@phdthesis{Kucklaender2006, author = {Kuckl{\"a}nder, Nina}, title = {Synchronization via correlated noise and automatic control in ecological systems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-10826}, school = {Universit{\"a}t Potsdam}, year = {2006}, abstract = { Subject of this work is the possibility to synchronize nonlinear systems via correlated noise and automatic control. The thesis is divided into two parts. The first part is motivated by field studies on feral sheep populations on two islands of the St. Kilda archipelago, which revealed strong correlations due to environmental noise. For a linear system the population correlation equals the noise correlation (Moran effect). But there exists no systematic examination of the properties of nonlinear maps under the influence of correlated noise. Therefore, in the first part of this thesis the noise-induced correlation of logistic maps is systematically examined. For small noise intensities it can be shown analytically that the correlation of quadratic maps in the fixed-point regime is always smaller than or equal to the noise correlation. In the period-2 regime a Markov model explains qualitatively the main dynamical characteristics. Furthermore, two different mechanisms are introduced which lead to a higher correlation of the systems than the environmental correlation. The new effect of "correlation resonance" is described, i. e. the correlation yields a maximum depending on the noise intensity. In the second part of the thesis an automatic control method is presented which synchronizes different systems in a robust way. This method is inspired by phase-locked loops and is based on a feedback loop with a differential control scheme, which allows to change the phases of the controlled systems. The effectiveness of the approach is demonstrated for controlled phase synchronization of regular oscillators and foodweb models.}, subject = {Markov-Prozess}, language = {en} } @phdthesis{Kuehn2018, author = {K{\"u}hn, Danilo}, title = {Synchrotron-based angle-resolved time-of-flight electron spectroscopy for dynamics in dichalogenides}, school = {Universit{\"a}t Potsdam}, pages = {147}, year = {2018}, language = {en} } @phdthesis{RamanVenkatesan2022, author = {Raman Venkatesan, Thulasinath}, title = {Tailoring applications-relevant properties in poly(vinylidene fluoride)-based homo-, co- and ter-polymers through modification of their three-phase structure}, doi = {10.25932/publishup-54966}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-549667}, school = {Universit{\"a}t Potsdam}, pages = {xx, 218}, year = {2022}, abstract = {Poly(vinylidene fluoride) (PVDF)-based homo-, co- and ter-polymers are well-known for their ferroelectric and relaxor-ferroelectric properties. Their semi-crystalline morphology consists of crystalline and amorphous phases, plus interface regions in between, and governs the relevant electro-active properties. In this work, the influence of chemical, thermal and mechanical treatments on the structure and morphology of PVDF-based polymers and on the related ferroelectric/relaxor-ferroelectric properties is investigated. Polymer films were prepared in different ways and subjected to various treatments such as annealing, quenching and stretching. The resulting changes in the transitions and relaxations of the polymer samples were studied by means of dielectric, thermal, mechanical and optical techniques. In particular, the origin(s) behind the mysterious mid-temperature transition (T_{mid}) that is observed in all PVDF-based polymers was assessed. A new hypothesis is proposed to describe the T_{mid} transition as a result of multiple processes taking place within the temperature range of the transition. The contribution of the individual processes to the observed overall transition depends on both the chemical structure of the monomer units and the processing conditions which also affect the melting transition. Quenching results in a decrease of the overall crystallinity and in smaller crystallites. On samples quenched after annealing, notable differences in the fractions of different crystalline phases have been observed when compared to samples that had been slowly cooled. Stretching of poly(vinylidene fluoride-tetrafluoroethylene) (P(VDF-TFE)) films causes an increase in the fraction of the ferroelectric β-phase with simultaneous increments in the melting point (T_m) and the crystallinity (\chi_c) of the copolymer. While an increase in the stretching temperature does not have a profound effect on the amount of the ferroelectric phase, its stability appears to improve. Measurements of the non-linear dielectric permittivity \varepsilon_2^\prime in a poly(vinylidenefluoride-trifluoroethylene-chlorofluoroethylene) (P(VDF-TrFE- CFE)) relaxor-ferroelectric (R-F) terpolymer reveal peaks at 30 and 80 °C that cannot be identified in conventional dielectric spectroscopy. The former peak is associated with T_{mid}\ and may help to understand the non-zero \varepsilon_2^\prime values that are found for the paraelectric terpolymer phase. The latter peak can also be observed during cooling of P(VDF-TrFE) copolymer samples at 100 °C and is due to conduction processes and space-charge polarization as a result of the accumulation of real charges at the electrode-sample interface. Annealing lowers the Curie-transition temperature of the terpolymer as a consequence of its smaller ferroelectric-phase fraction, which by default exists even in terpolymers with relatively high CFE content. Changes in the transition temperatures are in turn related to the behavior of the hysteresis curves observed on differently heat-treated samples. Upon heating, the hysteresis curves evolve from those known for a ferroelectric to those of a typical relaxor-ferroelectric material. Comparing dielectric-hysteresis loops obtained at various temperatures, we find that annealed terpolymer films show higher electric-displacement values and lower coercive fields than the non-annealed samples - irrespective of the measurement temperature - and also exhibit ideal relaxor-ferroelectric behavior at ambient temperatures, which makes them excellent candidates for related applications at or near room temperature. However, non-annealed films - by virtue of their higher ferroelectric activity - show a larger and more stable remanent polarization at room temperature, while annealed samples need to be poled below 0 °C to induce a well-defined polarization. Overall, by modifying the three phases in PVDF-based polymers, it has been demonstrated how the preparation steps and processing conditions can be tailored to achieve the desired properties that are optimal for specific applications.}, language = {en} } @phdthesis{Jechow2009, author = {Jechow, Andreas}, title = {Tailoring the emission of stripe-array diode lasers with external cavities to enable nonlinear frequency conversion}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-031-1}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-39653}, school = {Universit{\"a}t Potsdam}, pages = {ii, 139}, year = {2009}, abstract = {A huge number of applications require coherent radiation in the visible spectral range. Since diode lasers are very compact and efficient light sources, there exists a great interest to cover these applications with diode laser emission. Despite modern band gap engineering not all wavelengths can be accessed with diode laser radiation. Especially in the visible spectral range between 480 nm and 630 nm no emission from diode lasers is available, yet. Nonlinear frequency conversion of near-infrared radiation is a common way to generate coherent emission in the visible spectral range. However, radiation with extraordinary spatial temporal and spectral quality is required to pump frequency conversion. Broad area (BA) diode lasers are reliable high power light sources in the near-infrared spectral range. They belong to the most efficient coherent light sources with electro-optical efficiencies of more than 70\%. Standard BA lasers are not suitable as pump lasers for frequency conversion because of their poor beam quality and spectral properties. For this purpose, tapered lasers and diode lasers with Bragg gratings are utilized. However, these new diode laser structures demand for additional manufacturing and assembling steps that makes their processing challenging and expensive. An alternative to BA diode lasers is the stripe-array architecture. The emitting area of a stripe-array diode laser is comparable to a BA device and the manufacturing of these arrays requires only one additional process step. Such a stripe-array consists of several narrow striped emitters realized with close proximity. Due to the overlap of the fields of neighboring emitters or the presence of leaky waves, a strong coupling between the emitters exists. As a consequence, the emission of such an array is characterized by a so called supermode. However, for the free running stripe-array mode competition between several supermodes occurs because of the lack of wavelength stabilization. This leads to power fluctuations, spectral instabilities and poor beam quality. Thus, it was necessary to study the emission properties of those stripe-arrays to find new concepts to realize an external synchronization of the emitters. The aim was to achieve stable longitudinal and transversal single mode operation with high output powers giving a brightness sufficient for efficient nonlinear frequency conversion. For this purpose a comprehensive analysis of the stripe-array devices was done here. The physical effects that are the origin of the emission characteristics were investigated theoretically and experimentally. In this context numerical models could be verified and extended. A good agreement between simulation and experiment was observed. One way to stabilize a specific supermode of an array is to operate it in an external cavity. Based on mathematical simulations and experimental work, it was possible to design novel external cavities to select a specific supermode and stabilize all emitters of the array at the same wavelength. This resulted in stable emission with 1 W output power, a narrow bandwidth in the range of 2 MHz and a very good beam quality with M²<1.5. This is a new level of brightness and brilliance compared to other BA and stripe-array diode laser systems. The emission from this external cavity diode laser (ECDL) satisfied the requirements for nonlinear frequency conversion. Furthermore, a huge improvement to existing concepts was made. In the next step newly available periodically poled crystals were used for second harmonic generation (SHG) in single pass setups. With the stripe-array ECDL as pump source, more than 140 mW of coherent radiation at 488 nm could be generated with a very high opto-optical conversion efficiency. The generated blue light had very good transversal and longitudinal properties and could be used to generate biphotons by parametric down-conversion. This was feasible because of the improvement made with the infrared stripe-array diode lasers due to the development of new physical concepts.}, language = {en} } @phdthesis{Dixit2023, author = {Dixit, Sneha}, title = {Tension-induced conformational changes of the Piezo protein-membrane nano-dome}, school = {Universit{\"a}t Potsdam}, pages = {94}, year = {2023}, abstract = {Mechanosensation is a fundamental biological process that provides the basis for sensing touch and pain as well as for hearing and proprioception. A special class of ion-channel proteins known as mechanosensitive proteins convert the mechanical stimuli into electrochemical signals to mediate this process. Mechanosensitive proteins undergo conformational changes in response to mechanical force, which eventually leads to the opening of the proteins' ion channel. Mammalian mechanosensitive proteins remained a long sought-after mystery until 2010 when a family of two proteins - Piezo1 and Piezo2 - was identifed as mechanosensors [1]. The cryo-EM structures of Piezo1 and Piezo2 protein were resolved in the last years and reveal a propeller-shaped homotrimer with 114 transmembrane helices [2, 3, 4, 5]. The protein structures are curved and have been suggested to deform the surrounding membrane into a nano-dome, which mechanically responds to membrane tension resulting from external forces [2]. In this thesis, the conformations of membrane-embedded Piezo1 and Piezo2 proteins and their tension-induced conformational changes are investigated using molecular dynamics simulations. Our coarse-grained molecular dynamics simulations show that the Piezo proteins induce curvature in the surrounding membrane and form a stable protein-membrane nano-dome in the tensionless membrane. These membrane-embedded Piezo proteins, however, adopt substantially less curved conformations in our simulations compared to the cryo-EM structures solved in detergent micelles, which agrees with recent experimental investigations of the overall Piezo nano-dome shape in membrane vesicles [6, 7, 8]. At high membrane tension, the Piezo proteins attain nearly planar conformations in our simulations. Our systematic investigation of Piezo proteins under different membrane tensions indicates a half-maximal conformational response at membrane tension values rather close to the experimentally suggested values of Piezo activation [9, 10]. In addition, our simulations indicate a widening of the Piezo1 ion channel at high membrane tension, which agrees with the channel widening observed in recent nearly flattened cryo-EM structures of Piezo1 in small membrane vesicles [11]. In contrast, the Piezo2 ion channel does not respond to membrane tension in our simulations. These different responses of the Piezo1 and Piezo2 ion channels in our simulations are in line with patch-clamp experiments, in which Piezo1, but not Piezo2, was shown to be activated by membrane tension alone [12].}, language = {en} } @phdthesis{Raetzel2013, author = {R{\"a}tzel, Dennis}, title = {Tensorial spacetime geometries and background-independent quantum field theory}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-65731}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Famously, Einstein read off the geometry of spacetime from Maxwell's equations. Today, we take this geometry that serious that our fundamental theory of matter, the standard model of particle physics, is based on it. However, it seems that there is a gap in our understanding if it comes to the physics outside of the solar system. Independent surveys show that we need concepts like dark matter and dark energy to make our models fit with the observations. But these concepts do not fit in the standard model of particle physics. To overcome this problem, at least, we have to be open to matter fields with kinematics and dynamics beyond the standard model. But these matter fields might then very well correspond to different spacetime geometries. This is the basis of this thesis: it studies the underlying spacetime geometries and ventures into the quantization of those matter fields independently of any background geometry. In the first part of this thesis, conditions are identified that a general tensorial geometry must fulfill to serve as a viable spacetime structure. Kinematics of massless and massive point particles on such geometries are introduced and the physical implications are investigated. Additionally, field equations for massive matter fields are constructed like for example a modified Dirac equation. In the second part, a background independent formulation of quantum field theory, the general boundary formulation, is reviewed. The general boundary formulation is then applied to the Unruh effect as a testing ground and first attempts are made to quantize massive matter fields on tensorial spacetimes.}, language = {en} } @phdthesis{RiveraHernandez2012, author = {Rivera Hern{\´a}ndez, Sergio}, title = {Tensorial spacetime geometries carrying predictive, interpretable and quantizable matter dynamics}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-61869}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {Which tensor fields G on a smooth manifold M can serve as a spacetime structure? In the first part of this thesis, it is found that only a severely restricted class of tensor fields can provide classical spacetime geometries, namely those that can carry predictive, interpretable and quantizable matter dynamics. The obvious dependence of this characterization of admissible tensorial spacetime geometries on specific matter is not a weakness, but rather presents an insight: it was Maxwell theory that justified Einstein to promote Lorentzian manifolds to the status of a spacetime geometry. Any matter that does not mimick the structure of Maxwell theory, will force us to choose another geometry on which the matter dynamics of interest are predictive, interpretable and quantizable. These three physical conditions on matter impose three corresponding algebraic conditions on the totally symmetric contravariant coefficient tensor field P that determines the principal symbol of the matter field equations in terms of the geometric tensor G: the tensor field P must be hyperbolic, time-orientable and energy-distinguishing. Remarkably, these physically necessary conditions on the geometry are mathematically already sufficient to realize all kinematical constructions familiar from Lorentzian geometry, for precisely the same structural reasons. This we were able to show employing a subtle interplay of convex analysis, the theory of partial differential equations and real algebraic geometry. In the second part of this thesis, we then explore general properties of any hyperbolic, time-orientable and energy-distinguishing tensorial geometry. Physically most important are the construction of freely falling non-rotating laboratories, the appearance of admissible modified dispersion relations to particular observers, and the identification of a mechanism that explains why massive particles that are faster than some massless particles can radiate off energy until they are slower than all massless particles in any hyperbolic, time-orientable and energy-distinguishing geometry. In the third part of the thesis, we explore how tensorial spacetime geometries fare when one wants to quantize particles and fields on them. This study is motivated, in part, in order to provide the tools to calculate the rate at which superluminal particles radiate off energy to become infraluminal, as explained above. Remarkably, it is again the three geometric conditions of hyperbolicity, time-orientability and energy-distinguishability that allow the quantization of general linear electrodynamics on an area metric spacetime and the quantization of massive point particles obeying any admissible dispersion relation. We explore the issue of field equations of all possible derivative order in rather systematic fashion, and prove a practically most useful theorem that determines Dirac algebras allowing the reduction of derivative orders. The final part of the thesis presents the sketch of a truly remarkable result that was obtained building on the work of the present thesis. Particularly based on the subtle duality maps between momenta and velocities in general tensorial spacetimes, it could be shown that gravitational dynamics for hyperbolic, time-orientable and energy distinguishable geometries need not be postulated, but the formidable physical problem of their construction can be reduced to a mere mathematical task: the solution of a system of homogeneous linear partial differential equations. This far-reaching physical result on modified gravity theories is a direct, but difficult to derive, outcome of the findings in the present thesis. Throughout the thesis, the abstract theory is illustrated through instructive examples.}, language = {en} } @phdthesis{Mergenthaler2009, author = {Mergenthaler, Konstantin K.}, title = {The control of fixational eye movements}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-29397}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {In normal everyday viewing, we perform large eye movements (saccades) and miniature or fixational eye movements. Most of our visual perception occurs while we are fixating. However, our eyes are perpetually in motion. Properties of these fixational eye movements, which are partly controlled by the brainstem, change depending on the task and the visual conditions. Currently, fixational eye movements are poorly understood because they serve the two contradictory functions of gaze stabilization and counteraction of retinal fatigue. In this dissertation, we investigate the spatial and temporal properties of time series of eye position acquired from participants staring at a tiny fixation dot or at a completely dark screen (with the instruction to fixate a remembered stimulus); these time series were acquired with high spatial and temporal resolution. First, we suggest an advanced algorithm to separate the slow phases (named drift) and fast phases (named microsaccades) of these movements, which are considered to play different roles in perception. On the basis of this identification, we investigate and compare the temporal scaling properties of the complete time series and those time series where the microsaccades are removed. For the time series obtained during fixations on a stimulus, we were able to show that they deviate from Brownian motion. On short time scales, eye movements are governed by persistent behavior and on a longer time scales, by anti-persistent behavior. The crossover point between these two regimes remains unchanged by the removal of microsaccades but is different in the horizontal and the vertical components of the eyes. Other analyses target the properties of the microsaccades, e.g., the rate and amplitude distributions, and we investigate, whether microsaccades are triggered dynamically, as a result of earlier events in the drift, or completely randomly. The results obtained from using a simple box-count measure contradict the hypothesis of a purely random generation of microsaccades (Poisson process). Second, we set up a model for the slow part of the fixational eye movements. The model is based on a delayed random walk approach within the velocity related equation, which allows us to use the data to determine control loop durations; these durations appear to be different for the vertical and horizontal components of the eye movements. The model is also motivated by the known physiological representation of saccade generation; the difference between horizontal and vertical components concurs with the spatially separated representation of saccade generating regions. Furthermore, the control loop durations in the model suggest an external feedback loop for the horizontal but not for the vertical component, which is consistent with the fact that an internal feedback loop in the neurophysiology has only been identified for the vertical component. Finally, we confirmed the scaling properties of the model by semi-analytical calculations. In conclusion, we were able to identify several properties of the different parts of fixational eye movements and propose a model approach that is in accordance with the described neurophysiology and described limitations of fixational eye movement control.}, language = {en} } @phdthesis{Khosravi2023, author = {Khosravi, Sara}, title = {The effect of new turbulence parameterizations for the stable surface layer on simulations of the Arctic climate}, doi = {10.25932/publishup-64352}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-643520}, school = {Universit{\"a}t Potsdam}, pages = {XIV, 119}, year = {2023}, abstract = {Arctic climate change is marked by intensified warming compared to global trends and a significant reduction in Arctic sea ice which can intricately influence mid-latitude atmospheric circulation through tropo- and stratospheric pathways. Achieving accurate simulations of current and future climate demands a realistic representation of Arctic climate processes in numerical climate models, which remains challenging. Model deficiencies in replicating observed Arctic climate processes often arise due to inadequacies in representing turbulent boundary layer interactions that determine the interactions between the atmosphere, sea ice, and ocean. Many current climate models rely on parameterizations developed for mid-latitude conditions to handle Arctic turbulent boundary layer processes. This thesis focuses on modified representation of the Arctic atmospheric processes and understanding their resulting impact on large-scale mid-latitude atmospheric circulation within climate models. The improved turbulence parameterizations, recently developed based on Arctic measurements, were implemented in the global atmospheric circulation model ECHAM6. This involved modifying the stability functions over sea ice and ocean for stable stratification and changing the roughness length over sea ice for all stratification conditions. Comprehensive analyses are conducted to assess the impacts of these modifications on ECHAM6's simulations of the Arctic boundary layer, overall atmospheric circulation, and the dynamical pathways between the Arctic and mid-latitudes. Through a step-wise implementation of the mentioned parameterizations into ECHAM6, a series of sensitivity experiments revealed that the combined impacts of the reduced roughness length and the modified stability functions are non-linear. Nevertheless, it is evident that both modifications consistently lead to a general decrease in the heat transfer coefficient, being in close agreement with the observations. Additionally, compared to the reference observations, the ECHAM6 model falls short in accurately representing unstable and strongly stable conditions. The less frequent occurrence of strong stability restricts the influence of the modified stability functions by reducing the affected sample size. However, when focusing solely on the specific instances of a strongly stable atmosphere, the sensible heat flux approaches near-zero values, which is in line with the observations. Models employing commonly used surface turbulence parameterizations were shown to have difficulties replicating the near-zero sensible heat flux in strongly stable stratification. I also found that these limited changes in surface layer turbulence parameterizations have a statistically significant impact on the temperature and wind patterns across multiple pressure levels, including the stratosphere, in both the Arctic and mid-latitudes. These significant signals vary in strength, extent, and direction depending on the specific month or year, indicating a strong reliance on the background state. Furthermore, this research investigates how the modified surface turbulence parameterizations may influence the response of both stratospheric and tropospheric circulation to Arctic sea ice loss. The most suitable parameterizations for accurately representing Arctic boundary layer turbulence were identified from the sensitivity experiments. Subsequently, the model's response to sea ice loss is evaluated through extended ECHAM6 simulations with different prescribed sea ice conditions. The simulation with adjusted surface turbulence parameterizations better reproduced the observed Arctic tropospheric warming in vertical extent, demonstrating improved alignment with the reanalysis data. Additionally, unlike the control experiments, this simulation successfully reproduced specific circulation patterns linked to the stratospheric pathway for Arctic-mid-latitude linkages. Specifically, an increased occurrence of the Scandinavian-Ural blocking regime (negative phase of the North Atlantic Oscillation) in early (late) winter is observed. Overall, it can be inferred that improving turbulence parameterizations at the surface layer can improve the ECHAM6's response to sea ice loss.}, language = {en} } @phdthesis{Heinig2003, author = {Heinig, Peter}, title = {The geometry of interacting liquid domains in Langmuir monolayers}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000814}, school = {Universit{\"a}t Potsdam}, year = {2003}, abstract = {Es werden die Strukturbildung und Benetzung zweidimensionaler (2D) Phasen von Langmuir-Monolagen im lokalen thermodynamischen Gleichgewicht untersucht. Eine Langmuir-Monolage ist ein isoliertes 2D System von Surfaktanten an der Wasser/Luft-Grenzfl{\"a}che, in dem kristalline, fl{\"u}ssigkristalline, fl{\"u}ssige oder gasf{\"o}rmige Phasen auftreten, die sich in Positionsordnung und/oder Orientierungsordnung unterscheiden. Permanente elektrische Dipolmomente der Surfaktanten f{\"u}hren zu einer langreichweitigen repulsiven Selbstwechselwirkung der Monolage und zur Bildung mesoskopischer Strukturen. Es wird ein Wechselwirkungsmodell verwendet, das die Strukturbildung als Wechselspiel kurzreichweitiger Anziehung (nackte Linienspannung) und langreichweitiger Abstoßung (Oberfl{\"a}chenpotential) auf einer Skala Delta beschreibt. Physikalisch trennt Delta die beiden L{\"a}ngenskalen der lang- und kurzreichweitigen Wechselwirkung. In dieser Arbeit werden die thermodynamischen Stabilit{\"a}tsbedingungen f{\"u}r die Form einer Phasengrenzlinie (Young-Laplace-Gleichung) und Dreiphasenkontaktpunkt (Young-Bedingung) hergeleitet und zur Beschreibung experimenteller Daten genutzt: Die Linienspannung benetzender 2D Tropfen wird mit Hilfe h{\"a}ngender-Tropfen-Tensiometrie gemessen. Die Blasenform und -gr{\"o}ße von 2D Sch{\"a}umen wird theoretisch modelliert und mit experimentellen 2D Sch{\"a}umen verglichen. Kontaktwinkel werden durch die Anpassung von experimentellen Tropfen mit numerischen L{\"o}sungen der Young-Laplace-Gleichung auf Mikrometerskalen gemessen. Das Skalenverhalten des Kontaktwinkels erm{\"o}glicht die Bestimmung einer unteren Schranke von Delta. Weiterhin wird diskutiert, inwieweit das Schalten von 2D Benetzungsmodi in biologischen Membranen zur Steuerung der Reaktionskinetik ein Rolle spielen k{\"o}nnte. Hierzu werden Experimente aus unserer Gruppe, die in einer Langmuir-Monolage durchgef{\"u}hrt wurden, herangezogen. Abschließend wird die scheinbare Verletzung der Gibbs\′schen Phasenregel in Langmuir-Monolagen (nicht-horizontales Plateau der Oberfl{\"a}chendruck-Fl{\"a}che Isotherme, ausgedehntes Dreiphasengebiet in Einkomponentensystemen) quantitativ untersucht. Eine Verschmutzung der verwendeten Substanzen ist demnach die wahscheinlichste Erkl{\"a}rung, w{\"a}hrend Finite-Size-Effekte oder der Einfluss der langreichweitigen Elektrostatik die Gr{\"o}ßenordnung des Effektes nicht beschreiben k{\"o}nnen.}, language = {en} } @phdthesis{Yin2009, author = {Yin, Chunhong}, title = {The interplay of nanostructure and efficiency of polymer solar cells}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-29054}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {The aim of this thesis is to achieve a deep understanding of the working mechanism of polymer based solar cells and to improve the device performance. Two types of the polymer based solar cells are studied here: all-polymer solar cells comprising macromolecular donors and acceptors based on poly(p-phenylene vinylene) and hybrid cells comprising a PPV copolymer in combination with a novel small molecule electron acceptor. To understand the interplay between morphology and photovoltaic properties in all-polymer devices, I compared the photocurrent characteristics and excited state properties of bilayer and blend devices with different nano-morphology, which was fine tuned by using solvents with different boiling points. The main conclusion from these complementary measurements was that the performance-limiting step is the field-dependent generation of free charge carriers, while bimolecular recombination and charge extraction do not compromise device performance. These findings imply that the proper design of the donor-acceptor heterojunction is of major importance towards the goal of high photovoltaic efficiencies. Regarding polymer-small molecular hybrid solar cells I combined the hole-transporting polymer M3EH-PPV with a novel Vinazene-based electron acceptor. This molecule can be either deposited from solution or by thermal evaporation, allowing for a large variety of layer architectures to be realized. I then demonstrated that the layer architecture has a large influence on the photovoltaic properties. Solar cells with very high fill factors of up to 57 \% and an open circuit voltage of 1V could be achieved by realizing a sharp and well-defined donor-acceptor heterojunction. In the past, fill factors exceeding 50 \% have only been observed for polymers in combination with soluble fullerene-derivatives or nanocrystalline inorganic semiconductors as the electron-accepting component. The finding that proper processing of polymer-vinazene devices leads to similar high values is a major step towards the design of efficient polymer-based solar cells.}, language = {en} } @phdthesis{Ruppert2016, author = {Ruppert, Jan}, title = {The Low-Mass Young Stellar Content in the Extended Environment of the Galactic Starburst Region NGC3603}, school = {Universit{\"a}t Potsdam}, pages = {148}, year = {2016}, language = {en} } @phdthesis{Schlemm2022, author = {Schlemm, Tanja}, title = {The marine ice cliff instability of the Antarctic ice sheet}, doi = {10.25932/publishup-58633}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-586333}, school = {Universit{\"a}t Potsdam}, pages = {107}, year = {2022}, abstract = {The Antarctic ice sheet is the largest freshwater reservoir worldwide. If it were to melt completely, global sea levels would rise by about 58 m. Calculation of projections of the Antarctic contribution to sea level rise under global warming conditions is an ongoing effort which yields large ranges in predictions. Among the reasons for this are uncertainties related to the physics of ice sheet modeling. These uncertainties include two processes that could lead to runaway ice retreat: the Marine Ice Sheet Instability (MISI), which causes rapid grounding line retreat on retrograde bedrock, and the Marine Ice Cliff Instability (MICI), in which tall ice cliffs become unstable and calve off, exposing even taller ice cliffs. In my thesis, I investigated both marine instabilities (MISI and MICI) using the Parallel Ice Sheet Model (PISM), with a focus on MICI.}, language = {en} } @phdthesis{DeAndradeQueiroz2023, author = {De Andrade Queiroz, Anna Barbara}, title = {The Milky Way disks, bulge, and bar sub-populations}, doi = {10.25932/publishup-59061}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-590615}, school = {Universit{\"a}t Potsdam}, pages = {xii, 187}, year = {2023}, abstract = {In recent decades, astronomy has seen a boom in large-scale stellar surveys of the Galaxy. The detailed information obtained about millions of individual stars in the Milky Way is bringing us a step closer to answering one of the most outstanding questions in astrophysics: how do galaxies form and evolve? The Milky Way is the only galaxy where we can dissect many stars into their high-dimensional chemical composition and complete phase space, which analogously as fossil records can unveil the past history of the genesis of the Galaxy. The processes that lead to large structure formation, such as the Milky Way, are critical for constraining cosmological models; we call this line of study Galactic archaeology or near-field cosmology. At the core of this work, we present a collection of efforts to chemically and dynamically characterise the disks and bulge of our Galaxy. The results we present in this thesis have only been possible thanks to the advent of the Gaia astrometric satellite, which has revolutionised the field of Galactic archaeology by precisely measuring the positions, parallax distances and motions of more than a billion stars. Another, though not less important, breakthrough is the APOGEE survey, which has observed spectra in the near-infrared peering into the dusty regions of the Galaxy, allowing us to determine detailed chemical abundance patterns in hundreds of thousands of stars. To accurately depict the Milky Way structure, we use and develop the Bayesian isochrone fitting tool/code called StarHorse; this software can predict stellar distances, extinctions and ages by combining astrometry, photometry and spectroscopy based on stellar evolutionary models. The StarHorse code is pivotal to calculating distances where Gaia parallaxes alone cannot allow accurate estimates. We show that by combining Gaia, APOGEE, photometric surveys and using StarHorse, we can produce a chemical cartography of the Milky way disks from their outermost to innermost parts. Such a map is unprecedented in the inner Galaxy. It reveals a continuity of the bimodal chemical pattern previously detected in the solar neighbourhood, indicating two populations with distinct formation histories. Furthermore, the data reveals a chemical gradient within the thin disk where the content of 𝛼-process elements and metals is higher towards the centre. Focusing on a sample in the inner MW we confirm the extension of the chemical duality to the innermost regions of the Galaxy. We find stars with bar shape orbits to show both high- and low-𝛼 abundances, suggesting the bar formed by secular evolution trapping stars that already existed. By analysing the chemical orbital space of the inner Galactic regions, we disentangle the multiple populations that inhabit this complex region. We reveal the presence of the thin disk, thick disk, bar, and a counter-rotating population, which resembles the outcome of a perturbed proto-Galactic disk. Our study also finds that the inner Galaxy holds a high quantity of super metal-rich stars up to three times solar suggesting it is a possible repository of old super-metal-rich stars found in the solar neighbourhood. We also enter into the complicated task of deriving individual stellar ages. With StarHorse, we calculate the ages of main-sequence turn-off and sub-giant stars for several public spectroscopic surveys. We validate our results by investigating linear relations between chemical abundances and time since the 𝛼 and neutron capture elements are sensitive to age as a reflection of the different enrichment timescales of these elements. For further study of the disks in the solar neighbourhood, we use an unsupervised machine learning algorithm to delineate a multidimensional separation of chrono-chemical stellar groups revealing the chemical thick disk, the thin disk, and young 𝛼-rich stars. The thick disk is shown to have a small age dispersion indicating its fast formation contrary to the thin disk that spans a wide range of ages. With groundbreaking data, this thesis encloses a detailed chemo-dynamical view of the disk and bulge of our Galaxy. Our findings on the Milky Way can be linked to the evolution of high redshift disk galaxies, helping to solve the conundrum of galaxy formation.}, language = {en} } @phdthesis{Haase2019, author = {Haase, Nadin}, title = {The nascent peptide chain in the ribosomal exit tunnel}, school = {Universit{\"a}t Potsdam}, pages = {105}, year = {2019}, language = {en} } @phdthesis{Sposini2020, author = {Sposini, Vittoria}, title = {The random diffusivity approach for diffusion in heterogeneous systems}, doi = {10.25932/publishup-48780}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-487808}, school = {Universit{\"a}t Potsdam}, year = {2020}, abstract = {The two hallmark features of Brownian motion are the linear growth < x2(t)> = 2Ddt of the mean squared displacement (MSD) with diffusion coefficient D in d spatial dimensions, and the Gaussian distribution of displacements. With the increasing complexity of the studied systems deviations from these two central properties have been unveiled over the years. Recently, a large variety of systems have been reported in which the MSD exhibits the linear growth in time of Brownian (Fickian) transport, however, the distribution of displacements is pronouncedly non-Gaussian (Brownian yet non-Gaussian, BNG). A similar behaviour is also observed for viscoelastic-type motion where an anomalous trend of the MSD, i.e., ~ ta, is combined with a priori unexpected non-Gaussian distributions (anomalous yet non-Gaussian, ANG). This kind of behaviour observed in BNG and ANG diffusions has been related to the presence of heterogeneities in the systems and a common approach has been established to address it, that is, the random diffusivity approach. This dissertation explores extensively the field of random diffusivity models. Starting from a chronological description of all the main approaches used as an attempt of describing BNG and ANG diffusion, different mathematical methodologies are defined for the resolution and study of these models. The processes that are reported in this work can be classified in three subcategories, i) randomly-scaled Gaussian processes, ii) superstatistical models and iii) diffusing diffusivity models, all belonging to the more general class of random diffusivity models. Eventually, the study focuses more on BNG diffusion, which is by now well-established and relatively well-understood. Nevertheless, many examples are discussed for the description of ANG diffusion, in order to highlight the possible scenarios which are known so far for the study of this class of processes. The second part of the dissertation deals with the statistical analysis of random diffusivity processes. A general description based on the concept of moment-generating function is initially provided to obtain standard statistical properties of the models. Then, the discussion moves to the study of the power spectral analysis and the first passage statistics for some particular random diffusivity models. A comparison between the results coming from the random diffusivity approach and the ones for standard Brownian motion is discussed. In this way, a deeper physical understanding of the systems described by random diffusivity models is also outlined. To conclude, a discussion based on the possible origins of the heterogeneity is sketched, with the main goal of inferring which kind of systems can actually be described by the random diffusivity approach.}, language = {en} } @phdthesis{Dominis2006, author = {Dominis, Dijana}, title = {The role of binary stars in searches for extrasolar planets by microlensing and astrometry}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-10814}, school = {Universit{\"a}t Potsdam}, year = {2006}, abstract = {When Galactic microlensing events of stars are observed, one usually measures a symmetric light curve corresponding to a single lens, or an asymmetric light curve, often with caustic crossings, in the case of a binary lens system. In principle, the fraction of binary stars at a certain separation range can be estimated based on the number of measured microlensing events. However, a binary system may produce a light curve which can be fitted well as a single lens light curve, in particullary if the data sampling is poor and the errorbars are large. We investigate what fraction of microlensing events produced by binary stars for different separations may be well fitted by and hence misinterpreted as single lens events for various observational conditions. We find that this fraction strongly depends on the separation of the binary components, reaching its minimum at between 0.6 and 1.0 Einstein radius, where it is still of the order of 5\% The Einstein radius is corresponding to few A.U. for typical Galactic microlensing scenarios. The rate for misinterpretation is higher for short microlensing events lasting up to few months and events with smaller maximum amplification. For fixed separation it increases for binaries with more extreme mass ratios. Problem of degeneracy in photometric light curve solution between binary lens and binary source microlensing events was studied on simulated data, and data observed by the PLANET collaboration. The fitting code BISCO using the PIKAIA genetic algorithm optimizing routine was written for optimizing binary-source microlensing light curves observed at different sites, in I, R and V photometric bands. Tests on simulated microlensing light curves show that BISCO is successful in finding the solution to a binary-source event in a very wide parameter space. Flux ratio method is suggested in this work for breaking degeneracy between binary-lens and binary-source photometric light curves. Models show that only a few additional data points in photometric V band, together with a full light curve in I band, will enable breaking the degeneracy. Very good data quality and dense data sampling, combined with accurate binary lens and binary source modeling, yielded the discovery of the lowest-mass planet discovered outside of the Solar System so far, OGLE-2005-BLG-390Lb, having only 5.5 Earth masses. This was the first observed microlensing event in which the degeneracy between a planetary binary-lens and an extreme flux ratio binary-source model has been successfully broken. For events OGLE-2003-BLG-222 and OGLE-2004-BLG-347, the degeneracy was encountered despite of very dense data sampling. From light curve modeling and stellar evolution theory, there was a slight preference to explain OGLE-2003-BLG-222 as a binary source event, and OGLE-2004-BLG-347 as a binary lens event. However, without spectra, this degeneracy cannot be fully broken. No planet was found so far around a white dwarf, though it is believed that Jovian planets should survive the late stages of stellar evolution, and that white dwarfs will retain planetary systems in wide orbits. We want to perform high precision astrometric observations of nearby white dwarfs in wide binary systems with red dwarfs in order to find planets around white dwarfs. We selected a sample of observing targets (WD-RD binary systems, not published yet), which can possibly have planets around the WD component, and modeled synthetic astrometric orbits which can be observed for these targets using existing and future astrometric facilities. Modeling was performed for the astrometric accuracy of 0.01, 0.1, and 1.0 mas, separation between WD and planet of 3 and 5 A.U., binary system separation of 30 A.U., planet masses of 10 Earth masses, 1 and 10 Jupiter masses, WD mass of 0.5M and 1.0 Solar masses, and distances to the system of 10, 20 and 30 pc. It was found that the PRIMA facility at the VLTI will be able to detect planets around white dwarfs once it is operating, by measuring the astrometric wobble of the WD due to a planet companion, down to 1 Jupiter mass. We show for the simulated observations that it is possible to model the orbits and find the parameters describing the potential planetary systems.}, subject = {Mikrogravitationslinseneffekt}, language = {en} } @phdthesis{Hainich2015, author = {Hainich, Rainer}, title = {The Wolf-Rayet stars of the nitrogen sequence in environments of different metallicities}, school = {Universit{\"a}t Potsdam}, pages = {161}, year = {2015}, language = {en} } @phdthesis{Deneke2012, author = {Deneke, Carlus}, title = {Theory of mRNA degradation}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-61998}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {One of the central themes of biology is to understand how individual cells achieve a high fidelity in gene expression. Each cell needs to ensure accurate protein levels for its proper functioning and its capability to proliferate. Therefore, complex regulatory mechanisms have evolved in order to render the expression of each gene dependent on the expression level of (all) other genes. Regulation can occur at different stages within the framework of the central dogma of molecular biology. One very effective and relatively direct mechanism concerns the regulation of the stability of mRNAs. All organisms have evolved diverse and powerful mechanisms to achieve this. In order to better comprehend the regulation in living cells, biochemists have studied specific degradation mechanisms in detail. In addition to that, modern high-throughput techniques allow to obtain quantitative data on a global scale by parallel analysis of the decay patterns of many different mRNAs from different genes. In previous studies, the interpretation of these mRNA decay experiments relied on a simple theoretical description based on an exponential decay. However, this does not account for the complexity of the responsible mechanisms and, as a consequence, the exponential decay is often not in agreement with the experimental decay patterns. We have developed an improved and more general theory of mRNA degradation which provides a general framework of mRNA expression and allows describing specific degradation mechanisms. We have made an attempt to provide detailed models for the regulation in different organisms. In the yeast S. cerevisiae, different degradation pathways are known to compete and furthermore most of them rely on the biochemical modification of mRNA molecules. In bacteria such as E. coli, degradation proceeds primarily endonucleolytically, i.e. it is governed by the initial cleavage within the coding region. In addition, it is often coupled to the level of maturity and the size of the polysome of an mRNA. Both for S. cerevisiae and E. coli, our descriptions lead to a considerable improvement of the interpretation of experimental data. The general outcome is that the degradation of mRNA must be described by an age-dependent degradation rate, which can be interpreted as a consequence of molecular aging of mRNAs. Within our theory, we find adequate ways to address this much debated topic from a theoretical perspective. The improvements of the understanding of mRNA degradation can be readily applied to further comprehend the mRNA expression under different internal or environmental conditions such as after the induction of transcription or stress application. Also, the role of mRNA decay can be assessed in the context of translation and protein synthesis. The ultimate goal in understanding gene regulation mediated by mRNA stability will be to identify the relevance and biological function of different mechanisms. Once more quantitative data will become available, our description allows to elaborate the role of each mechanism by devising a suitable model.}, language = {en} } @phdthesis{Daschewski2016, author = {Daschewski, Maxim}, title = {Thermophony in real gases}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-98866}, school = {Universit{\"a}t Potsdam}, pages = {79}, year = {2016}, abstract = {A thermophone is an electrical device for sound generation. The advantages of thermophones over conventional sound transducers such as electromagnetic, electrostatic or piezoelectric transducers are their operational principle which does not require any moving parts, their resonance-free behavior, their simple construction and their low production costs. In this PhD thesis, a novel theoretical model of thermophonic sound generation in real gases has been developed. The model is experimentally validated in a frequency range from 2 kHz to 1 MHz by testing more then fifty thermophones of different materials, including Carbon nano-wires, Titanium, Indium-Tin-Oxide, different sizes and shapes for sound generation in gases such as air, argon, helium, oxygen, nitrogen and sulfur hexafluoride. Unlike previous approaches, the presented model can be applied to different kinds of thermophones and various gases, taking into account the thermodynamic properties of thermophone materials and of adjacent gases, degrees of freedom and the volume occupied by the gas atoms and molecules, as well as sound attenuation effects, the shape and size of the thermophone surface and the reduction of the generated acoustic power due to photonic emission. As a result, the model features better prediction accuracy than the existing models by a factor up to 100. Moreover, the new model explains previous experimental findings on thermophones which can not be explained with the existing models. The acoustic properties of the thermophones have been tested in several gases using unique, highly precise experimental setups comprising a Laser-Doppler-Vibrometer combined with a thin polyethylene film which acts as a broadband and resonance-free sound-pressure detector. Several outstanding properties of the thermophones have been demonstrated for the first time, including the ability to generate arbitrarily shaped acoustic signals, a greater acoustic efficiency compared to conventional piezoelectric and electrostatic airborne ultrasound transducers, and applicability as powerful and tunable sound sources with a bandwidth up to the megahertz range and beyond. Additionally, new applications of thermophones such as the study of physical properties of gases, the thermo-acoustic gas spectroscopy, broad-band characterization of transfer functions of sound and ultrasound detection systems, and applications in non-destructive materials testing are discussed and experimentally demonstrated.}, language = {en} }