@article{MardoukhiJeonChechkinetal.2018, author = {Mardoukhi, Yousof and Jeon, Jae-Hyung and Chechkin, Aleksei V. and Metzler, Ralf}, title = {Fluctuations of random walks in critical random environments}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {20}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {31}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c8cp03212b}, pages = {20427 -- 20438}, year = {2018}, abstract = {Percolation networks have been widely used in the description of porous media but are now found to be relevant to understand the motion of particles in cellular membranes or the nucleus of biological cells. Random walks on the infinite cluster at criticality of a percolation network are asymptotically ergodic. On any finite size cluster of the network stationarity is reached at finite times, depending on the cluster's size. Despite of this we here demonstrate by combination of analytical calculations and simulations that at criticality the disorder and cluster size average of the ensemble of clusters leads to a non-vanishing variance of the time averaged mean squared displacement, regardless of the measurement time. Fluctuations of this relevant experimental quantity due to the disorder average of such ensembles are thus persistent and non-negligible. The relevance of our results for single particle tracking analysis in complex and biological systems is discussed.}, language = {en} } @article{PadashChechkinDybiecetal.2019, author = {Padash, Amin and Chechkin, Aleksei V. and Dybiec, Bartlomiej and Pavlyukevich, Ilya and Shokri, Babak and Metzler, Ralf}, title = {First-passage properties of asymmetric Levy flights}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {52}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {45}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8121/ab493e}, pages = {48}, year = {2019}, abstract = {L{\´e}vy flights are paradigmatic generalised random walk processes, in which the independent stationary increments—the 'jump lengths'—are drawn from an -stable jump length distribution with long-tailed, power-law asymptote. As a result, the variance of L{\´e}vy flights diverges and the trajectory is characterised by occasional extremely long jumps. Such long jumps significantly decrease the probability to revisit previous points of visitation, rendering L{\´e}vy flights efficient search processes in one and two dimensions. To further quantify their precise property as random search strategies we here study the first-passage time properties of L{\´e}vy flights in one-dimensional semi-infinite and bounded domains for symmetric and asymmetric jump length distributions. To obtain the full probability density function of first-passage times for these cases we employ two complementary methods. One approach is based on the space-fractional diffusion equation for the probability density function, from which the survival probability is obtained for different values of the stable index and the skewness (asymmetry) parameter . The other approach is based on the stochastic Langevin equation with -stable driving noise. Both methods have their advantages and disadvantages for explicit calculations and numerical evaluation, and the complementary approach involving both methods will be profitable for concrete applications. We also make use of the Skorokhod theorem for processes with independent increments and demonstrate that the numerical results are in good agreement with the analytical expressions for the probability density function of the first-passage times.}, language = {en} } @article{VojtaSkinnerMetzler2019, author = {Vojta, Thomas and Skinner, Sarah and Metzler, Ralf}, title = {Probability density of the fractional Langevin equation with reflecting walls}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {100}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {4}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.100.042142}, pages = {11}, year = {2019}, abstract = {We investigate anomalous diffusion processes governed by the fractional Langevin equation and confined to a finite or semi-infinite interval by reflecting potential barriers. As the random and damping forces in the fractional Langevin equation fulfill the appropriate fluctuation-dissipation relation, the probability density on a finite interval converges for long times towards the expected uniform distribution prescribed by thermal equilibrium. In contrast, on a semi-infinite interval with a reflecting wall at the origin, the probability density shows pronounced deviations from the Gaussian behavior observed for normal diffusion. If the correlations of the random force are persistent (positive), particles accumulate at the reflecting wall while antipersistent (negative) correlations lead to a depletion of particles near the wall. We compare and contrast these results with the strong accumulation and depletion effects recently observed for nonthermal fractional Brownian motion with reflecting walls, and we discuss broader implications.}, language = {en} } @article{GranadoAbadMetzleretal.2020, author = {Granado, Felipe Le Vot and Abad, Enrique and Metzler, Ralf and Yuste, Santos B.}, title = {Continuous time random walk in a velocity field}, series = {New Journal of Physics}, volume = {22}, journal = {New Journal of Physics}, publisher = {Dt. Physikalische Ges.}, address = {Bad Honnef}, issn = {1367-2630}, doi = {10.1088/1367-2630/ab9ae2}, pages = {27}, year = {2020}, abstract = {We consider the emerging dynamics of a separable continuous time random walk (CTRW) in the case when the random walker is biased by a velocity field in a uniformly growing domain. Concrete examples for such domains include growing biological cells or lipid vesicles, biofilms and tissues, but also macroscopic systems such as expanding aquifers during rainy periods, or the expanding Universe. The CTRW in this study can be subdiffusive, normal diffusive or superdiffusive, including the particular case of a L{\´e}vy flight. We first consider the case when the velocity field is absent. In the subdiffusive case, we reveal an interesting time dependence of the kurtosis of the particle probability density function. In particular, for a suitable parameter choice, we find that the propagator, which is fat tailed at short times, may cross over to a Gaussian-like propagator. We subsequently incorporate the effect of the velocity field and derive a bi-fractional diffusion-advection equation encoding the time evolution of the particle distribution. We apply this equation to study the mixing kinetics of two diffusing pulses, whose peaks move towards each other under the action of velocity fields acting in opposite directions. This deterministic motion of the peaks, together with the diffusive spreading of each pulse, tends to increase particle mixing, thereby counteracting the peak separation induced by the domain growth. As a result of this competition, different regimes of mixing arise. In the case of L{\´e}vy flights, apart from the non-mixing regime, one has two different mixing regimes in the long-time limit, depending on the exact parameter choice: in one of these regimes, mixing is mainly driven by diffusive spreading, while in the other mixing is controlled by the velocity fields acting on each pulse. Possible implications for encounter-controlled reactions in real systems are discussed.}, language = {en} } @article{Metzler2019, author = {Metzler, Ralf}, title = {Brownian motion and beyond: first-passage, power spectrum, non-Gaussianity, and anomalous diffusion}, series = {Journal of statistical mechanics: theory and experiment}, volume = {2019}, journal = {Journal of statistical mechanics: theory and experiment}, number = {11}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1742-5468}, doi = {10.1088/1742-5468/ab4988}, pages = {18}, year = {2019}, abstract = {Brownian motion is a ubiquitous physical phenomenon across the sciences. After its discovery by Brown and intensive study since the first half of the 20th century, many different aspects of Brownian motion and stochastic processes in general have been addressed in Statistical Physics. In particular, there now exists a very large range of applications of stochastic processes in various disciplines. Here we provide a summary of some of the recent developments in the field of stochastic processes, highlighting both the experimental findings and theoretical frameworks.}, language = {en} } @article{CherstvyThapaWagneretal.2019, author = {Cherstvy, Andrey G. and Thapa, Samudrajit and Wagner, Caroline E. and Metzler, Ralf}, title = {Non-Gaussian, non-ergodic, and non-Fickian diffusion of tracers in mucin hydrogels}, series = {Soft matter}, volume = {15}, journal = {Soft matter}, number = {12}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1744-683X}, doi = {10.1039/c8sm02096e}, pages = {2526 -- 2551}, year = {2019}, abstract = {Native mucus is polymer-based soft-matter material of paramount biological importance. How non-Gaussian and non-ergodic is the diffusive spreading of pathogens in mucus? We study the passive, thermally driven motion of micron-sized tracers in hydrogels of mucins, the main polymeric component of mucus. We report the results of the Bayesian analysis for ranking several diffusion models for a set of tracer trajectories [C. E. Wagner et al., Biomacromolecules, 2017, 18, 3654]. The models with "diffusing diffusivity', fractional and standard Brownian motion are used. The likelihood functions and evidences of each model are computed, ranking the significance of each model for individual traces. We find that viscoelastic anomalous diffusion is often most probable, followed by Brownian motion, while the model with a diffusing diffusion coefficient is only realised rarely. Our analysis also clarifies the distribution of time-averaged displacements, correlations of scaling exponents and diffusion coefficients, and the degree of non-Gaussianity of displacements at varying pH levels. Weak ergodicity breaking is also quantified. We conclude that-consistent with the original study-diffusion of tracers in the mucin gels is most non-Gaussian and non-ergodic at low pH that corresponds to the most heterogeneous networks. Using the Bayesian approach with the nested-sampling algorithm, together with the quantitative analysis of multiple statistical measures, we report new insights into possible physical mechanisms of diffusion in mucin gels.}, language = {en} } @article{KrapfLukatMarinarietal.2019, author = {Krapf, Diego and Lukat, Nils and Marinari, Enzo and Metzler, Ralf and Oshanin, Gleb and Selhuber-Unkel, Christine and Squarcini, Alessio and Stadler, Lorenz and Weiss, Matthias and Xu, Xinran}, title = {Spectral Content of a Single Non-Brownian Trajectory}, series = {Physical review : X, Expanding access}, volume = {9}, journal = {Physical review : X, Expanding access}, number = {1}, publisher = {American Physical Society}, address = {College Park}, issn = {2160-3308}, doi = {10.1103/PhysRevX.9.011019}, pages = {13}, year = {2019}, abstract = {Time-dependent processes are often analyzed using the power spectral density (PSD) calculated by taking an appropriate Fourier transform of individual trajectories and finding the associated ensemble average. Frequently, the available experimental datasets are too small for such ensemble averages, and hence, it is of a great conceptual and practical importance to understand to which extent relevant information can be gained from S(f, T), the PSD of a single trajectory. Here we focus on the behavior of this random, realization-dependent variable parametrized by frequency f and observation time T, for a broad family of anomalous diffusions-fractional Brownian motion with Hurst index H-and derive exactly its probability density function. We show that S(f, T) is proportional-up to a random numerical factor whose universal distribution we determine-to the ensemble-averaged PSD. For subdiffusion (H < 1/2), we find that S(f, T) similar to A/f(2H+1) with random amplitude A. In sharp contrast, for superdiffusion (H > 1/2) S(f, T) similar to BT2H-1/f(2) with random amplitude B. Remarkably, for H > 1/2 the PSD exhibits the same frequency dependence as Brownian motion, a deceptive property that may lead to false conclusions when interpreting experimental data. Notably, for H > 1/2 the PSD is ageing and is dependent on T. Our predictions for both sub-and superdiffusion are confirmed by experiments in live cells and in agarose hydrogels and by extensive simulations.}, language = {en} } @article{ThapaLukatSelhuberUnkeletal.2019, author = {Thapa, Samudrajit and Lukat, Nils and Selhuber-Unkel, Christine and Cherstvy, Andrey G. and Metzler, Ralf}, title = {Transient superdiffusion of polydisperse vacuoles in highly motile amoeboid cells}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {150}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {14}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.5086269}, pages = {18}, year = {2019}, abstract = {We perform a detailed statistical analysis of diffusive trajectories of membrane-enclosed vesicles (vacuoles) in the supercrowded cytoplasm of living Acanthamoeba castellanii cells. From the vacuole traces recorded in the center-of-area frame of moving amoebae, we examine the statistics of the time-averaged mean-squared displacements of vacuoles, their generalized diffusion coefficients and anomalous scaling exponents, the ergodicity breaking parameter, the non-Gaussian features of displacement distributions of vacuoles, the displacement autocorrelation function, as well as the distributions of speeds and positions of vacuoles inside the amoeba cells. Our findings deliver novel insights into the internal dynamics of cellular structures in these infectious pathogens. Published under license by AIP Publishing.}, language = {en} } @article{FernandezCharcharCherstvyetal.2020, author = {Fernandez, Amanda Diez and Charchar, Patrick and Cherstvy, Andrey G. and Metzler, Ralf and Finnis, Michael W.}, title = {The diffusion of doxorubicin drug molecules in silica nanoslits is non-Gaussian, intermittent and anticorrelated}, series = {Physical chemistry, chemical physics}, volume = {22}, journal = {Physical chemistry, chemical physics}, number = {48}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/d0cp03849k}, pages = {27955 -- 27965}, year = {2020}, abstract = {In this study we investigate, using all-atom molecular-dynamics computer simulations, the in-plane diffusion of a doxorubicin drug molecule in a thin film of water confined between two silica surfaces. We find that the molecule diffuses along the channel in the manner of a Gaussian diffusion process, but with parameters that vary according to its varying transversal position. Our analysis identifies that four Gaussians, each describing particle motion in a given transversal region, are needed to adequately describe the data. Each of these processes by itself evolves with time at a rate slower than that associated with classical Brownian motion due to a predominance of anticorrelated displacements. Long adsorption events lead to ageing, a property observed when the diffusion is intermittently hindered for periods of time with an average duration which is theoretically infinite. This study presents a simple system in which many interesting features of anomalous diffusion can be explored. It exposes the complexity of diffusion in nanoconfinement and highlights the need to develop new understanding.}, language = {en} } @article{WangCherstvyChechkinetal.2020, author = {Wang, Wei and Cherstvy, Andrey G. and Chechkin, Aleksei V. and Thapa, Samudrajit and Seno, Flavio and Liu, Xianbin and Metzler, Ralf}, title = {Fractional Brownian motion with random diffusivity}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {53}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {47}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8121/aba467}, pages = {34}, year = {2020}, abstract = {Numerous examples for a priori unexpected non-Gaussian behaviour for normal and anomalous diffusion have recently been reported in single-particle tracking experiments. Here, we address the case of non-Gaussian anomalous diffusion in terms of a random-diffusivity mechanism in the presence of power-law correlated fractional Gaussian noise. We study the ergodic properties of this model via examining the ensemble- and time-averaged mean-squared displacements as well as the ergodicity breaking parameter EB quantifying the trajectory-to-trajectory fluctuations of the latter. For long measurement times, interesting crossover behaviour is found as function of the correlation time tau characterising the diffusivity dynamics. We unveil that at short lag times the EB parameter reaches a universal plateau. The corresponding residual value of EB is shown to depend only on tau and the trajectory length. The EB parameter at long lag times, however, follows the same power-law scaling as for fractional Brownian motion. We also determine a corresponding plateau at short lag times for the discrete representation of fractional Brownian motion, absent in the continuous-time formulation. These analytical predictions are in excellent agreement with results of computer simulations of the underlying stochastic processes. Our findings can help distinguishing and categorising certain nonergodic and non-Gaussian features of particle displacements, as observed in recent single-particle tracking experiments.}, language = {en} }