this end, we extend the delayed feedback stimulation methods, which are intrinsically closed-loop techniques and specifically designed to desynchronize abnormal neuronal synchronization, to pulsatile electrical brain stimulation. We show that permanent pulsatile high-frequency stimulation subjected to an amplitude modulation by linear or nonlinear delayed feedback methods can effectively and robustly desynchronize a STN-GPe network of model neurons and suggest this approach for desynchronizing closed-loop DBS.}, language = {en} } @article{AceroAloisioAmansetal.2017, author = {Acero, F. and Aloisio, R. and Amans, J. and Amato, Elena and Antonelli, L. A. and Aramo, C. and Armstrong, T. and Arqueros, F. and Asano, Katsuaki and Ashley, M. and Backes, M. and Balazs, C. and Balzer, A. and Bamba, Aya and Barkov, Maxim and Barrio, J. A. and Benbow, Wystan and Bernloehr, K. and Beshley, V. and Bigongiari, C. and Biland, A. and Bilinsky, A. and Bissaldi, Elisabetta and Biteau, J. and Blanch, O. and Blasi, P. and Blazek, J. and Boisson, C. and Bonanno, G. and Bonardi, A. and Bonavolonta, C. and Bonnoli, G. and Braiding, C. and Brau-Nogue, S. and Bregeon, J. and Brown, A. M. and Bugaev, V. and Bulgarelli, A. and Bulik, T. and Burton, Michael and Burtovoi, A. and Busetto, G. and Bottcher, M. and Cameron, R. and Capalbi, M. and Caproni, Anderson and Caraveo, P. and Carosi, R. and Cascone, E. and Cerruti, M. and Chaty, Sylvain and Chen, A. and Chen, X. and Chernyakova, M. and Chikawa, M. and Chudoba, J. and Cohen-Tanugi, J. and Colafrancesco, S. and Conforti, V. and Contreras, J. L. and Costa, A. and Cotter, G. and Covino, Stefano and Covone, G. and Cumani, P. and Cusumano, G. and Daniel, M. and Dazzi, F. and De Angelis, A. and De Cesare, G. and De Franco, A. and De Frondat, F. and Dal Pino, E. M. de Gouveia and De Lisio, C. and Lopez, R. de los Reyes and De Lotto, B. and de Naurois, M. and De Palma, F. and Del Santo, M. and Delgado, C. and della Volpe, D. and Di Girolamo, T. and Di Giulio, C. and Di Pierro, F. and Di Venere, L. and Doro, M. and Dournaux, J. and Dumas, D. and Dwarkadas, Vikram V. and Diaz, C. and Ebr, J. and Egberts, Kathrin and Einecke, S. and Elsaesser, D. and Eschbach, S. and Falceta-Goncalves, D. and Fasola, G. and Fedorova, E. and Fernandez-Barral, A. and Ferrand, Gilles and Fesquet, M. and Fiandrini, E. and Fiasson, A. and Filipovic, Miroslav D. and Fioretti, V. and Font, L. and Fontaine, Gilles and Franco, F. J. and Freixas Coromina, L. and Fujita, Yutaka and Fukui, Y. and Funk, S. and Forster, A. and Gadola, A. and Lopez, R. Garcia and Garczarczyk, M. and Giglietto, N. and Giordano, F. and Giuliani, A. and Glicenstein, J. and Gnatyk, R. and Goldoni, P. and Grabarczyk, T. and Graciani, R. and Graham, J. and Grandi, P. and Granot, Jonathan and Green, A. J. and Griffiths, S. and Gunji, S. and Hakobyan, H. and Hara, S. and Hassan, T. and Hayashida, M. and Heller, M. and Helo, J. C. and Hinton, J. and Hnatyk, B. and Huet, J. and Huetten, M. and Humensky, T. B. and Hussein, M. and Horandel, J. and Ikeno, Y. and Inada, T. and Inome, Y. and Inoue, S. and Inoue, T. and Inoue, Y. and Ioka, K. and Iori, Maurizio and Jacquemier, J. and Janecek, P. and Jankowsky, D. and Jung, I. and Kaaret, P. and Katagiri, H. and Kimeswenger, S. and Kimura, Shigeo S. and Knodlseder, J. and Koch, B. and Kocot, J. and Kohri, K. and Komin, N. and Konno, Y. and Kosack, K. and Koyama, S. and Kraus, Michaela and Kubo, Hidetoshi and Mezek, G. Kukec and Kushida, J. and La Palombara, N. and Lalik, K. and Lamanna, G. and Landt, H. and Lapington, J. and Laporte, P. and Lee, S. and Lees, J. and Lefaucheur, J. and Lenain, J. -P. and Leto, Giuseppe and Lindfors, E. and Lohse, T. and Lombardi, S. and Longo, F. and Lopez, M. and Lucarelli, F. and Luque-Escamilla, Pedro Luis and Lopez-Coto, R. and Maccarone, M. C. and Maier, G. and Malaguti, G. and Mandat, D. and Maneva, G. and Mangano, S. and Marcowith, Alexandre and Marti, J. and Martinez, M. and Martinez, G. and Masuda, S. and Maurin, G. and Maxted, N. and Melioli, Claudio and Mineo, T. and Mirabal, N. and Mizuno, T. and Moderski, R. and Mohammed, M. and Montaruli, T. and Moralejo, A. and Mori, K. and Morlino, G. and Morselli, A. and Moulin, Emmanuel and Mukherjee, R. and Mundell, C. and Muraishi, H. and Murase, Kohta and Nagataki, Shigehiro and Nagayoshi, T. and Naito, T. and Nakajima, D. and Nakamori, T. and Nemmen, R. and Niemiec, Jacek and Nieto, D. and Nievas-Rosillo, M. and Nikolajuk, M. and Nishijima, K. and Noda, K. and Nogues, L. and Nosek, D. and Novosyadlyj, B. and Nozaki, S. and Ohira, Yutaka and Ohishi, M. and Ohm, S. and Okumura, A. and Ong, R. A. and Orito, R. and Orlati, A. and Ostrowski, M. and Oya, I. and Padovani, Marco and Palacio, J. and Palatka, M. and Paredes, Josep M. and Pavy, S. and Persic, M. and Petrucci, P. and Petruk, Oleh and Pisarski, A. and Pohl, Martin and Porcelli, A. and Prandini, E. and Prast, J. and Principe, G. and Prouza, M. and Pueschel, Elisa and Puelhofer, G. and Quirrenbach, A. and Rameez, M. and Reimer, O. and Renaud, M. and Ribo, M. and Rico, J. and Rizi, V. and Rodriguez, J. and Fernandez, G. Rodriguez and Rodriguez Vazquez, J. J. and Romano, Patrizia and Romeo, G. and Rosado, J. and Rousselle, J. and Rowell, G. and Rudak, B. and Sadeh, I. and Safi-Harb, S. and Saito, T. and Sakaki, N. and Sanchez, D. and Sangiorgi, P. and Sano, H. and Santander, M. and Sarkar, S. and Sawada, M. and Schioppa, E. J. and Schoorlemmer, H. and Schovanek, P. and Schussler, F. and Sergijenko, O. and Servillat, M. and Shalchi, A. and Shellard, R. C. and Siejkowski, H. and Sillanpaa, A. and Simone, D. and Sliusar, V. and Sol, H. and Stanic, S. and Starling, R. and Stawarz, L. and Stefanik, S. and Stephan, M. and Stolarczyk, T. and Szanecki, M. and Szepieniec, T. and Tagliaferri, G. and Tajima, H. and Takahashi, M. and Takeda, J. and Tanaka, M. and Tanaka, S. and Tejedor, L. A. and Telezhinsky, Igor O. and Temnikov, P. and Terada, Y. and Tescaro, D. and Teshima, M. and Testa, V. and Thoudam, S. and Tokanai, F. and Torres, D. F. and Torresi, E. and Tosti, G. and Townsley, C. and Travnicek, P. and Trichard, C. and Trifoglio, M. and Tsujimoto, S. and Vagelli, V. and Vallania, P. and Valore, L. and van Driel, W. and van Eldik, C. and Vandenbroucke, Justin and Vassiliev, V. and Vecchi, M. and Vercellone, Stefano and Vergani, S. and Vigorito, C. and Vorobiov, S. and Vrastil, M. and Vazquez Acosta, M. L. and Wagner, S. J. and Wagner, R. and Wakely, S. P. and Walter, R. and Ward, J. E. and Watson, J. J. and Weinstein, A. and White, M. and White, R. and Wierzcholska, A. and Wilcox, P. and Williams, D. A. and Wischnewski, R. and Wojcik, P. and Yamamoto, T. and Yamamoto, H. and Yamazaki, Ryo and Yanagita, S. and Yang, L. and Yoshida, T. and Yoshida, M. and Yoshiike, S. and Yoshikoshi, T. and Zacharias, M. and Zampieri, L. and Zanin, R. and Zavrtanik, M. and Zavrtanik, D. and Zdziarski, A. and Zech, Alraune and Zechlin, Hannes and Zhdanov, V. and Ziegler, A. and Zorn, J.}, title = {Prospects for Cherenkov Telescope Array Observations of the Young Supernova Remnant RX J1713.7-3946}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {840}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aa6d67}, pages = {14}, year = {2017}, abstract = {We perform simulations for future Cherenkov Telescope Array (CTA) observations of RX J1713.7-3946, a young supernova remnant (SNR) and one of the brightest sources ever discovered in very high energy (VHE) gamma rays. Special attention is paid to exploring possible spatial (anti) correlations of gamma rays with emission at other wavelengths, in particular X-rays and CO/H I emission. We present a series of simulated images of RX J1713.7-3946 for CTA based on a set of observationally motivated models for the gamma-ray emission. In these models, VHE gamma rays produced by high-energy electrons are assumed to trace the nonthermal X-ray emission observed by XMM-Newton, whereas those originating from relativistic protons delineate the local gas distributions. The local atomic and molecular gas distributions are deduced by the NANTEN team from CO and H I observations. Our primary goal is to show how one can distinguish the emission mechanism(s) of the gamma rays (i.e., hadronic versus leptonic, or a mixture of the two) through information provided by their spatial distribution, spectra, and time variation. This work is the first attempt to quantitatively evaluate the capabilities of CTA to achieve various proposed scientific goals by observing this important cosmic particle accelerator.}, language = {en} } @phdthesis{Schmeja2006, author = {Schmeja, Stefan}, title = {Properties of turbulent star-forming clusters : models versus observations}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-7364}, school = {Universit{\"a}t Potsdam}, year = {2006}, abstract = {Stars are born in turbulent molecular clouds that fragment and collapse under the influence of their own gravity, forming a cluster of hundred or more stars. The star formation process is controlled by the interplay between supersonic turbulence and gravity. In this work, the properties of stellar clusters created by numerical simulations of gravoturbulent fragmentation are compared to those from observations. This includes the analysis of properties of individual protostars as well as statistical properties of the entire cluster. It is demonstrated that protostellar mass accretion is a highly dynamical and time-variant process. The peak accretion rate is reached shortly after the formation of the protostellar core. It is about one order of magnitude higher than the constant accretion rate predicted by the collapse of a classical singular isothermal sphere, in agreement with the observations. For a more reasonable comparison, the model accretion rates are converted to the observables bolometric temperature, bolometric luminosity, and envelope mass. The accretion rates from the simulations are used as input for an evolutionary scheme. The resulting distribution in the Tbol-Lbol-Menv parameter space is then compared to observational data by means of a 3D Kolmogorov-Smirnov test. The highest probability found that the distributions of model tracks and observational data points are drawn from the same population is 70\%. The ratios of objects belonging to different evolutionary classes in observed star-forming clusters are compared to the temporal evolution of the gravoturbulent models in order to estimate the evolutionary stage of a cluster. While it is difficult to estimate absolute ages, the realtive numbers of young stars reveal the evolutionary status of a cluster with respect to other clusters. The sequence shows Serpens as the youngest and IC 348 as the most evolved of the investigated clusters. Finally the structures of young star clusters are investigated by applying different statistical methods like the normalised mean correlation length and the minimum spanning tree technique and by a newly defined measure for the cluster elongation. The clustering parameters of the model clusters correspond in many cases well to those from observed ones. The temporal evolution of the clustering parameters shows that the star cluster builds up from several subclusters and evolves to a more centrally concentrated cluster, while the cluster expands slower than new stars are formed.}, subject = {Sternentstehung}, language = {en} } @article{MakwanaYan2020, author = {Makwana, Kirit D. and Yan, Huirong}, title = {Properties of magnetohydrodynamic modes in compressively driven plasma turbulence}, series = {Physical Review X}, volume = {10}, journal = {Physical Review X}, number = {3}, publisher = {American Physical Society (APS)}, address = {College Park}, issn = {2160-3308}, doi = {10.1103/PhysRevX.10.031021}, pages = {15}, year = {2020}, abstract = {We study properties of magnetohydrodynamic (MHD) eigenmodes by decomposing the data of MHD simulations into linear MHD modes-namely, the Alfven, slow magnetosonic, and fast magnetosonic modes. We drive turbulence with a mixture of solenoidal and compressive driving while varying the Alfven Mach number (M-A), plasma beta, and the sonic Mach number from subsonic to transsonic. We find that the proportion of fast and slow modes in the mode mixture increases with increasing compressive forcing. This proportion of the magnetosonic modes can also become the dominant fraction in the mode mixture. The anisotropy of the modes is analyzed by means of their structure functions. The Alfven-mode anisotropy is consistent with the Goldreich-Sridhar theory. We find a transition from weak to strong Alfvenic turbulence as we go from low to high M-A. The slow-mode properties are similar to the Alfven mode. On the other hand, the isotropic nature of fast modes is verified in the cases where the fast mode is a significant fraction of the mode mixture. The fast-mode behavior does not show any transition in going from low to high M-A. We find indications that there is some interaction between the different modes, and the properties of the dominant mode can affect the properties of the weaker modes. This work identifies the conditions under which magnetosonic modes can be a major fraction of turbulent astrophysical plasmas, including the regime of weak turbulence. Important astrophysical implications for cosmic-ray transport and magnetic reconnection are discussed.}, language = {en} } @misc{MakwanaYan2020, author = {Makwana, Kirit D. and Yan, Huirong}, title = {Properties of magnetohydrodynamic modes in compressively driven plasma turbulence}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, volume = {10}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {3}, publisher = {American Physical Society (APS)}, address = {College Park}, issn = {1866-8372}, doi = {10.25932/publishup-53160}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-531607}, pages = {17}, year = {2020}, abstract = {We study properties of magnetohydrodynamic (MHD) eigenmodes by decomposing the data of MHD simulations into linear MHD modes-namely, the Alfven, slow magnetosonic, and fast magnetosonic modes. We drive turbulence with a mixture of solenoidal and compressive driving while varying the Alfven Mach number (M-A), plasma beta, and the sonic Mach number from subsonic to transsonic. We find that the proportion of fast and slow modes in the mode mixture increases with increasing compressive forcing. This proportion of the magnetosonic modes can also become the dominant fraction in the mode mixture. The anisotropy of the modes is analyzed by means of their structure functions. The Alfven-mode anisotropy is consistent with the Goldreich-Sridhar theory. We find a transition from weak to strong Alfvenic turbulence as we go from low to high M-A. The slow-mode properties are similar to the Alfven mode. On the other hand, the isotropic nature of fast modes is verified in the cases where the fast mode is a significant fraction of the mode mixture. The fast-mode behavior does not show any transition in going from low to high M-A. We find indications that there is some interaction between the different modes, and the properties of the dominant mode can affect the properties of the weaker modes. This work identifies the conditions under which magnetosonic modes can be a major fraction of turbulent astrophysical plasmas, including the regime of weak turbulence. Important astrophysical implications for cosmic-ray transport and magnetic reconnection are discussed.}, language = {en} } @phdthesis{HerreroAlonso2023, author = {Herrero Alonso, Yohana}, title = {Properties of high-redshift galaxies in different environments}, doi = {10.25932/publishup-61328}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-613288}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 114}, year = {2023}, abstract = {The Lyman-𝛼 (Ly𝛼) line commonly assists in the detection of high-redshift galaxies, the so-called Lyman-alpha emitters (LAEs). LAEs are useful tools to study the baryonic matter distribution of the high-redshift universe. Exploring their spatial distribution not only reveals the large-scale structure of the universe at early epochs, but it also provides an insight into the early formation and evolution of the galaxies we observe today. Because dark matter halos (DMHs) serve as sites of galaxy formation, the LAE distribution also traces that of the underlying dark matter. However, the details of this relation and their co-evolution over time remain unclear. Moreover, theoretical studies predict that the spatial distribution of LAEs also impacts their own circumgalactic medium (CGM) by influencing their extended Ly𝛼 gaseous halos (LAHs), whose origin is still under investigation. In this thesis, I make several contributions to improve the knowledge on these fields using samples of LAEs observed with the Multi Unit Spectroscopic Explorer (MUSE) at redshifts of 3 < 𝑧 < 6.}, language = {en} } @masterthesis{Eggers2023, type = {Bachelor Thesis}, author = {Eggers, Nele}, title = {Properties of Arctic aerosol in the transition between Arctic haze to summer season derived by lidar}, doi = {10.25932/publishup-61943}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-619438}, school = {Universit{\"a}t Potsdam}, pages = {x, 63}, year = {2023}, abstract = {During the Arctic haze period, the Arctic troposphere consists of larger, yet fewer, aerosol particles than during the summer (Tunved et al., 2013; Quinn et al., 2007). Interannual variability (Graßl and Ritter, 2019; Rinke et al., 2004), as well as unknown origins (Stock et al., 2014) and properties of aerosol complicate modeling these annual aerosol cycles. This thesis investigates the modification of the microphysical properties of Arctic aerosols in the transition from Arctic haze to the summer season. Therefore, lidar measurements of Ny-{\AA}lesund from April 2021 to the end of July 2021 are evaluated based on the aerosols' optical properties. An overview of those properties will be provided. Furthermore, parallel radiosonde data is considered for indication of hygroscopic growth. The annual aerosol cycle in 2021 differs from expectations based on previous studies from Tunved et al. (2013) and Quinn et al. (2007). Developments of backscatter, extinction, aerosol depolarisation, lidar ratio and color ratio show a return of the Arctic haze in May. The haze had already reduced in April, but regrew afterwards. The average Arctic aerosol displays hygroscopic behaviour, meaning growth due to water uptake. To determine such a behaviour is generally laborious because various meteorological circumstances need to be considered. Two case studies provide further information on these possible events. In particular, a day with a rare ice cloud and with highly variable water cloud layers is observed.}, language = {en} } @article{PaalvastVerhammeStrakaetal.2018, author = {Paalvast, M. and Verhamme, A. and Straka, L. A. and Brinchmann, J. and Herenz, Edmund Christian and Carton, D. and Gunawardhana, M. L. P. and Boogaard, L. A. and Cantalupo, S. and Contini, T. and Epinat, Benoit and Inami, H. and Marino, R. A. and Maseda, M. V. and Michel-Dansac, L. and Muzahid, S. and Nanayakkara, T. and Pezzulli, Gabriele and Richard, J. and Schaye, Joop and Segers, M. C. and Urrutia, Tanya and Wendt, Martin and Wisotzki, Lutz}, title = {Properties and redshift evolution of star-forming galaxies with high [0 III]/[O II] ratios with MUSE at 0.28 < z < 0.85}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {618}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201832866}, pages = {15}, year = {2018}, abstract = {We present a study of the [O III]/[O II] ratios of star-forming galaxies drawn from Multi-Unit Spectroscopic Explorer (MUSE) data spanning a redshift range 0.28 < z < 0.85. Recently discovered Lyman continuum (LyC) emitters have extremely high oxygen line ratios: [O III]lambda 5007/[O II]lambda lambda 3726, 3729 > 4. Here we aim to understand the properties and the occurrences of galaxies with such high line ratios. Combining data from several MUSE Guaranteed Time Observing (GTO) programmes, we select a population of star-forming galaxies with bright emission lines, from which we draw 406 galaxies for our analysis based on their position in the z-dependent star formation rate (SFR) stellar mass (M*) plane. Out of this sample 15 are identified as extreme oxygen emitters based on their [O III]/[O II] ratios (3.7\%) and 104 galaxies have [O III]/[O II] > 1 (26\%). Our analysis shows no significant correlation between M*, SFR, and the distance from the SFR M, relation with [O III]/[O II]. We find a decrease in the fraction of galaxies with [O III]/[O II] > 1 with increasing M*, however, this is most likely a result of the relationship between [O III]/[O II] and metallicity, rather than between [O III]/[O II] and M. We draw a comparison sample of local analogues with < z > 0.03 from the Sloan Digital Sky Survey, and find similar incidence rates for this sample. In order to investigate the evolution in the fraction of high [O III]/[O II] emitters with redshift, we bin the sample into three redshift subsamples of equal number, but find no evidence for a dependence on redshift. Furthermore, we compare the observed line ratios with those predicted by nebular models with no LyC escape and find that most of the extreme oxygen emitters can be reproduced by low metallicity models. The remaining galaxies are likely LyC emitter candidates.}, language = {en} } @article{WangZuoKimetal.2022, author = {Wang, Suhao and Zuo, Guangzheng and Kim, Jongho and Sirringhaus, Henning}, title = {Progress of Conjugated Polymers as Emerging Thermoelectric Materials}, series = {Progress in polymer science}, volume = {129}, journal = {Progress in polymer science}, publisher = {Elsevier}, address = {Oxford}, issn = {0079-6700}, doi = {10.1016/j.progpolymsci.2022.101548}, pages = {34}, year = {2022}, abstract = {Thanks to the combined effort s of scientist s in several research fields, the preceding decade has witnessed considerable progress in the use of conjugated polymers as emerging thermoelectric materials leading to significant improvements in performance and demonstration of a number of diverse applications. Despite these recent advances, systematic assessments of the impact of molecular design on thermoelectric properties are scarce. Although several reviews marginally highlight the role of chemical structure, the understanding of structure-performance relationships is still fragmented. An in-depth understanding of the relationship between molecular structure and thermoelectric properties will enable the rational design of next-generation thermoelectric polymers. To this end, this review showcases the state-of-the-art thermoelectric polymers, discusses structure-performance relationships, suggests strategies for improving thermoelectric performance that go beyond molecular design, and highlights some of the most impressive applications of thermoelectric polymers.}, language = {en} } @article{KulgemeyerBorowskiBuschhueteretal.2020, author = {Kulgemeyer, Christoph and Borowski, Andreas and Buschh{\"u}ter, David and Enkrott, Patrick and Kempin, Maren and Reinhold, Peter and Riese, Josef and Schecker, Horst and Schr{\"o}der, Jan and Vogelsang, Christoph}, title = {Professional knowledge affects action-related skills}, series = {Journal of research in science teaching : the official journal of the National Association for Research in Science Teaching}, volume = {57}, journal = {Journal of research in science teaching : the official journal of the National Association for Research in Science Teaching}, number = {10}, publisher = {Wiley}, address = {Hoboken}, issn = {0022-4308}, doi = {10.1002/tea.21632}, pages = {1554 -- 1582}, year = {2020}, abstract = {Professional knowledge is an important source of science teachers' actions in the classroom (e.g., personal professional content knowledge [pedagogical content knowledge, PCK] is the source of enacted PCK in the refined consensus model [RCM] for PCK). However, the evidence for this claim is ambiguous at best. This study applied a cross-lagged panel design to examine the relationship between professional knowledge and actions in one particular instructional situation: explaining physics. Pre- and post a field experience (one semester), 47 preservice physics teachers from four different universities were tested for their content knowledge (CK), PCK, pedagogical knowledge (PK), and action-related skills in explaining physics. The study showed that joint professional knowledge (the weighted sum of CK, PCK, and PK scores) at the beginning of the field experience impacted the development of explaining skills during the field experience (beta = .38**). We interpret this as a particular relationship between professional knowledge and science teachers' action-related skills (enacted PCK): professional knowledge is necessary for the development of explaining skills. That is evidence that personal PCK affects enacted PCK. In addition, field experiences are often supposed to bridge the theory-practice gap by transforming professional knowledge into instructional practice. Our results suggest that for field experiences to be effective, preservice teachers should start with profound professional knowledge.}, language = {en} } @phdthesis{Lever2022, author = {Lever, Fabiano}, title = {Probing the ultrafast dynamics of 2-Thiouracil with soft x-rays}, doi = {10.25932/publishup-55523}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-555230}, school = {Universit{\"a}t Potsdam}, pages = {129}, year = {2022}, abstract = {Understanding the changes that follow UV-excitation in thionucleobases is of great importance for the study of light-induced DNA lesions and, in a broader context, for their applications in medicine and biochemistry. Their ultrafast photophysical reactions can alter the chemical structure of DNA - leading to damages to the genetic code - as proven by the increased skin cancer risk observed for patients treated with thiouracil for its immunosuppressant properties. In this thesis, I present four research papers that result from an investigation of the ultrafast dynamics of 2-thiouracil by means of ultrafast x-ray probing combined with electron spectroscopy. A molecular jet in the gas phase is excited with a uv pulse and then ionized with x-ray radiation from a Free Electron Laser. The kinetic energy of the emitted electrons is measured in a magnetic bottle spectrometer. The spectra of the measured photo and Auger electrons are used to derive a picture of the changes in the geometrical and electronic configurations. The results allow us to look at the dynamical processes from a new perspective, thanks to the element- and site- sensitivity of x-rays. The custom-built URSA-PQ apparatus used in the experiment is described. It has been commissioned and used at the FL24 beamline of the FLASH2 FEL, showing an electron kinetic energy resolution of ∆E/E ~ 40 and a pump-probe timing resolution of 190 f s. X-ray only photoelectron and Auger spectra of 2-thiouracil are extracted from the data and used as reference. Photoelectrons following the formation a 2p core hole are identified, as well as resonant and non-resonant Auger electrons. At the L 1 edge, Coster-Kronig decay is observed from the 2s core hole. The UV-induced changes in the 2p photoline allow the study the electronic-state dynamics. With the use of an Excited-State Chemical Shift (ESCS) model, we observe a ultrafast ground-state relaxation within 250 f s. Furthermore, an oscillation with a 250 f s period is observed in the 2p binding energy, showing a coherent population exchange between electronic states. Auger electrons from the 2p core hole are analyzed and used to deduce a ultrafast C -S bond expansion on a sub 100 f s scale. A simple Coulomb-model, coupled to quantum chemical calculations, can be used to infer the geometrical changes in the molecular structure.}, language = {en} } @article{KurpiersFerronRolandetal.2018, author = {Kurpiers, Jona and Ferron, Thomas and Roland, Steffen and Jakoby, Marius and Thiede, Tobias and Jaiser, Frank and Albrecht, Steve and Janietz, Silvia and Collins, Brian A. and Howard, Ian A. and Neher, Dieter}, title = {Probing the pathways of free charge generation in organic bulk heterojunction solar cells}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-018-04386-3}, pages = {11}, year = {2018}, abstract = {The fact that organic solar cells perform efficiently despite the low dielectric constant of most photoactive blends initiated a long-standing debate regarding the dominant pathways of free charge formation. Here, we address this issue through the accurate measurement of the activation energy for free charge photogeneration over a wide range of photon energy, using the method of time-delayed collection field. For our prototypical low bandgap polymer:fullerene blends, we find that neither the temperature nor the field dependence of free charge generation depend on the excitation energy, ruling out an appreciable contribution to free charge generation though hot carrier pathways. On the other hand, activation energies are on the order of the room temperature thermal energy for all studied blends. We conclude that charge generation in such devices proceeds through thermalized charge transfer states, and that thermal energy is sufficient to separate most of these states into free charges.}, language = {en} } @phdthesis{Kurpiers2019, author = {Kurpiers, Jona}, title = {Probing the pathways of free charge generation and recombination in organic solar cells}, doi = {10.25932/publishup-42909}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-429099}, school = {Universit{\"a}t Potsdam}, pages = {VI, 128, xxi}, year = {2019}, abstract = {Organic semiconductors are a promising class of materials. Their special properties are the particularly good absorption, low weight and easy processing into thin films. Therefore, intense research has been devoted to the realization of thin film organic solar cells (OPVs). Because of the low dielectric constant of organic semiconductors, primary excitations (excitons) are strongly bound and a type II heterojunction needs to be introduced to split these excitations into free charges. Therefore, most organic solar cells consist of at least an electron donor and electron acceptor material. For such donor acceptor systems mainly three states are relevant; the photoexcited exciton on the donor or acceptor material, the charge transfer state at the donor-acceptor interface and the charge separated state of a free electron and hole. The interplay between these states significantly determines the efficiency of organic solar cells. Due to the high absorption and the low charge carrier mobilities, the active layers are usually thin but also, exciton dissociation and free charge formation proceeds rapidely, which makes the study of carrier dynamics highly challenging. Therefore, the focus of this work was first to install new experimental setups for the investigation of the charge carrier dynamics in complete devices with superior sensitivity and time resolution and, second, to apply these methods to prototypical photovoltaic materials to address specific questions in the field of organic and hybrid photovoltaics. Regarding the first goal, a new setup combining transient absorption spectroscopy (TAS) and time delayed collection field (TDCF) was designed and installed in Potsdam. An important part of this work concerned the improvement of the electronic components with respect to time resolution and sensitivity. To this end, a highly sensitive amplifier for driving and detecting the device response in TDCF was developed. This system was then applied to selected organic and hybrid model systems with a particular focus on the understanding of the loss mechanisms that limit the fill factor and short circuit current of organic solar cells. The first model system was a hybrid photovoltaic material comprising inorganic quantum dots decorated with organic ligands. Measurements with TDCF revealed fast free carrier recombination, in part assisted by traps, while bias-assisted charge extraction measurements showed high mobility. The measured parameters then served as input for a successful description of the device performance with an analytical model. With a further improvement of the instrumentation, a second topic was the detailed analysis of non-geminate recombination in a disordered polymer:fullerene blend where an important question was the effect of disorder on the carrier dynamics. The measurements revealed that early time highly mobile charges undergo fast non-geminate recombination at the contacts, causing an apparent field dependence of free charge generation in TDCF experiments if not conducted properly. On the other hand, recombination the later time scale was determined by dispersive recombination in the bulk of the active layer, showing the characteristics of carrier dynamics in an exponential density of state distribution. Importantly, the comparison with steady state recombination data suggested a very weak impact of non-thermalized carriers on the recombination properties of the solar cells under application relevant illumination conditions. Finally, temperature and field dependent studies of free charge generation were performed on three donor-acceptor combinations, with two donor polymers of the same material family blended with two different fullerene acceptor molecules. These particular material combinations were chosen to analyze the influence of the energetic and morphology of the blend on the efficiency of charge generation. To this end, activation energies for photocurrent generation were accurately determined for a wide range of excitation energies. The results prove that the formation of free charge is via thermalized charge transfer states and does not involve hot exciton splitting. Surprisingly, activation energies were of the order of thermal energy at room temperature. This led to the important conclusion that organic solar cells perform well not because of predominate high energy pathways but because the thermalized CT states are weakly bound. In addition, a model is introduced to interconnect the dissociation efficiency of the charge transfer state with its recombination observable with photoluminescence, which rules out a previously proposed two-pool model for free charge formation and recombination. Finally, based on the results, proposals for the further development of organic solar cells are formulated.}, language = {en} } @article{PontiusBeyeTrabantetal.2018, author = {Pontius, Niko and Beye, Martin and Trabant, Christoph and Mitzner, Rolf and Sorgenfrei, Nomi and Kachel, Torsten and Woestmann, Michael and Roling, Sebastian and Zacharias, Helmut and Ivanov, Rosen and Treusch, Rolf and Buchholz, Marcel and Metcalf, Pete and Schuessler-Langeheine, Christian and F{\"o}hlisch, Alexander}, title = {Probing the non-equilibrium transient state in magnetite by a jitter-free two-color X-ray pump and X-ray probe experiment}, series = {Structural dynamics}, volume = {5}, journal = {Structural dynamics}, number = {5}, publisher = {American Institute of Physics}, address = {Melville}, issn = {2329-7778}, doi = {10.1063/1.5042847}, pages = {8}, year = {2018}, abstract = {We present a general experimental concept for jitter-free pump and probe experiments at free electron lasers. By generating pump and probe pulse from one and the same X-ray pulse using an optical split-and-delay unit, we obtain a temporal resolution that is limited only by the X-ray pulse lengths. In a two-color X-ray pump and X-ray probe experiment with sub 70 fs temporal resolution, we selectively probe the response of orbital and charge degree of freedom in the prototypical functional oxide magnetite after photoexcitation. We find electronic order to be quenched on a time scale of (30 +/- 30) fs and hence most likely faster than what is to be expected for any lattice dynamics. Our experimental result hints to the formation of a short lived transient state with decoupled electronic and lattice degree of freedom in magnetite. The excitation and relaxation mechanism for X-ray pumping is discussed within a simple model leading to the conclusion that within the first 10 fs the original photoexcitation decays into low-energy electronic excitations comparable to what is achieved by optical pump pulse excitation. Our findings show on which time scales dynamical decoupling of degrees of freedom in functional oxides can be expected and how to probe this selectively with soft X-ray pulses. Results can be expected to provide crucial information for theories for ultrafast behavior of materials and help to develop concepts for novel switching devices. (C) 2018 Author(s).}, language = {en} } @article{KelesKitzmannMallonnetal.2020, author = {Keles, Engin and Kitzmann, Daniel and Mallonn, Matthias and Alexoudi, Xanthippi and Fossati, Luca and Pino, Lorenzo and Seidel, Julia Victoria and Caroll, Thorsten A. and Steffen, M. and Ilyin, Ilya and Poppenh{\"a}ger, Katja and Strassmeier, Klaus G. and von Essen, Carolina and Nascimbeni, Valerio and Turner, Jake D.}, title = {Probing the atmosphere of HD189733b with the Na i and K i lines}, series = {Monthly Notices of the Royal Astronomical Society}, volume = {498}, journal = {Monthly Notices of the Royal Astronomical Society}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, doi = {10.1093/mnras/staa2435}, pages = {1033}, year = {2020}, abstract = {High spectral resolution transmission spectroscopy is a powerful tool to characterize exoplanet atmospheres. Especially for hot Jupiters, this technique is highly relevant, due to their high-altitude absorption, e.g. from resonant sodium (Na i) and potassium (K i) lines. We resolve the atmospheric K i absorption on HD189733b with the aim to compare the resolved K i line and previously obtained high-resolution Na i-D line observations with synthetic transmission spectra. The line profiles suggest atmospheric processes leading to a line broadening of the order of ∼10 km/s for the Na i-D lines and only a few km/s for the K i line. The investigation hints that either the atmosphere of HD189733b lacks a significant amount of K i or the alkali lines probe different atmospheric regions with different temperature, which could explain the differences we see in the resolved absorption lines.}, language = {en} } @article{JayVazdaCruzEckertetal.2020, author = {Jay, Raphael M. and Vaz da Cruz, Vinicius and Eckert, Sebastian and Fondell, Mattis and Mitzner, Rolf and F{\"o}hlisch, Alexander}, title = {Probing solute-solvent interactions of transition metal complexes using L-edge absorption spectroscopy}, series = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, volume = {124}, journal = {The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces \& biophysical chemistry}, number = {27}, publisher = {American Chemical Society}, address = {Washington}, issn = {1520-6106}, doi = {10.1021/acs.jpcb.0c00638}, pages = {5636 -- 5645}, year = {2020}, abstract = {In order to tailor solution-phase chemical reactions involving transition metal complexes, it is critical to understand how their valence electronic charge distributions are affected by the solution environment. Here, solute-solvent interactions of a solvatochromic mixed-ligand iron complex were investigated using X-ray absorption spectroscopy at the transition metal L-2,L-3-edge. Due to the selectivity of the corresponding core excitations to the iron 3d orbitals, the method grants direct access to the valence electronic structure around the iron center and its response to interactions with the solvent environment. A linear increase of the total L-2,L-3-edge absorption cross section as a function of the solvent Lewis acidity is revealed. The effect is caused by relative changes in different metal-ligand-bonding channels, which preserve local charge densities while increasing the density of unoccupied states around the iron center. These conclusions are corroborated by a combination of molecular dynamics and spectrum simulations based on time-dependent density functional theory. The simulations reproduce the spectral trends observed in the X-ray but also optical absorption experiments. Our results underscore the importance of solute-solvent interactions when aiming for an accurate description of the valence electronic structure of solvated transition metal complexes and demonstrate how L-2,L-3-edge absorption spectroscopy can aid in understanding the impact of the solution environment on intramolecular covalency and the electronic charge distribution.}, language = {en} } @article{VazdaCruzEckertIannuzzietal.2019, author = {Vaz da Cruz, Vinicius and Eckert, Sebastian and Iannuzzi, Marcella and Ertan, Emelie and Pietzsch, Annette and Couto, Rafael C. and Niskanen, Johannes and Fondell, Mattis and Dantz, Marcus and Schmitt, Thorsten and Lu, Xingye and McNally, Daniel and Jay, Raphael Martin and Kimberg, Victor and F{\"o}hlisch, Alexander and Odelius, Michael}, title = {Probing hydrogen bond strength in liquid water by resonant inelastic X-ray scattering}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-019-08979-4}, pages = {9}, year = {2019}, abstract = {Local probes of the electronic ground state are essential for understanding hydrogen bonding in aqueous environments. When tuned to the dissociative core-excited state at the O1s pre-edge of water, resonant inelastic X-ray scattering back to the electronic ground state exhibits a long vibrational progression due to ultrafast nuclear dynamics. We show how the coherent evolution of the OH bonds around the core-excited oxygen provides access to high vibrational levels in liquid water. The OH bonds stretch into the long-range part of the potential energy curve, which makes the X-ray probe more sensitive than infra-red spectroscopy to the local environment. We exploit this property to effectively probe hydrogen bond strength via the distribution of intramolecular OH potentials derived from measurements. In contrast, the dynamical splitting in the spectral feature of the lowest valence-excited state arises from the short-range part of the OH potential curve and is rather insensitive to hydrogen bonding.}, language = {en} } @article{ZeiskeSandbergKurpiersetal.2022, author = {Zeiske, Stefan and Sandberg, Oskar J. and Kurpiers, Jona and Shoaee, Safa and Meredith, Paul and Armin, Ardalan}, title = {Probing charge generation efficiency in thin-film solar cells by integral-mode transient charge extraction}, series = {ACS photonics}, volume = {9}, journal = {ACS photonics}, number = {4}, publisher = {American Chemical Society}, address = {Washington}, issn = {2330-4022}, doi = {10.1021/acsphotonics.1c01532}, pages = {1188 -- 1195}, year = {2022}, abstract = {The photogeneration of free charges in light-harvesting devices is a multistep process, which can be challenging to probe due to the complexity of contributing energetic states and the competitive character of different driving mechanisms. In this contribution, we advance a technique, integral-mode transient charge extraction (ITCE), to probe these processes in thin-film solar cells. ITCE combines capacitance measurements with the integral-mode time-of-flight method in the low intensity regime of sandwich-type thin-film devices and allows for the sensitive determination of photogenerated charge-carrier densities. We verify the theoretical framework of our method by drift-diffusion simulations and demonstrate the applicability of ITCE to organic and perovskite semiconductor-based thin-film solar cells. Furthermore, we examine the field dependence of charge generation efficiency and find our ITCE results to be in excellent agreement with those obtained via time-delayed collection field measurements conducted on the same devices.}, language = {en} } @article{VojtaSkinnerMetzler2019, author = {Vojta, Thomas and Skinner, Sarah and Metzler, Ralf}, title = {Probability density of the fractional Langevin equation with reflecting walls}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {100}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {4}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.100.042142}, pages = {11}, year = {2019}, abstract = {We investigate anomalous diffusion processes governed by the fractional Langevin equation and confined to a finite or semi-infinite interval by reflecting potential barriers. As the random and damping forces in the fractional Langevin equation fulfill the appropriate fluctuation-dissipation relation, the probability density on a finite interval converges for long times towards the expected uniform distribution prescribed by thermal equilibrium. In contrast, on a semi-infinite interval with a reflecting wall at the origin, the probability density shows pronounced deviations from the Gaussian behavior observed for normal diffusion. If the correlations of the random force are persistent (positive), particles accumulate at the reflecting wall while antipersistent (negative) correlations lead to a depletion of particles near the wall. We compare and contrast these results with the strong accumulation and depletion effects recently observed for nonthermal fractional Brownian motion with reflecting walls, and we discuss broader implications.}, language = {en} } @phdthesis{Jay2020, author = {Jay, Raphael Martin}, title = {Principles of charge distribution and separation}, school = {Universit{\"a}t Potsdam}, pages = {xi, 162}, year = {2020}, abstract = {The electronic charge distributions of transition metal complexes fundamentally determine their chemical reactivity. Experimental access to the local valence electronic structure is therefore crucial in order to determine how frontier orbitals are delocalized between different atomic sites and electronic charge is spread throughout the transition metal complex. To that end, X-ray spectroscopies are employed in this thesis to study a series of solution-phase iron complexes with respect to the response of their local electronic charge distributions to different external influences. Using resonant inelastic X-ray scattering (RIXS) and X-ray absorption spectroscopy (XAS) at the iron L-edge, changes in local charge densities are investigated at the iron center depending on different ligand cages as well as solvent environments. A varying degree of charge delocalization from the metal center onto the ligands is observed, which is governed by the capabilities of the ligands to accept charge density into their unoccupied orbitals. Specific solvents are furthermore shown to amplify this process. Solvent molecules of strong Lewis-acids withdraw charge from the ligand allowing in turn for more metal charge to be delocalized onto the ligand. The resulting local charge deficiencies at the metal center are, however, counteracted by competing electron-donation channels from the ligand towards the iron, which are additionally revealed. This is interpreted as a compensating effect which strives to maintain local charge densities at the iron center. This mechanism of charge density preservation is found to be of general nature. Using time-resolved RIXS and XAS at the iron L-edge, an analogous interplay of electron donation and back-donation channels is also revealed for the case of charge-transfer excited states. In such transient configurations, the electronic occupation of iron-centered frontier orbitals has been altered by an optical excitation. Changes in local charge densities that are expected to follow an increased or decreased population of iron-centered orbitals are, however, again counteracted. By scaling the degree of electron donation from the ligand onto the metal, local charge densities at the iron center can be efficiently maintained. Since charge-transfer excitations, however, often constitute the initial step in many electron transfer processes, these findings challenge common notions of charge-separation in transition metal dyes.}, language = {en} } @phdthesis{Jappsen2005, author = {Jappsen, Anne-Katharina}, title = {Present and early star formation : a study on rotational and thermal properties}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-7591}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {We investigate the rotational and thermal properties of star-forming molecular clouds using hydrodynamic simulations. Stars form from molecular cloud cores by gravoturbulent fragmentation. Understanding the angular momentum and the thermal evolution of cloud cores thus plays a fundamental role in completing the theoretical picture of star formation. This is true not only for current star formation as observed in regions like the Orion nebula or the ρ-Ophiuchi molecular cloud but also for the formation of stars of the first or second generation in the universe. In this thesis we show how the angular momentum of prestellar and protostellar cores evolves and compare our results with observed quantities. The specific angular momentum of prestellar cores in our models agree remarkably well with observations of cloud cores. Some prestellar cores go into collapse to build up stars and stellar systems. The resulting protostellar objects have specific angular momenta that fall into the range of observed binaries. We find that collapse induced by gravoturbulent fragmentation is accompanied by a substantial loss of specific angular momentum. This eases the "angular momentum problem" in star formation even in the absence of magnetic fields. The distribution of stellar masses at birth (the initial mass function, IMF) is another aspect that any theory of star formation must explain. We focus on the influence of the thermodynamic properties of star-forming gas and address this issue by studying the effects of a piecewise polytropic equation of state on the formation of stellar clusters. We increase the polytropic exponent γ from a value below unity to a value above unity at a certain critical density. The change of the thermodynamic state at the critical density selects a characteristic mass scale for fragmentation, which we relate to the peak of the IMF observed in the solar neighborhood. Our investigation generally supports the idea that the distribution of stellar masses depends mainly on the thermodynamic state of the gas. A common assumption is that the chemical evolution of the star-forming gas can be decoupled from its dynamical evolution, with the former never affecting the latter. Although justified in some circumstances, this assumption is not true in every case. In particular, in low-metallicity gas the timescales for reaching the chemical equilibrium are comparable or larger than the dynamical timescales. In this thesis we take a first approach to combine a chemical network with a hydrodynamical code in order to study the influence of low levels of metal enrichment on the cooling and collapse of ionized gas in small protogalactic halos. Our initial conditions represent protogalaxies forming within a fossil HII region -- a previously ionized HII region which has not yet had time to cool and recombine. We show that in these regions, H2 is the dominant and most effective coolant, and that it is the amount of H2 formed that controls whether or not the gas can collapse and form stars. For metallicities Z <= 10-3 Zsun, metal line cooling alters the density and temperature evolution of the gas by less than 1\% compared to the metal-free case at densities below 1 cm-3 and temperatures above 2000 K. We also find that an external ultraviolet background delays or suppresses the cooling and collapse of the gas regardless of whether it is metal-enriched or not. Finally, we study the dependence of this process on redshift and mass of the dark matter halo.}, subject = {Sternentstehung}, language = {en} } @phdthesis{Fang2010, author = {Fang, Peng}, title = {Preparation and investigation of polymer-foam films and polymer-layer systems for ferroelectrets}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-48412}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {Piezoelectric materials are very useful for applications in sensors and actuators. In addition to traditional ferroelectric ceramics and ferroelectric polymers, ferroelectrets have recently become a new group of piezoelectrics. Ferroelectrets are functional polymer systems for electromechanical transduction, with elastically heterogeneous cellular structures and internal quasi-permanent dipole moments. The piezoelectricity of ferroelectrets stems from linear changes of the dipole moments in response to external mechanical or electrical stress. Over the past two decades, polypropylene (PP) foams have been investigated with the aim of ferroelectret applications, and some products are already on the market. PP-foam ferroelectrets may exhibit piezoelectric d33 coefficients of 600 pC/N and more. Their operating temperature can, however, not be much higher than 60 °C. Recently developed polyethylene-terephthalate (PET) and cyclo-olefin copolymer (COC) foam ferroelectrets show slightly better d33 thermal stabilities, but usually at the price of smaller d33 values. Therefore, the main aim of this work is the development of new thermally stable ferroelectrets with appreciable piezoelectricity. Physical foaming is a promising technique for generating polymer foams from solid films without any pollution or impurity. Supercritical carbon dioxide (CO2) or nitrogen (N2) are usually employed as foaming agents due to their good solubility in several polymers. Polyethylene propylene (PEN) is a polyester with slightly better properties than PET. A "voiding + inflation + stretching" process has been specifically developed to prepare PEN foams. Solid PEN films are saturated with supercritical CO2 at high pressure and then thermally voided at high temperatures. Controlled inflation (Gas-Diffusion Expansion or GDE) is applied in order to adjust the void dimensions. Additional biaxial stretching decreases the void heights, since it is known lens-shaped voids lead to lower elastic moduli and therefore also to stronger piezoelectricity. Both, contact and corona charging are suitable for the electric charging of PEN foams. The light emission from the dielectric-barrier discharges (DBDs) can be clearly observed. Corona charging in a gas of high dielectric strength such as sulfur hexafluoride (SF6) results in higher gas-breakdown strength in the voids and therefore increases the piezoelectricity. PEN foams can exhibit piezoelectric d33 coefficients as high as 500 pC/N. Dielectric-resonance spectra show elastic moduli c33 of 1 - 12 MPa, anti-resonance frequencies of 0.2 - 0.8 MHz, and electromechanical coupling factors of 0.016 - 0.069. As expected, it is found that PEN foams show better thermal stability than PP and PET. Samples charged at room temperature can be utilized up to 80 - 100 °C. Annealing after charging or charging at elevated temperatures may improve thermal stabilities. Samples charged at suitable elevated temperatures show working temperatures as high as 110 - 120 °C. Acoustic measurements at frequencies of 2 Hz - 20 kHz show that PEN foams can be well applied in this frequency range. Fluorinated ethylene-propylene (FEP) copolymers are fluoropolymers with very good physical, chemical and electrical properties. The charge-storage ability of solid FEP films can be significantly improved by adding boron nitride (BN) filler particles. FEP foams are prepared by means of a one-step procedure consisting of CO2 saturation and subsequent in-situ high-temperature voiding. Piezoelectric d33 coefficients up to 40 pC/N are measured on such FEP foams. Mechanical fatigue tests show that the as-prepared PEN and FEP foams are mechanically stable for long periods of time. Although polymer-foam ferroelectrets have a high application potential, their piezoelectric properties strongly depend on the cellular morphology, i.e. on size, shape, and distribution of the voids. On the other hand, controlled preparation of optimized cellular structures is still a technical challenge. Consequently, new ferroelectrets based on polymer-layer system (sandwiches) have been prepared from FEP. By sandwiching an FEP mesh between two solid FEP films and fusing the polymer system with a laser beam, a well-designed uniform macroscopic cellular structure can be formed. Dielectric resonance spectroscopy reveals piezoelectric d33 coefficients as high as 350 pC/N, elastic moduli of about 0.3 MPa, anti-resonance frequencies of about 30 kHz, and electromechanical coupling factors of about 0.05. Samples charged at elevated temperatures show better thermal stabilities than those charged at room temperature, and the higher the charging temperature, the better is the stability. After proper charging at 140 °C, the working temperatures can be as high as 110 - 120 °C. Acoustic measurements at frequencies of 200 Hz - 20 kHz indicate that the FEP layer systems are suitable for applications at least in this range.}, language = {en} } @phdthesis{Xue2004, author = {X{\"u}, Chenggang}, title = {Preparation and characterization of vapour deposited films based on substituted 2,5-diphenyl-1,3,4-oxadiazole derivatives}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001358}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {Diese Arbeit befasst sich mit dem Einfluss der molekularen Struktur von 2,5-Diphenyl-1,3,4-Oxadiazol-Derivaten auf die Pr{\"a}parierung d{\"u}nner Schichten mittels Vakuumdeposition. D{\"u}nne Schichten von diesen Substanzen wurden auf Si/SiO2 aufgedampft und ihre Struktur systematisch mittels XSR, AFM und IR untersucht. Das Ergebnis zeigt, dass die Schichtstrukturen offenbar von Substratetemperatur (Ts) abh{\"a}ngig sind. Im untersuchten Ts-Bereich bilden etherverbr{\"u}ckte Oxadiazole immer geordnete Schichten und die Schichtperiodicit{\"a}t h{\"a}ngt linear von der L{\"a}ngen der aliphatischen Ketten, w{\"a}hrend sich bei den amidverbr{\"u}ckten Oxadiazolen nur bei hohen Ts geordnete Schichten bilden k{\"o}nnen. Diese Unterschiede sind auf die intermolekularen Wasserstoffbr{\"u}cken zur{\"u}ckzuf{\"u}hren. Der Tilt-Winkel der Molek{\"u}le ist durch die Wechselwirkung zwischen dem aromatischen Teil bestimmt. Die Wechselwirkungen zwischen den Kopfgruppen k{\"o}nnen durch Tempern abgeschw{\"a}cht werden und f{\"u}hren zur Strukturumwandlung von Schichten, die auf etherverbr{\"u}ckten Oxadiazolen basieren. Alle Schichten von etherverbr{\"u}ckten Oxadiazolen haben Doppelschicht-Struktur, aber amidverbr{\"u}ckte Oxadiazole bilden nur Doppelschicht-Strukturen, wenn die Molek{\"u}le eine Kopfgruppe besitzen.}, language = {en} } @phdthesis{Sborikas2015, author = {Sborikas, Martynas}, title = {Preparation and characterization of acoustic electret and electromechanical properties of polypropylene ferroelectrets}, pages = {129}, year = {2015}, language = {en} } @misc{GudowskaNowakLindenbergMetzler2017, author = {Gudowska-Nowak, Ewa and Lindenberg, Katja and Metzler, Ralf}, title = {Preface: Marian Smoluchowski's 1916 paper—a century of inspiration}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {50}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {38}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8121/aa8529}, pages = {8}, year = {2017}, language = {en} } @article{ChenLangeAndjelkovicetal.2020, author = {Chen, Junchao and Lange, Thomas and Andjelkovic, Milos and Simevski, Aleksandar and Krstić, Miloš}, title = {Prediction of solar particle events with SRAM-based soft error rate monitor and supervised machine learning}, series = {Microelectronics reliability}, volume = {114}, journal = {Microelectronics reliability}, publisher = {Elsevier}, address = {Oxford}, issn = {0026-2714}, doi = {10.1016/j.microrel.2020.113799}, pages = {6}, year = {2020}, abstract = {This work introduces an embedded approach for the prediction of Solar Particle Events (SPEs) in space applications by combining the real-time Soft Error Rate (SER) measurement with SRAM-based detector and the offline trained machine learning model. The proposed approach is intended for the self-adaptive fault-tolerant multiprocessing systems employed in space applications. With respect to the state-of-the-art, our solution allows for predicting the SER 1 h in advance and fine-grained hourly tracking of SER variations during SPEs as well as under normal conditions. Therefore, the target system can activate the appropriate mechanisms for radiation hardening before the onset of high radiation levels. Based on the comparison of five different machine learning algorithms trained with the public space flux database, the preliminary results indicate that the best prediction accuracy is achieved with the recurrent neural network (RNN) with long short-term memory (LSTM).}, language = {en} } @article{IwamotoAmanoHoshinoetal.2019, author = {Iwamoto, Masanori and Amano, Takanobu and Hoshino, Masahiro and Matsumoto, Yosuke and Niemiec, Jacek and Ligorini, Arianna and Kobzar, Oleh and Pohl, Martin}, title = {Precursor Wave Amplification by Ion-Electron Coupling through Wakefield in Relativistic Shocks}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, volume = {883}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {2041-8205}, doi = {10.3847/2041-8213/ab4265}, pages = {6}, year = {2019}, abstract = {We investigated electromagnetic precursor wave emission in relativistic shocks by using two-dimensional particle-in-cell simulations. We found that the wave amplitude is significantly enhanced by a positive feedback process associated with ion-electron coupling through the wakefields for high magnetization. The wakefields collapse during the nonlinear process of the parametric decay instability in the near-upstream region, where nonthermal electrons and ions are generated. The intense coherent emission and the particle acceleration may operate in high-energy astrophysical objects.}, language = {en} } @article{MorrisBohdanWeidletal.2022, author = {Morris, Paul J. and Bohdan, Artem and Weidl, Martin S. and Pohl, Martin}, title = {Preacceleration in the Electron Foreshock. I. Electron Acoustic Waves}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {931}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/ac69c7}, pages = {12}, year = {2022}, abstract = {To undergo diffusive shock acceleration, electrons need to be preaccelerated to increase their energies by several orders of magnitude, else their gyroradii will be smaller than the finite width of the shock. In oblique shocks, where the upstream magnetic field orientation is neither parallel nor perpendicular to the shock normal, electrons can escape to the shock upstream, modifying the shock foot to a region called the electron foreshock. To determine the preacceleration in this region, we undertake particle-in-cell simulations of oblique shocks while varying the obliquity and in-plane angles. We show that while the proportion of reflected electrons is negligible for theta (Bn) = 74.degrees 3, it increases to R similar to 5\% for theta (Bn) = 30 degrees, and that, via the electron acoustic instability, these electrons power electrostatic waves upstream with energy density proportional to R (0.6) and a wavelength approximate to 2 lambda (se), where lambda (se) is the electron skin length. While the initial reflection mechanism is typically a combination of shock-surfing acceleration and magnetic mirroring, we show that once the electrostatic waves have been generated upstream, they themselves can increase the momenta of upstream electrons parallel to the magnetic field. In less than or similar to 1\% of cases, upstream electrons are prematurely turned away from the shock and never injected downstream. In contrast, a similar fraction is rescattered back toward the shock after reflection, reinteracts with the shock with energies much greater than thermal, and crosses into the downstream.}, language = {en} } @article{KrapfMarinariMetzleretal.2018, author = {Krapf, Diego and Marinari, Enzo and Metzler, Ralf and Oshanin, Gleb and Xu, Xinran and Squarcini, Alessio}, title = {Power spectral density of a single Brownian trajectory}, series = {New journal of physics : the open-access journal for physics}, volume = {20}, journal = {New journal of physics : the open-access journal for physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/aaa67c}, pages = {30}, year = {2018}, abstract = {The power spectral density (PSD) of any time-dependent stochastic processX (t) is ameaningful feature of its spectral content. In its text-book definition, the PSD is the Fourier transform of the covariance function of X-t over an infinitely large observation timeT, that is, it is defined as an ensemble-averaged property taken in the limitT -> infinity. Alegitimate question is what information on the PSD can be reliably obtained from single-trajectory experiments, if one goes beyond the standard definition and analyzes the PSD of a single trajectory recorded for a finite observation timeT. In quest for this answer, for a d-dimensional Brownian motion (BM) we calculate the probability density function of a single-trajectory PSD for arbitrary frequency f, finite observation time T and arbitrary number k of projections of the trajectory on different axes. We show analytically that the scaling exponent for the frequency-dependence of the PSD specific to an ensemble of BM trajectories can be already obtained from a single trajectory, while the numerical amplitude in the relation between the ensemble-averaged and single-trajectory PSDs is afluctuating property which varies from realization to realization. The distribution of this amplitude is calculated exactly and is discussed in detail. Our results are confirmed by numerical simulations and single-particle tracking experiments, with remarkably good agreement. In addition we consider a truncated Wiener representation of BM, and the case of a discrete-time lattice random walk. We highlight some differences in the behavior of a single-trajectory PSD for BM and for the two latter situations. The framework developed herein will allow for meaningful physical analysis of experimental stochastic trajectories.}, language = {en} } @phdthesis{Schreck2014, author = {Schreck, Simon Frederik}, title = {Potential energy surfaces, femtosecond dynamics and nonlinear X-Ray-Matter interactions from resonant inelastic soft x-Ray scattering}, pages = {164}, year = {2014}, language = {en} } @misc{WenzLevermannWillneretal.2020, author = {Wenz, Leonie and Levermann, Anders and Willner, Sven N. and Otto, Christian and Kuhla, Kilian}, title = {Post-Brexit no-trade-deal scenario: short-term consumer benefit at the expense of long-term economic development}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {9}, issn = {1866-8372}, doi = {10.25932/publishup-52581}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-525819}, pages = {16}, year = {2020}, abstract = {After the United Kingdom has left the European Union it remains unclear whether the two parties can successfully negotiate and sign a trade agreement within the transition period. Ongoing negotiations, practical obstacles and resulting uncertainties make it highly unlikely that economic actors would be fully prepared to a "no-trade-deal" situation. Here we provide an economic shock simulation of the immediate aftermath of such a post-Brexit no-trade-deal scenario by computing the time evolution of more than 1.8 million interactions between more than 6,600 economic actors in the global trade network. We find an abrupt decline in the number of goods produced in the UK and the EU. This sudden output reduction is caused by drops in demand as customers on the respective other side of the Channel incorporate the new trade restriction into their decision-making. As a response, producers reduce prices in order to stimulate demand elsewhere. In the short term consumers benefit from lower prices but production value decreases with potentially severe socio-economic consequences in the longer term.}, language = {en} } @article{WenzLevermannWillneretal.2020, author = {Wenz, Leonie and Levermann, Anders and Willner, Sven N. and Otto, Christian and Kuhla, Kilian}, title = {Post-Brexit no-trade-deal scenario: short-term consumer benefit at the expense of long-term economic development}, series = {PLoS ONE}, volume = {15}, journal = {PLoS ONE}, number = {9}, publisher = {PLOS}, address = {San Francisco}, pages = {14}, year = {2020}, abstract = {After the United Kingdom has left the European Union it remains unclear whether the two parties can successfully negotiate and sign a trade agreement within the transition period. Ongoing negotiations, practical obstacles and resulting uncertainties make it highly unlikely that economic actors would be fully prepared to a "no-trade-deal" situation. Here we provide an economic shock simulation of the immediate aftermath of such a post-Brexit no-trade-deal scenario by computing the time evolution of more than 1.8 million interactions between more than 6,600 economic actors in the global trade network. We find an abrupt decline in the number of goods produced in the UK and the EU. This sudden output reduction is caused by drops in demand as customers on the respective other side of the Channel incorporate the new trade restriction into their decision-making. As a response, producers reduce prices in order to stimulate demand elsewhere. In the short term consumers benefit from lower prices but production value decreases with potentially severe socio-economic consequences in the longer term.}, language = {en} } @article{PetrukKuzyoOrlandoetal.2018, author = {Petruk, Oleh and Kuzyo, T. and Orlando, S. and Pohl, Martin and Miceli, M. and Bocchino, F. and Beshley, V. and Brose, Robert}, title = {Post-adiabatic supernova remnants in an interstellar magnetic field}, series = {Monthly notices of the Royal Astronomical Society}, volume = {479}, journal = {Monthly notices of the Royal Astronomical Society}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/sty1750}, pages = {4253 -- 4270}, year = {2018}, abstract = {We present very-high-resolution 1D MHD simulations of the late-stage supernova remnants (SNRs). In the post-adiabatic stage, the magnetic field has an important and significant dynamical effect on the shock dynamics, the flow structure, and hence the acceleration and emission of cosmic rays. We find that the tangential component of the magnetic field provides pressure support that to a fair degree prevents the collapse of the radiative shell and thus limits the total compression ratio of the partially or fully radiative forward shock. A consequence is that the spectra of cosmic rays would not be as hard as in hydrodynamic simulations. We also investigated the effect on the flow profiles of the magnetic-field inclination and a large-scale gradient in the gas density and/or the magnetic field. A positive density gradient shortens the evolutionary stages, whereas a shock obliquity lowers the shock compression. The compression of the tangential component of the magnetic field leads to its dominance in the downstream region of post-adiabatic shocks for a wide range of orientation of the upstream field, which may explain why one preferentially observes tangential radio polarization in old SNRs. As most cosmic rays are produced at late stages of SNR evolution, the post-adiabatic phase and the influence of the magnetic field during it are most important for modeling the cosmic-ray acceleration at old SNRs and the gamma-ray emission from late-stage SNRs interacting with clouds.}, language = {en} } @article{SanchezAyasodelValleMartietal.2018, author = {Sanchez-Ayaso, Mar{\´i}a de la Estrella and del Valle, Maria Victoria and Marti, Josep and Romero, G. E. and Luque-Escamilla, Pedro Luis}, title = {Possible association of two Stellar Bowshocks with Unidentified Fermi Sources}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {861}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aac7c7}, pages = {9}, year = {2018}, abstract = {The bowshocks of runaway stars had been theoretically proposed as gamma-ray sources. However, this hypothesis has not been confirmed by observations to date. In this paper, we present two runaway stars (lambda Cep and LS 2355) whose bowshocks are coincident with the unidentified Fermi gamma-ray sources 3FLG J2210.1+5925 and 3FGL J1128.7-6232, respectively. After performing a cross-correlation between different catalogs at distinct wavelengths, we found that these bowshocks are the most peculiar objects in the Fermi position ellipses. Then we computed the inverse Compton emission and fitted the Fermi data in order to test the viability of both runaway stars as potential counterparts of the two high-energy sources. We obtained very reasonable values for the fitted parameters of both stars. We also evaluated the possibility for the source 3FGL J1128.7-6232, which is positionally coincident with a H II region, to be the result of background cosmic-ray protons interacting with the matter of the cloud, as well as the probability of a pure chance association. We conclude that the gamma rays from these Fermi sources might be produced in the bowshocks of the considered runaway stars. In such a case, these would be the first sources of this class ever detected at gamma rays.}, language = {en} }