@article{BolotovSmirnovOsipovetal.2018, author = {Bolotov, Maxim I. and Smirnov, Lev A. and Osipov, Grigory V. and Pikovskij, Arkadij}, title = {Simple and complex chimera states in a nonlinearly coupled oscillatory medium}, series = {Chaos : an interdisciplinary journal of nonlinear science}, volume = {28}, journal = {Chaos : an interdisciplinary journal of nonlinear science}, number = {4}, publisher = {American Institute of Physics}, address = {Melville}, issn = {1054-1500}, doi = {10.1063/1.5011678}, pages = {9}, year = {2018}, abstract = {We consider chimera states in a one-dimensional medium of nonlinear nonlocally coupled phase oscillators. In terms of a local coarse-grained complex order parameter, the problem of finding stationary rotating nonhomogeneous solutions reduces to a third-order ordinary differential equation. This allows finding chimera-type and other inhomogeneous states as periodic orbits of this equation. Stability calculations reveal that only some of these states are stable. We demonstrate that an oscillatory instability leads to a breathing chimera, for which the synchronous domain splits into subdomains with different mean frequencies. Further development of instability leads to turbulent chimeras. Published by AIP Publishing.}, language = {en} } @misc{SteteKoopmanBargheer2018, author = {Stete, Felix and Koopman, Wouter-Willem Adriaan and Bargheer, Matias}, title = {Signatures of strong coupling on nanoparticles}, series = {Quantum Nano-Photonics}, journal = {Quantum Nano-Photonics}, publisher = {Springer}, address = {Dordrecht}, isbn = {978-94-024-1546-9}, issn = {1871-465X}, doi = {10.1007/978-94-024-1544-5_53}, pages = {445 -- 447}, year = {2018}, abstract = {The electromagnetic coupling of molecular excitations to plasmonic nanoparticles offers a promising method to manipulate the light-matter interaction at the nanoscale. Plasmonic nanoparticles foster exceptionally high coupling strengths, due to their capacity to strongly concentrate the light-field to sub-wavelength mode volumes. A particularly interesting coupling regime occurs, if the coupling increases to a level such that the coupling strength surpasses all damping rates in the system. In this so-called strong-coupling regime hybrid light-matter states emerge, which can no more be divided into separate light and matter components. These hybrids unite the features of the original components and possess new resonances whose positions are separated by the Rabi splitting energy h Omega. Detuning the resonance of one of the components leads to an anticrossing of the two arising branches of the new resonances omega(+) and omega(-) with a minimal separation of Omega = omega(+) - omega(-).}, language = {en} } @phdthesis{Mari2012, author = {Mari, Andrea}, title = {Signatures of non-classicality in optomechanical systems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-59814}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {This thesis contains several theoretical studies on optomechanical systems, i.e. physical devices where mechanical degrees of freedom are coupled with optical cavity modes. This optomechanical interaction, mediated by radiation pressure, can be exploited for cooling and controlling mechanical resonators in a quantum regime. The goal of this thesis is to propose several new ideas for preparing meso- scopic mechanical systems (of the order of 10^15 atoms) into highly non-classical states. In particular we have shown new methods for preparing optomechani-cal pure states, squeezed states and entangled states. At the same time, proce-dures for experimentally detecting these quantum effects have been proposed. In particular, a quantitative measure of non classicality has been defined in terms of the negativity of phase space quasi-distributions. An operational al- gorithm for experimentally estimating the non-classicality of quantum states has been proposed and successfully applied in a quantum optics experiment. The research has been performed with relatively advanced mathematical tools related to differential equations with periodic coefficients, classical and quantum Bochner's theorems and semidefinite programming. Nevertheless the physics of the problems and the experimental feasibility of the results have been the main priorities.}, language = {en} } @article{ZouThielRomanoetal.2006, author = {Zou, Yong and Thiel, M. and Romano, Maria Carmen and Kurths, J{\"u}rgen and Bi, Q.}, title = {Shrimp structure and associated dynamics in parametrically excited oscillators}, series = {International journal of bifurcation and chaos : in applied sciences and engineering}, volume = {16}, journal = {International journal of bifurcation and chaos : in applied sciences and engineering}, number = {12}, publisher = {World Scientific Publ. Co}, address = {Singapore}, issn = {0218-1274}, doi = {10.1142/S0218127406016987}, pages = {3567 -- 3579}, year = {2006}, abstract = {We investigate the bifurcation structures in a two-dimensional parameter space (PS) of a parametrically excited system with two degrees of freedom both analytically and numerically. By means of the Renyi entropy of second order K-2, which is estimated from recurrence plots, we uncover that regions of chaotic behavior are intermingled with many complex periodic windows, such as shrimp structures in the PS. A detailed numerical analysis shows that, the stable solutions lose stability either via period doubling, or via intermittency when the parameters leave these shrimps in different directions, indicating different bifurcation properties of the boundaries. The shrimps of different sizes offer promising ways to control the dynamics of such a complex system.}, language = {en} } @phdthesis{Soriano2016, author = {Soriano, Manuel Flores}, title = {Short-term evolution and coexistence of photospheric and chromospheric activity on LQ Hydrae}, school = {Universit{\"a}t Potsdam}, pages = {90}, year = {2016}, language = {en} } @article{MedranoTBaptistaCaldas2006, author = {Medrano-T., R. O. and Baptista, Murilo da Silva and Caldas, Ibere Luiz}, title = {Shilnikov homoclinic orbit bifurcations in the Chua's circuit}, series = {Chaos : an interdisciplinary journal of nonlinear science}, volume = {16}, journal = {Chaos : an interdisciplinary journal of nonlinear science}, number = {4}, publisher = {American Institute of Physics}, address = {Melville}, issn = {1054-1500}, doi = {10.1063/1.2401060}, pages = {9}, year = {2006}, abstract = {We analytically describe the complex scenario of homoclinic bifurcations in the Chua's circuit. We obtain a general scaling law that gives the ratio between bifurcation parameters of different nearby homoclinic orbits. As an application of this theoretical approach, we estimate the number of higher order subsidiary homoclinic orbits that appear between two consecutive lower order subsidiary orbits. Our analytical finds might be valid for a large class of dynamical systems and are numerically confirmed in the parameter space of the Chua's circuit. Shilnikov homoclinic orbits are trajectories that depart from a fixed saddle-focus point, with specific eigenvalues, and return to it after an infinite amount of time (that is also true to time reversal evolution). That results in an orbit that is unstable and has an infinite period. These two main characteristics contribute in the hardness for its observation in a dynamical system as well as in nature. However, its presence reveals fundamental characteristics of the system involved, as the existence of unstable periodic orbits embedded in a chaotic set. Once the unstable periodic orbits give invariants quantities of this set,1 the Shilnikov homoclinic orbits are also related to the characteristics of the chaotic set. Their connection with the fundamental dynamical properties is verified in a wide variety of systems. A series of numerical and experimental investigations reveal how Shilnikov homoclinic orbits, in the vicinity of a chaotic attractor, determine its dynamical and topological properties.4 Thus, the Shilnikov orbits are related to the returning time of the trajectory of a CO2 laser,5 also to the topology of a glow-discharge system.6 Moreover, some class of spiking neurons are modeled by chaos governed by such orbits,7,8 and their presence are connected to the intermittence present in rabbit arteries.9 These orbits are shown to be behind the mechanism of noise-induced phenomena,10 and they are also responsible for the dynamics of an electrochemical oscillator.11 In this work, we contribute to the understanding of how Shilnikov homoclinic orbits appear on the parameter space of systems as the ones above mentioned, by showing that these orbits are not only distributed following an universal rule but also exist for large parameter variations. We then confirm our previsions in the Chua's circuit system}, language = {en} } @article{FeldmannReeseWinkelmannetal.2022, author = {Feldmann, Johannes and Reese, Ronja and Winkelmann, Ricarda and Levermann, Anders}, title = {Shear-margin melting causes stronger transient ice discharge than ice-stream melting in idealized simulations}, series = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, volume = {16}, journal = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, number = {5}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1994-0416}, doi = {10.5194/tc-16-1927-2022}, pages = {1927 -- 1940}, year = {2022}, abstract = {Basal ice-shelf melting is the key driver of Antarctica's increasing sea-level contribution. In diminishing the buttressing force of the ice shelves that fringe the ice sheet, the melting increases the ice discharge into the ocean. Here we contrast the influence of basal melting in two different ice-shelf regions on the time-dependent response of an isothermal, inherently buttressed ice-sheet-shelf system. In the idealized numerical simulations, the basal-melt perturbations are applied close to the grounding line in the ice-shelf's (1) ice-stream region, where the ice shelf is fed by the fastest ice masses that stream through the upstream bed trough and (2) shear margins, where the ice flow is slower. The results show that melting below one or both of the shear margins can cause a decadal to centennial increase in ice discharge that is more than twice as large compared to a similar perturbation in the ice-stream region. We attribute this to the fact that melt-induced ice-shelf thinning in the central grounding-line region is attenuated very effectively by the fast flow of the central ice stream. In contrast, the much slower ice dynamics in the lateral shear margins of the ice shelf facilitate sustained ice-shelf thinning and thereby foster buttressing reduction. Regardless of the melt location, a higher melt concentration toward the grounding line generally goes along with a stronger response. Our results highlight the vulnerability of outlet glaciers to basal melting in stagnant, buttressing-relevant ice-shelf regions, a mechanism that may gain importance under future global warming.}, language = {en} } @article{PasechnikShmelevaSaidgazievetal.2022, author = {Pasechnik, Sergey V. and Shmeleva, Dina and Saidgaziev, Ayvr Sh. and Kharlamov, Semen and Vasilieva, Aleksandra A. and Santer, Svetlana}, title = {Shear flows induced by electro-osmotic pumps in optofluidic liquid crystal cell for modulation of visible light and THz irradiation}, series = {Liquid Crystals and their Application : Russian Journal}, volume = {22}, journal = {Liquid Crystals and their Application : Russian Journal}, number = {3}, publisher = {Nanomaterials Research Institute}, address = {Ivanovo}, issn = {1991-3966}, doi = {10.18083/LCAppl.2022.3.49}, pages = {49 -- 57}, year = {2022}, abstract = {The work is devoted to the use of electrokinetic phenomena in liquid crystals to create a new class of microfluidics devices - optofluidics, designed to control electromagnetic radiation, including the THz frequency range. To achieve the goal, an optical method is used to study changes in the orientational structure in LC layers caused by a shear flow generated by electroosmotic pumps. Simula-tion of LC behaviour in an experimental cell containing electroosmotic pumps and flat layers of a nematic liquid crystal is fulfilled. The experimental depend-ences of the intensity of polarized radiation passing through flat LC layers on the control voltage applied to the electroosmotic pump and the results of calcu-lations of the hydrodynamic and mechano-optical characteristics of the experi-mental LC cell are presented. The propagation of THz irradiation across the multilayer structure of the optofluidic cell is considered taking into account the minimum number of re-reflections of waves from different layers and the ab-sorption of THz irradiation in a propylene and a liquid crystal.}, language = {en} } @phdthesis{Pohl2018, author = {Pohl, Anna}, title = {Shaping via binding}, school = {Universit{\"a}t Potsdam}, pages = {119,XVIII}, year = {2018}, language = {de} } @article{ZeitzLevermannWinkelmann2020, author = {Zeitz, Maria and Levermann, Anders and Winkelmann, Ricarda}, title = {Sensitivity of ice loss to uncertainty in flow law parameters in an idealized one-dimensional geometry}, series = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, volume = {14}, journal = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, number = {10}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1994-0416}, doi = {10.5194/tc-14-3537-2020}, pages = {3537 -- 3550}, year = {2020}, abstract = {Acceleration of the flow of ice drives mass losses in both the Antarctic and the Greenland Ice Sheet. The projections of possible future sea-level rise rely on numerical ice-sheet models, which solve the physics of ice flow, melt, and calving. While major advancements have been made by the ice-sheet modeling community in addressing several of the related uncertainties, the flow law, which is at the center of most process-based ice-sheet models, is not in the focus of the current scientific debate. However, recent studies show that the flow law parameters are highly uncertain and might be different from the widely accepted standard values. Here, we use an idealized flow-line setup to investigate how these uncertainties in the flow law translate into uncertainties in flow-driven mass loss. In order to disentangle the effect of future warming on the ice flow from other effects, we perform a suite of experiments with the Parallel Ice Sheet Model (PISM), deliberately excluding changes in the surface mass balance. We find that changes in the flow parameters within the observed range can lead up to a doubling of the flow-driven mass loss within the first centuries of warming, compared to standard parameters. The spread of ice loss due to the uncertainty in flow parameters is on the same order of magnitude as the increase in mass loss due to surface warming. While this study focuses on an idealized flow-line geometry, it is likely that this uncertainty carries over to realistic three-dimensional simulations of Greenland and Antarctica.}, language = {en} }