@phdthesis{Stoyanov2011, author = {Stoyanov, Hristiyan}, title = {Soft nanocomposites with enhanced electromechanical response for dielectric elastomer actuators}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-51194}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Electromechanical transducers based on elastomer capacitors are presently considered for many soft actuation applications, due to their large reversible deformation in response to electric field induced electrostatic pressure. The high operating voltage of such devices is currently a large drawback, hindering their use in applications such as biomedical devices and biomimetic robots, however, they could be improved with a careful design of their material properties. The main targets for improving their properties are increasing the relative permittivity of the active material, while maintaining high electric breakdown strength and low stiffness, which would lead to enhanced electrostatic storage ability and hence, reduced operating voltage. Improvement of the functional properties is possible through the use of nanocomposites. These exploit the high surface-to-volume ratio of the nanoscale filler, resulting in large effects on macroscale properties. This thesis explores several strategies for nanomaterials design. The resulting nanocomposites are fully characterized with respect to their electrical and mechanical properties, by use of dielectric spectroscopy, tensile mechanical analysis, and electric breakdown tests. First, nanocomposites consisting of high permittivity rutile TiO2 nanoparticles dispersed in thermoplastic block copolymer SEBS (poly-styrene-coethylene-co-butylene-co-styrene) are shown to exhibit permittivity increases of up to 3.7 times, leading to 5.6 times improvement in electrostatic energy density, but with a trade-off in mechanical properties (an 8-fold increase in stiffness). The variation in both electrical and mechanical properties still allows for electromechanical improvement, such that a 27 \% reduction of the electric field is found compared to the pure elastomer. Second, it is shown that the use of nanofiller conductive particles (carbon black (CB)) can lead to a strong increase of relative permittivity through percolation, however, with detrimental side effects. These are due to localized enhancement of the electric field within the composite, which leads to sharp reductions in electric field strength. Hence, the increase in permittivity does not make up for the reduction in breakdown strength in relation to stored electrical energy, which may prohibit their practical use. Third, a completely new approach for increasing the relative permittivity and electrostatic energy density of a polymer based on 'molecular composites' is presented, relying on chemically grafting soft π-conjugated macromolecules to a flexible elastomer backbone. Polarization caused by charge displacement along the conjugated backbone is found to induce a large and controlled permittivity enhancement (470 \% over the elastomer matrix), while chemical bonding, encapsulates the PANI chains manifesting in hardly any reduction in electric breakdown strength, and hence resulting in a large increase in stored electrostatic energy. This is shown to lead to an improvement in the sensitivity of the measured electromechanical response (83 \% reduction of the driving electric field) as well as in the maximum actuation strain (250 \%). These results represent a large step forward in the understanding of the strategies which can be employed to obtain high permittivity polymer materials with practical use for electro-elastomer actuation.}, language = {en} } @article{SteteSchossauBargheeretal.2018, author = {Stete, Felix and Schossau, Phillip and Bargheer, Matias and Koopman, Wouter-Willem Adriaan}, title = {Size-Dependent coupling of Hybrid Core-Shell Nanorods}, series = {The journal of physical chemistry : C, Nanomaterials and interfaces}, volume = {122}, journal = {The journal of physical chemistry : C, Nanomaterials and interfaces}, number = {31}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/acs.jpcc.8b04204}, pages = {17976 -- 17982}, year = {2018}, abstract = {Owing to their ability of concentrating electromagnetic fields to subwavelength mode volumes, plasmonic nanoparticles foster extremely high light-matter coupling strengths reaching far into the strong-coupling regime of light matter interaction. In this article, we present an experimental investigation on the dependence of coupling strength on the geometrical size of the nanoparticle. The coupling strength for differently sized hybrid plasmon-core exciton-shell nanorods was extracted from the typical resonance anticrossing of these systems, obtained by controlled modification of the environment permittivity using layer-by-layer deposition of polyelectrolytes. The observed size dependence of the coupling strength can be explained by a simple model approximating the electromagnetic mode volume by the geometrical volume of the particle. On the basis of this model, the coupling strength for particles of arbitrary size can be predicted, including the particle size necessary to support single-emitter strong coupling.}, language = {en} } @misc{SteteSchossauKoopmanetal.2018, author = {Stete, Felix and Schossau, Phillip Gerald and Koopman, Wouter-Willem Adriaan and Bargheer, Matias}, title = {Size Dependence of the Coupling Strength in Plasmon-Exciton Nanoparticles}, series = {Quantum Nano-Photonics}, journal = {Quantum Nano-Photonics}, publisher = {Springer}, address = {Dordrecht}, isbn = {978-94-024-1546-9}, issn = {1871-465X}, doi = {10.1007/978-94-024-1544-5_26}, pages = {381 -- 383}, year = {2018}, abstract = {The coupling between molecular excitations and nanoparticles leads to promising applications. It is for example used to enhance the optical cross-section of molecules in surface enhanced Raman scattering, Purcell enhancement or plasmon enhanced dye lasers. In a coupled system new resonances emerge resulting from the original plasmon (ωpl) and exciton (ωex) resonances as ω±=12(ωpl+ωex)±14(ωpl-ωex)2+g2---------------√, (1) where g is the coupling parameter. Hence, the new resonances show a separation of Δ = ω+ - ω- from which the coupling strength can be deduced from the minimum distance between the two resonances, Ω = Δ(ω+ = ω-).}, language = {en} } @unpublished{PikovskijZaksFeudeletal.1995, author = {Pikovskij, Arkadij and Zaks, Michael A. and Feudel, Ulrike and Kurths, J{\"u}rgen}, title = {Singular continuous spectra in dissipative dynamics}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-13787}, year = {1995}, abstract = {We demonstrate the occurrence of regimes with singular continuous (fractal) Fourier spectra in autonomous dissipative dynamical systems. The particular example in an ODE system at the accumulation points of bifurcation sequences associated to the creation of complicated homoclinic orbits. Two different machanisms responsible for the appearance of such spectra are proposed. In the first case when the geometry of the attractor is symbolically represented by the Thue-Morse sequence, both the continuous-time process and its descrete Poincar{\´e} map have singular power spectra. The other mechanism owes to the logarithmic divergence of the first return times near the saddle point; here the Poincar{\´e} map possesses the discrete spectrum, while the continuous-time process displays the singular one. A method is presented for computing the multifractal characteristics of the singular continuous spectra with the help of the usual Fourier analysis technique.}, language = {en} } @misc{SposiniMetzlerOshanin2019, author = {Sposini, Vittoria and Metzler, Ralf and Oshanin, Gleb}, title = {Single-trajectory spectral analysis of scaled Brownian motion}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {753}, issn = {1866-8372}, doi = {10.25932/publishup-43652}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-436522}, pages = {16}, year = {2019}, abstract = {Astandard approach to study time-dependent stochastic processes is the power spectral density (PSD), an ensemble-averaged property defined as the Fourier transform of the autocorrelation function of the process in the asymptotic limit of long observation times, T → ∞. In many experimental situations one is able to garner only relatively few stochastic time series of finite T, such that practically neither an ensemble average nor the asymptotic limit T → ∞ can be achieved. To accommodate for a meaningful analysis of such finite-length data we here develop the framework of single-trajectory spectral analysis for one of the standard models of anomalous diffusion, scaled Brownian motion.Wedemonstrate that the frequency dependence of the single-trajectory PSD is exactly the same as for standard Brownian motion, which may lead one to the erroneous conclusion that the observed motion is normal-diffusive. However, a distinctive feature is shown to be provided by the explicit dependence on the measurement time T, and this ageing phenomenon can be used to deduce the anomalous diffusion exponent.Wealso compare our results to the single-trajectory PSD behaviour of another standard anomalous diffusion process, fractional Brownian motion, and work out the commonalities and differences. Our results represent an important step in establishing singletrajectory PSDs as an alternative (or complement) to analyses based on the time-averaged mean squared displacement.}, language = {en} } @article{SposiniMetzlerOshanin2019, author = {Sposini, Vittoria and Metzler, Ralf and Oshanin, Gleb}, title = {Single-trajectory spectral analysis of scaled Brownian motion}, series = {New Journal of Physics}, volume = {21}, journal = {New Journal of Physics}, publisher = {Deutsche Physikalische Gesellschaft ; IOP, Institute of Physics}, address = {Bad Honnef und London}, issn = {1367-2630}, doi = {10.1088/1367-2630/ab2f52}, pages = {16}, year = {2019}, abstract = {Astandard approach to study time-dependent stochastic processes is the power spectral density (PSD), an ensemble-averaged property defined as the Fourier transform of the autocorrelation function of the process in the asymptotic limit of long observation times, T → ∞. In many experimental situations one is able to garner only relatively few stochastic time series of finite T, such that practically neither an ensemble average nor the asymptotic limit T → ∞ can be achieved. To accommodate for a meaningful analysis of such finite-length data we here develop the framework of single-trajectory spectral analysis for one of the standard models of anomalous diffusion, scaled Brownian motion.Wedemonstrate that the frequency dependence of the single-trajectory PSD is exactly the same as for standard Brownian motion, which may lead one to the erroneous conclusion that the observed motion is normal-diffusive. However, a distinctive feature is shown to be provided by the explicit dependence on the measurement time T, and this ageing phenomenon can be used to deduce the anomalous diffusion exponent.Wealso compare our results to the single-trajectory PSD behaviour of another standard anomalous diffusion process, fractional Brownian motion, and work out the commonalities and differences. Our results represent an important step in establishing singletrajectory PSDs as an alternative (or complement) to analyses based on the time-averaged mean squared displacement.}, language = {en} } @article{RaoufiHoermannLigorioetal.2020, author = {Raoufi, Meysam and H{\"o}rmann, Ulrich and Ligorio, Giovanni and Hildebrandt, Jana and P{\"a}tzel, Michael and Schultz, Thorsten and Perdig{\´o}n-Toro, Lorena and Koch, Norbert and List-Kratochvil, Emil and Hecht, Stefan and Neher, Dieter}, title = {Simultaneous effect of ultraviolet radiation and surface modification on the work function and hole injection properties of ZnO thin films}, series = {Physica Status Solidi. A , Applications and materials science}, volume = {217}, journal = {Physica Status Solidi. A , Applications and materials science}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6300}, doi = {10.1002/pssa.201900876}, pages = {1 -- 6}, year = {2020}, abstract = {The combined effect of ultraviolet (UV) light soaking and self-assembled monolayer deposition on the work function (WF) of thin ZnO layers and on the efficiency of hole injection into the prototypical conjugated polymer poly(3-hexylthiophen-2,5-diyl) (P3HT) is systematically investigated. It is shown that the WF and injection efficiency depend strongly on the history of UV light exposure. Proper treatment of the ZnO layer enables ohmic hole injection into P3HT, demonstrating ZnO as a potential anode material for organic optoelectronic devices. The results also suggest that valid conclusions on the energy-level alignment at the ZnO/organic interfaces may only be drawn if the illumination history is precisely known and controlled. This is inherently problematic when comparing electronic data from ultraviolet photoelectron spectroscopy (UPS) measurements carried out under different or ill-defined illumination conditions.}, language = {en} } @article{CastilloShpritsGanushkinaetal.2019, author = {Castillo, Angelica M. and Shprits, Yuri and Ganushkina, Natalia and Drozdov, Alexander and Aseev, Nikita and Wang, Dedong and Dubyagin, Stepan}, title = {Simulations of the inner magnetospheric energetic electrons using the IMPTAM-VERB coupled model}, series = {Journal of Atmospheric and Solar-Terrestrial Physics}, volume = {191}, journal = {Journal of Atmospheric and Solar-Terrestrial Physics}, publisher = {Elsevier}, address = {Oxford}, issn = {1364-6826}, doi = {10.1016/j.jastp.2019.05.014}, pages = {17}, year = {2019}, abstract = {In this study, we present initial results of the coupling between the Inner Magnetospheric Particle Transport and Acceleration Model (IMPTAM) and the Versatile Electron Radiation Belt (VERB-3D) code. IMPTAM traces electrons of 10-100 keV energies from the plasma sheet (L = 9 Re) to inner L-shell regions. The flux evolution modeled by IMPTAM is used at the low energy and outer L* computational boundaries of the VERB code (assuming a dipole approximation) to perform radiation belt simulations of energetic electrons. The model was tested on the March 17th, 2013 storm, for a six-day period. Four different simulations were performed and their results compared to satellites observations from Van Allen probes and GOES. The coupled IMPTAM-VERB model reproduces evolution and storm-time features of electron fluxes throughout the studied storm in agreement with the satellite data (within similar to 0.5 orders of magnitude). Including dynamics of the low energy population at L* = 6.6 increases fluxes closer to the heart of the belt and has a strong impact in the VERB simulations at all energies. However, inclusion of magnetopause losses leads to drastic flux decreases even below L* = 3. The dynamics of low energy electrons (max. 10s of keV) do not affect electron fluxes at energies >= 900 keV. Since the IMPTAM-VERB coupled model is only driven by solar wind parameters and the Dst and Kp indexes, it is suitable as a forecasting tool. In this study, we demonstrate that the estimation of electron dynamics with satellite-data-independent models is possible and very accurate.}, language = {en} } @phdthesis{Uyaver2004, author = {Uyaver, Sahin}, title = {Simulation of annealed polyelectrolytes in poor solvents}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001488}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {Polymere sind lange kettenartige Molek{\"u}le. Sie bestehen aus vielen elementaren chemischen Einheiten, den Monomeren, die durch kovalente Bindungen aneinander gekettet sind. Polyelektrolyte sind Polymere, die ionisierbare Monomeren enthalten. Aufgrund ihrer speziellen Eigenschaften sind Polyelektrolyte sowohl in der Molekular- und Zellbiologie von großen Bedeutung als auch in der Chemie großtechnisch relevant. Verglichen mit ungeladenen Polymeren sind Polyelektrolyte theoretisch noch wenig verstanden. Insbesondere gilt dies f{\"u}r Polyelektrolyte in sogenanntem schlechten L{\"o}sungsmittel. Ein schlechtes L{\"o}sungsmittel bewirkt eine effektive Anziehung zwischen den Monomeren. F{\"u}r Polyelektrolyte in schlechtem L{\"o}sungsmittel kommt es daher zu einer Konkurrenz zwischen dieser Anziehung und der elektrostatischen Abstoßung. Geladene Polymere werden im Rahmen der chemischen Klassifikation in starke und schwache Polyelektrolyte unterschieden. Erstere zeigen vollst{\"a}ndige Dissoziation unabh{\"a}ngig vom pH-Wert der L{\"o}sung. Die Position der Ladungen auf der Kette wird ausschließlich w{\"a}hrend der Polymersynthese festgelegt. In der Physik spricht man deshalb von Polyelektrolyten mit eingefrorener Ladungsverteilung (quenched polyelectrolytes). Im Falle von schwachen Polyelektrolyten ist die Ladungsdichte auf der Kette nicht konstant, sondern wird durch der pH-Wert der L{\"o}sung kontrolliert. Durch Rekombinations- und Dissoziationsprozesse sind die Ladungen auf der Kette beweglich. Im allgemeinen stellt sich eine inhomogene Gleichgewichtsverteilung ein, die mit der Struktur der Kette gekoppelt ist. Diese Polymere werden deshalb auch Polyelektrolyte mit Gleichgewichtsladungsverteilung (annealed polyelectrolytes) genannt. Wegen des zus{\"a}tzlichen Freiheitsgrades in der Ladungsverteilung werden eine Reihe ungew{\"o}hnlicher Eigenschaften theoretisch vorhergesagt. Mit Hilfe von Simulationen ist es zum ersten Mal gelungen, zu zeigen daß 'annealed' Polyelektrolyte in relativ schlechtem L{\"o}sungsmittel einen diskontinuierlichen Phasen{\"u}bergang durchlaufen, wenn ein kritischer pH-Werts der L{\"o}sung {\"u}berschritten wird. Bei diesem Phasen{\"u}bergang, gehen die Polyelektolyte von einer schwach geladenen kompakten globul{\"a}ren Struktur zu einer stark geladenen gestreckten Konfiguration {\"u}ber. Aufgrund theoretischer Vorhersagen wird erwartet, daß die globul{\"a}re Struktur in weniger schlechtem L{\"o}sungsmittel instabil wird und sich eine Perlenkettenkonfiguration ausbildet. Diese Vorhersage konnte f{\"u}r 'annealed' Polyelektrolyte mit den durchgef{\"u}hrten Simulationen zum ersten Mal best{\"a}tigt werden - inzwischen auch durch erste experimentelle Ergebnisse. Schließlich zeigen die Simulationen auch, daß annealed Polyelektrolyte bei einer kritischen Salzkonzentration in der L{\"o}sung einen scharfen {\"U}bergang zwischen einem stark geladenen gestreckten Zustand und einem schwach geladenen globul{\"a}ren Zustand aufweisen, wiederum in {\"U}bereinstimmung mit theoretischen Erwartungen.}, language = {en} } @article{EberhardSchaikSchibalskietal.2020, author = {Eberhard, Julius and Schaik, N. Loes M. B. and Schibalski, Anett and Gr{\"a}ff, Thomas}, title = {Simulating future salinity dynamics in a coastal marshland under different climate scenarios}, series = {Vadose zone journal}, volume = {19}, journal = {Vadose zone journal}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {1539-1663}, doi = {10.1002/vzj2.20008}, pages = {15}, year = {2020}, abstract = {Salinization is a well-known problem in agricultural areas worldwide. In the last 20-30 yr, rising salinity in the upper, unconfined aquifer has been observed in the Freepsumer Meer, a grassland near the German North Sea coast. For investigating long-term development of salinity and water balance during 1961-2099, the one-dimensional Soil-Water-Atmosphere-Plant (SWAP) model was set up and calibrated for a soil column in the area. The model setup involves a deep aquifer as the source of salt through upward seepage. In the vertical salt transport equation, dispersion and advection are included. Six different regional outputs of statistical downscaling methods were used as climate scenarios. These comprise different rates of increasing surface temperature and different trends in seasonal rainfall. The simulation results exhibit opposing salinity trends for topsoil and deeper layers. Although projections of some scenarios entail decreasing salinities near the surface, most of them project a rise in subsoil salinity, with the strongest trends of up to +0.9 mg cm(-3) 100 yr(-1) at -65 cm. The results suggest that topsoil salinity trends in the study area are affected by the magnitude of winter rainfall trends, whereas high subsoil salinities correspond to low winter rainfall and high summer temperature. How these projected trends affect the vegetation and thereby future land use will depend on the future management of groundwater levels in the area.}, language = {en} }