@phdthesis{Damseaux2024, author = {Damseaux, Adrien}, title = {Improving permafrost dynamics in land surface models: insights from dual sensitivity experiments}, doi = {10.25932/publishup-63945}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-639450}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 143}, year = {2024}, abstract = {The thawing of permafrost and the subsequent release of greenhouse gases constitute one of the most significant and uncertain positive feedback loops in the context of climate change, making predictions regarding changes in permafrost coverage of paramount importance. To address these critical questions, climate scientists have developed Land Surface Models (LSMs) that encompass a multitude of physical soil processes. This thesis is committed to advancing our understanding and refining precise representations of permafrost dynamics within LSMs, with a specific focus on the accurate modeling of heat fluxes, an essential component for simulating permafrost physics. The first research question overviews fundamental model prerequisites for the representation of permafrost soils within land surface modeling. It includes a first-of-its-kind comparison between LSMs in CMIP6 to reveal their differences and shortcomings in key permafrost physics parameters. Overall, each of these LSMs represents a unique approach to simulating soil processes and their interactions with the climate system. Choosing the most appropriate model for a particular application depends on factors such as the spatial and temporal scale of the simulation, the specific research question, and available computational resources. The second research question evaluates the performance of the state-of-the-art Community Land Model (CLM5) in simulating Arctic permafrost regions. Our approach overcomes traditional evaluation limitations by individually addressing depth, seasonality, and regional variations, providing a comprehensive assessment of permafrost and soil temperature dynamics. I compare CLM5's results with three extensive datasets: (1) soil temperatures from 295 borehole stations, (2) active layer thickness (ALT) data from the Circumpolar Active Layer Monitoring Network (CALM), and (3) soil temperatures, ALT, and permafrost extent from the ESA Climate Change Initiative (ESA-CCI). The results show that CLM5 aligns well with ESA-CCI and CALM for permafrost extent and ALT but reveals a significant global cold temperature bias, notably over Siberia. These results echo a persistent challenge identified in numerous studies: the existence of a systematic 'cold bias' in soil temperature over permafrost regions. To address this challenge, the following research questions propose dual sensitivity experiments. The third research question represents the first study to apply a Plant Functional Type (PFT)-based approach to derive soil texture and soil organic matter (SOM), departing from the conventional use of coarse-resolution global data in LSMs. This novel method results in a more uniform distribution of soil organic matter density (OMD) across the domain, characterized by reduced OMD values in most regions. However, changes in soil texture exhibit a more intricate spatial pattern. Comparing the results to observations reveals a significant reduction in the cold bias observed in the control run. This method shows noticeable improvements in permafrost extent, but at the cost of an overestimation in ALT. These findings emphasize the model's high sensitivity to variations in soil texture and SOM content, highlighting the crucial role of soil composition in governing heat transfer processes and shaping the seasonal variation of soil temperatures in permafrost regions. Expanding upon a site experiment conducted in Trail Valley Creek by \citet{dutch_impact_2022}, the fourth research question extends the application of the snow scheme proposed by \citet{sturm_thermal_1997} to cover the entire Arctic domain. By employing a snow scheme better suited to the snow density profile observed over permafrost regions, this thesis seeks to assess its influence on simulated soil temperatures. Comparing this method to observational datasets reveals a significant reduction in the cold bias that was present in the control run. In most regions, the Sturm run exhibits a substantial decrease in the cold bias. However, there is a distinctive overshoot with a warm bias observed in mountainous areas. The Sturm experiment effectively addressed the overestimation of permafrost extent in the control run, albeit resulting in a substantial reduction in permafrost extent over mountainous areas. ALT results remain relatively consistent compared to the control run. These outcomes align with our initial hypothesis, which anticipated that the reduced snow insulation in the Sturm run would lead to higher winter soil temperatures and a more accurate representation of permafrost physics. In summary, this thesis demonstrates significant advancements in understanding permafrost dynamics and its integration into LSMs. It has meticulously unraveled the intricacies involved in the interplay between heat transfer, soil properties, and snow dynamics in permafrost regions. These insights offer novel perspectives on model representation and performance.}, language = {en} } @phdthesis{Bojahr2016, author = {Bojahr, Andre}, title = {Hypersound interaction studied by time-resolved inelastic light and x-ray scattering}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-93860}, school = {Universit{\"a}t Potsdam}, pages = {xxiii, 201}, year = {2016}, abstract = {This publications-based thesis summarizes my contribution to the scientific field of ultrafast structural dynamics. It consists of 16 publications, about the generation, detection and coupling of coherent gigahertz longitudinal acoustic phonons, also called hypersonic waves. To generate such high frequency phonons, femtosecond near infrared laser pulses were used to heat nanostructures composed of perovskite oxides on an ultrashort timescale. As a consequence the heated regions of such a nanostructure expand and a high frequency acoustic phonon pulse is generated. To detect such coherent acoustic sound pulses I use ultrafast variants of optical Brillouin and x-ray scattering. Here an incident optical or x-ray photon is scattered by the excited sound wave in the sample. The scattered light intensity measures the occupation of the phonon modes. The central part of this work is the investigation of coherent high amplitude phonon wave packets which can behave nonlinearly, quite similar to shallow water waves which show a steepening of wave fronts or solitons well known as tsunamis. Due to the high amplitude of the acoustic wave packets in the solid, the acoustic properties can change significantly in the vicinity of the sound pulse. This may lead to a shape change of the pulse. I have observed by time-resolved Brillouin scattering, that a single cycle hypersound pulse shows a wavefront steepening. I excited hypersound pulses with strain amplitudes until 1\% which I have calibrated by ultrafast x-ray diffraction (UXRD). On the basis of this first experiment we developed the idea of the nonlinear mixing of narrowband phonon wave packets which we call "nonlinear phononics" in analogy with the nonlinear optics, which summarizes a kaleidoscope of surprising optical phenomena showing up at very high electric fields. Such phenomena are for instance Second Harmonic Generation, four-wave-mixing or solitons. But in case of excited coherent phonons the wave packets have usually very broad spectra which make it nearly impossible to look at elementary scattering processes between phonons with certain momentum and energy. For that purpose I tested different techniques to excite narrowband phonon wave packets which mainly consist of phonons with a certain momentum and frequency. To this end epitaxially grown metal films on a dielectric substrate were excited with a train of laser pulses. These excitation pulses drive the metal film to oscillate with the frequency given by their inverse temporal displacement and send a hypersonic wave of this frequency into the substrate. The monochromaticity of these wave packets was proven by ultrafast optical Brillouin and x-ray scattering. Using the excitation of such narrowband phonon wave packets I was able to observe the Second Harmonic Generation (SHG) of coherent phonons as a first example of nonlinear wave mixing of nanometric phonon wave packets.}, language = {en} } @phdthesis{Maerten2015, author = {Maerten, Lena}, title = {Spectroscopic perspectives on ultrafast coupling phenomena in perovskite oxides}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-77623}, school = {Universit{\"a}t Potsdam}, year = {2015}, abstract = {In this thesis, I study ultrafast dynamics in perovskite oxides using time resolved broadband spectroscopy. I focus on the observation of coherent phonon propagation by time resolved Brillouin scattering: following the excition of metal transducer films with a femtosecond infrared pump pulse, coherent phonon dynamics in the GHz frequency range are triggered. Their propagation is monitored using a delayed white light probe pulse. The technique is illustrated on various thin films and multilayered samples. I apply the technique to investigate the linear and nonlinear acoustic response in bulk SrTiO_3, which displays a ferroelastic phase transition from a cubic to a tetragonal structural phase at T_a=105 K. In the linear regime, I observe a coupling of the observed acoustic phonon mode to the softening optic modes describing the phase transition. In the nonlinear regime, I find a giant slowing down of the sound velocity in the low temperature phase that is only observable for a strain amplitude exceeding the tetragonality of the material. It is attributed to a coupling of the high frequency phonons to ferroelastic domain walls in the material. I propose a new mechanism for the coupling of strain waves to the domain walls that is only effective for high amplitude strain. A detailed study of the phonon attenuation across a wide temperature range shows that the phonon attenuation at low temperatures is influenced by the domain configuration, which is determined by interface strain. Preliminary measurements on magnetic-ferroelectric multilayers reveal that the excitation fluence needs to be carefully controlled when dynamics at phase transitions are studied.}, language = {en} } @phdthesis{Schick2013, author = {Schick, Daniel}, title = {Ultrafast lattice dynamics in photoexcited nanostructures : femtosecond X-ray diffraction with optimized evaluation schemes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-68827}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Within the course of this thesis, I have investigated the complex interplay between electron and lattice dynamics in nanostructures of perovskite oxides. Femtosecond hard X-ray pulses were utilized to probe the evolution of atomic rearrangement directly, which is driven by ultrafast optical excitation of electrons. The physics of complex materials with a large number of degrees of freedom can be interpreted once the exact fingerprint of ultrafast lattice dynamics in time-resolved X-ray diffraction experiments for a simple model system is well known. The motion of atoms in a crystal can be probed directly and in real-time by femtosecond pulses of hard X-ray radiation in a pump-probe scheme. In order to provide such ultrashort X-ray pulses, I have built up a laser-driven plasma X-ray source. The setup was extended by a stable goniometer, a two-dimensional X-ray detector and a cryogen-free cryostat. The data acquisition routines of the diffractometer for these ultrafast X-ray diffraction experiments were further improved in terms of signal-to-noise ratio and angular resolution. The implementation of a high-speed reciprocal-space mapping technique allowed for a two-dimensional structural analysis with femtosecond temporal resolution. I have studied the ultrafast lattice dynamics, namely the excitation and propagation of coherent phonons, in photoexcited thin films and superlattice structures of the metallic perovskite SrRuO3. Due to the quasi-instantaneous coupling of the lattice to the optically excited electrons in this material a spatially and temporally well-defined thermal stress profile is generated in SrRuO3. This enables understanding the effect of the resulting coherent lattice dynamics in time-resolved X-ray diffraction data in great detail, e.g. the appearance of a transient Bragg peak splitting in both thin films and superlattice structures of SrRuO3. In addition, a comprehensive simulation toolbox to calculate the ultrafast lattice dynamics and the resulting X-ray diffraction response in photoexcited one-dimensional crystalline structures was developed in this thesis work. With the powerful experimental and theoretical framework at hand, I have studied the excitation and propagation of coherent phonons in more complex material systems. In particular, I have revealed strongly localized charge carriers after above-bandgap femtosecond photoexcitation of the prototypical multiferroic BiFeO3, which are the origin of a quasi-instantaneous and spatially inhomogeneous stress that drives coherent phonons in a thin film of the multiferroic. In a structurally imperfect thin film of the ferroelectric Pb(Zr0.2Ti0.8)O3, the ultrafast reciprocal-space mapping technique was applied to follow a purely strain-induced change of mosaicity on a picosecond time scale. These results point to a strong coupling of in- and out-of-plane atomic motion exclusively mediated by structural defects.}, language = {en} } @phdthesis{Haseeb2023, author = {Haseeb, Haider}, title = {Charge and heat transport across interfaces in nanostructured porous silicon}, doi = {10.25932/publishup-61122}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-611224}, school = {Universit{\"a}t Potsdam}, pages = {84}, year = {2023}, abstract = {This thesis discusses heat and charge transport phenomena in single-crystalline Silicon penetrated by nanometer-sized pores, known as mesoporous Silicon (pSi). Despite the extensive attention given to it as a thermoelectric material of interest, studies on microscopic thermal and electronic transport beyond its macroscopic characterizations are rarely reported. In contrast, this work reports the interplay of both. PSi samples synthesized by electrochemical anodization display a temperature dependence of specific heat 𝐢𝑝 that deviates from the characteristic 𝑇^3 behaviour (at 𝑇<50𝐾). A thorough analysis reveals that both 3D and 2D Einstein and Debye modes contribute to this specific heat. Additional 2D Einstein modes (~3 π‘šπ‘’π‘‰) agree reasonably well with the boson peak of SiO2 in pSi pore walls. 2D Debye modes are proposed to account for surface acoustic modes causing a significant deviation from the well-known 𝑇^3 dependence of 𝐢𝑝 at 𝑇<50𝐾. A novel theoretical model gives insights into the thermal conductivity of pSi in terms of porosity and phonon scattering on the nanoscale. The thermal conductivity analysis utilizes the peculiarities of the pSi phonon dispersion probed by the inelastic neutron scattering experiments. A phonon mean-free path of around 10 π‘›π‘š extracted from the presented model is proposed to cause the reduced thermal conductivity of pSi by two orders of magnitude compared to p-doped bulk Silicon. Detailed analysis indicates that compound averaging may cause a further 10-50\% reduction. The percolation threshold of 65\% for thermal conductivity of pSi samples is subsequently determined by employing theoretical effective medium models. Temperature-dependent electrical conductivity measurements reveal a thermally activated transport process. A detailed analysis of the activation energy 𝐸𝐴𝜎 in the thermally activated transport exhibits a Meyer Neldel compensation rule between different samples that originates in multi-phonon absorption upon carrier transport. Activation energies 𝐸𝐴𝑆 obtained from temperature-dependent thermopower measurements provide further evidence for multi-phonon assisted hopping between localized states as a dominant charge transport mechanism in pSi, as they systematically differ from the determined 𝐸𝐴𝜎 values.}, language = {en} } @phdthesis{TchoumbaKwamen2018, author = {Tchoumba Kwamen, Christelle Larodia}, title = {Investigating the dynamics of polarization reversal in ferroelectric thin films by time-resolved X-ray diffraction}, doi = {10.25932/publishup-42781}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427815}, school = {Universit{\"a}t Potsdam}, pages = {xvii, 126, xxiii}, year = {2018}, abstract = {Ferroic materials have attracted a lot of attention over the years due to their wide range of applications in sensors, actuators, and memory devices. Their technological applications originate from their unique properties such as ferroelectricity and piezoelectricity. In order to optimize these materials, it is necessary to understand the coupling between their nanoscale structure and transient response, which are related to the atomic structure of the unit cell. In this thesis, synchrotron X-ray diffraction is used to investigate the structure of ferroelectric thin film capacitors during application of a periodic electric field. Combining electrical measurements with time-resolved X-ray diffraction on a working device allows for visualization of the interplay between charge flow and structural motion. This constitutes the core of this work. The first part of this thesis discusses the electrical and structural dynamics of a ferroelectric Pt/Pb(Zr0.2,Ti0.8)O3/SrRuO3 heterostructure during charging, discharging, and polarization reversal. After polarization reversal a non-linear piezoelectric response develops on a much longer time scale than the RC time constant of the device. The reversal process is inhomogeneous and induces a transient disordered domain state. The structural dynamics under sub-coercive field conditions show that this disordered domain state can be remanent and can be erased with an appropriate voltage pulse sequence. The frequency-dependent dynamic characterization of a Pb(Zr0.52,Ti0.48)O3 layer, at the morphotropic phase boundary, shows that at high frequency, the limited domain wall velocity causes a phase lag between the applied field and both the structural and electrical responses. An external modification of the RC time constant of the measurement delays the switching current and widens the electromechanical hysteresis loop while achieving a higher compressive piezoelectric strain within the crystal. In the second part of this thesis, time-resolved reciprocal space maps of multiferroic BiFeO3 thin films were measured to identify the domain structure and investigate the development of an inhomogeneous piezoelectric response during the polarization reversal. The presence of 109Β° domains is evidenced by the splitting of the Bragg peak. The last part of this work investigates the effect of an optically excited ultrafast strain or heat pulse propagating through a ferroelectric BaTiO3 layer, where we observed an additional current response due to the laser pulse excitation of the metallic bottom electrode of the heterostructure.}, language = {en} } @phdthesis{Schlemm2022, author = {Schlemm, Tanja}, title = {The marine ice cliff instability of the Antarctic ice sheet}, doi = {10.25932/publishup-58633}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-586333}, school = {Universit{\"a}t Potsdam}, pages = {107}, year = {2022}, abstract = {The Antarctic ice sheet is the largest freshwater reservoir worldwide. If it were to melt completely, global sea levels would rise by about 58 m. Calculation of projections of the Antarctic contribution to sea level rise under global warming conditions is an ongoing effort which yields large ranges in predictions. Among the reasons for this are uncertainties related to the physics of ice sheet modeling. These uncertainties include two processes that could lead to runaway ice retreat: the Marine Ice Sheet Instability (MISI), which causes rapid grounding line retreat on retrograde bedrock, and the Marine Ice Cliff Instability (MICI), in which tall ice cliffs become unstable and calve off, exposing even taller ice cliffs. In my thesis, I investigated both marine instabilities (MISI and MICI) using the Parallel Ice Sheet Model (PISM), with a focus on MICI.}, language = {en} } @phdthesis{Kuhla2022, author = {Kuhla, Kilian}, title = {Impact, distribution, and adaptation}, doi = {10.25932/publishup-55266}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-552668}, school = {Universit{\"a}t Potsdam}, pages = {vii, 309}, year = {2022}, abstract = {Weather extremes pose a persistent threat to society on multiple layers. Besides an average of ~37,000 deaths per year, climate-related disasters cause destroyed properties and impaired economic activities, eroding people's livelihoods and prosperity. While global temperature rises - caused by anthropogenic greenhouse gas emissions - the direct impacts of climatic extreme events increase and will further intensify without proper adaptation measures. Additionally, weather extremes do not only have local direct effects. Resulting economic repercussions can propagate either upstream or downstream along trade chains causing indirect effects. One approach to analyze these indirect effects within the complex global supply network is the agent-based model Acclimate. Using and extending this loss-propagation model, I focus in this thesis on three aspects of the relation between weather extremes and economic repercussions. First, extreme weather events cause direct impacts on local economic performance. I compute daily local direct output loss time series of heat stress, river floods, tropical cyclones, and their consecutive occurrence using (near-future) climate projection ensembles. These regional impacts are estimated based on physical drivers and local productivity distribution. Direct effects of the aforementioned disaster categories are widely heterogeneous concerning regional and temporal distribution. As well, their intensity changes differently under future warming. Focusing on the hurricane-impacted capital, I find that long-term growth losses increase with higher heterogeneity of a shock ensemble. Second, repercussions are sectorally and regionally distributed via economic ripples within the trading network, causing higher-order effects. I use Acclimate to identify three phases of those economic ripples. Furthermore, I compute indirect impacts and analyze overall regional and global production and consumption changes. Regarding heat stress, global consumer losses double while direct output losses increase by a factor 1.5 between 2000 - 2039. In my research I identify the effect of economic ripple resonance and introduce it to climate impact research. This effect occurs if economic ripples of consecutive disasters overlap, which increases economic responses such as an enhancement of consumption losses. These loss enhancements can even be more amplified with increasing direct output losses, e.g. caused by climate crises. Transport disruptions can cause economic repercussions as well. For this, I extend the model Acclimate with a geographical transportation route and expand the decision horizon of economic agents. Using this, I show that policy-induced sudden trade restrictions (e.g. a no-deal Brexit) can significantly reduce the longer-term economic prosperity of affected regions. Analyses of transportation disruptions in typhoon seasons indicate that severely affected regions must reduce production as demand falls during a storm. Substituting suppliers may compensate for fluctuations at the beginning of the storm, which fails for prolonged disruptions. Third, possible coping mechanisms and adaptation strategies arise from direct and indirect economic responses to weather extremes. Analyzing annual trade changes due to typhoon-induced transport disruptions depict that overall exports rise. This trade resilience increases with higher network node diversification. Further, my research shows that a basic insurance scheme may diminish hurricane-induced long-term growth losses due to faster reconstruction in disasters aftermaths. I find that insurance coverage could be an economically reasonable coping scheme towards higher losses caused by the climate crisis. Indirect effects within the global economic network from weather extremes indicate further adaptation possibilities. For one, diversifying linkages reduce the hazard of sharp price increases. Next to this, close economic interconnections with regions that do not share the same extreme weather season can be economically beneficial in the medium run. Furthermore, economic ripple resonance effects should be considered while computing costs. Overall, an increase in local adaptation measures reduces economic ripples within the trade network and possible losses elsewhere. In conclusion, adaptation measures are necessary and potential present, but it seems rather not possible to avoid all direct or indirect losses. As I show in this thesis, dynamical modeling gives valuable insights into how direct and indirect economic impacts arise from different categories of weather extremes. Further, it highlights the importance of resolving individual extremes and reflecting amplifying effects caused by incomplete recovery or consecutive disasters.}, language = {en} } @phdthesis{Smirnov2023, author = {Smirnov, Artem}, title = {Understanding the dynamics of the near-earth space environment utilizing long-term satellite observations}, doi = {10.25932/publishup-61371}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-613711}, school = {Universit{\"a}t Potsdam}, pages = {xxxvi, 286}, year = {2023}, abstract = {The near-Earth space environment is a highly complex system comprised of several regions and particle populations hazardous to satellite operations. The trapped particles in the radiation belts and ring current can cause significant damage to satellites during space weather events, due to deep dielectric and surface charging. Closer to Earth is another important region, the ionosphere, which delays the propagation of radio signals and can adversely affect navigation and positioning. In response to fluctuations in solar and geomagnetic activity, both the inner-magnetospheric and ionospheric populations can undergo drastic and sudden changes within minutes to hours, which creates a challenge for predicting their behavior. Given the increasing reliance of our society on satellite technology, improving our understanding and modeling of these populations is a matter of paramount importance. In recent years, numerous spacecraft have been launched to study the dynamics of particle populations in the near-Earth space, transforming it into a data-rich environment. To extract valuable insights from the abundance of available observations, it is crucial to employ advanced modeling techniques, and machine learning methods are among the most powerful approaches available. This dissertation employs long-term satellite observations to analyze the processes that drive particle dynamics, and builds interdisciplinary links between space physics and machine learning by developing new state-of-the-art models of the inner-magnetospheric and ionospheric particle dynamics. The first aim of this thesis is to investigate the behavior of electrons in Earth's radiation belts and ring current. Using ~18 years of electron flux observations from the Global Positioning System (GPS), we developed the first machine learning model of hundreds-of-keV electron flux at Medium Earth Orbit (MEO) that is driven solely by solar wind and geomagnetic indices and does not require auxiliary flux measurements as inputs. We then proceeded to analyze the directional distributions of electrons, and for the first time, used Fourier sine series to fit electron pitch angle distributions (PADs) in Earth's inner magnetosphere. We performed a superposed epoch analysis of 129 geomagnetic storms during the Van Allen Probes era and demonstrated that electron PADs have a strong energy-dependent response to geomagnetic activity. Additionally, we showed that the solar wind dynamic pressure could be used as a good predictor of the PAD dynamics. Using the observed dependencies, we created the first PAD model with a continuous dependence on L, magnetic local time (MLT) and activity, and developed two techniques to reconstruct near-equatorial electron flux observations from low-PA data using this model. The second objective of this thesis is to develop a novel model of the topside ionosphere. To achieve this goal, we collected observations from five of the most widely used ionospheric missions and intercalibrated these data sets. This allowed us to use these data jointly for model development, validation, and comparison with other existing empirical models. We demonstrated, for the first time, that ion density observations by Swarm Langmuir Probes exhibit overestimation (up to ~40-50\%) at low and mid-latitudes on the night side, and suggested that the influence of light ions could be a potential cause of this overestimation. To develop the topside model, we used 19 years of radio occultation (RO) electron density profiles, which were fitted with a Chapman function with a linear dependence of scale height on altitude. This approximation yields 4 parameters, namely the peak density and height of the F2-layer and the slope and intercept of the linear scale height trend, which were modeled using feedforward neural networks (NNs). The model was extensively validated against both RO and in-situ observations and was found to outperform the International Reference Ionosphere (IRI) model by up to an order of magnitude. Our analysis showed that the most substantial deviations of the IRI model from the data occur at altitudes of 100-200 km above the F2-layer peak. The developed NN-based ionospheric model reproduces the effects of various physical mechanisms observed in the topside ionosphere and provides highly accurate electron density predictions. This dissertation provides an extensive study of geospace dynamics, and the main results of this work contribute to the improvement of models of plasma populations in the near-Earth space environment.}, language = {en} } @phdthesis{Maiti2023, author = {Maiti, Snehanshu}, title = {Magnetohydrodynamic turbulence and cosmic ray transport}, doi = {10.25932/publishup-58903}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-589030}, school = {Universit{\"a}t Potsdam}, pages = {vii, 81}, year = {2023}, abstract = {The first part of the thesis studies the properties of fast mode in magneto hydro-dynamic (MHD) turbulence. 1D and 3D numerical simulations are carried out to generate decaying fast mode MHD turbulence. The injection of waves are carried out in a collinear and isotropic fashion to generate fast mode turbulence. The properties of fast mode turbulence are analyzed by studying their energy spectral density, 2D structure functions and energy decay/cascade time. The injection wave vector is varied to study the dependence of the above properties on the injection wave vectors. The 1D energy spectrum obtained for the velocity and magnetic fields has 𝐸 (π‘˜) ∝ π‘˜-2. The 2D energy spectrum and 2D structure functions in parallel and perpendicular directions shows that fast mode turbulence generated is isotropic in nature. The cascade/decay rate of fast mode MHD turbulence is proportional to π‘˜-0.5 for different kinds of wave vector injection. Simulations are also carried out in 1D and 3D to compare balanced and imbalanced turbulence. The results obtained shows that while 1D imbalanced turbulence decays faster than 1D balanced turbulence, there is no difference in the decay of 3D balanced and imbalanced turbulence for the current resolution of 512 grid points. "The second part of the thesis studies cosmic ray (CR) transport in driven MHD turbulence and is strongly dependent on it's properties. Test particle simulations are carried out to study CR interaction with both total MHD turbulence and decomposed MHD modes. The spatial diffusion coefficients and the pitch angle scattering diffusion coefficients are calculated from the test particle trajectories in turbulence. The results confirms that the fast modes dominate the CR propagation, whereas Alfv{\Β΄e}n, slow modes are much less efficient with similar pitch angle scattering rates. The cross field transport on large and small scales are investigated next. On large/global scales, normal diffusion is observed and the diffusion coefficient is suppressed by π‘€πœπ΄ compared to the parallel diffusion coefficients, with 𝜁 closer to 4 in Alfv{\Β΄e}n modes than that in total turbulence as theoretically expected. For the CR transport on scales smaller than the turbulence injection scale 𝐿, both the local and global magnetic reference frames are adopted. Super diffusion is observed on such small scales in all the cases. Particularly, CR transport in Alfv{\Β΄e}n modes show clear Richardson diffusion in the local reference frame. The diffusion transition smoothly from the Richardson's one with index 1.5 to normal diffusion as particle's mean free path decreases from πœ†βˆ₯ ≫ 𝐿 to πœ†βˆ₯ β‰ͺ 𝐿. These results have broad applications to CRs in various astrophysical environments".}, language = {en} } @phdthesis{Aseev2020, author = {Aseev, Nikita}, title = {Modeling and understanding dynamics of charged particles in the Earth's inner magnetosphere}, doi = {10.25932/publishup-47921}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-479211}, school = {Universit{\"a}t Potsdam}, pages = {xxii, 154}, year = {2020}, abstract = {The Earth's inner magnetosphere is a very dynamic system, mostly driven by the external solar wind forcing exerted upon the magnetic field of our planet. Disturbances in the solar wind, such as coronal mass ejections and co-rotating interaction regions, cause geomagnetic storms, which lead to prominent changes in charged particle populations of the inner magnetosphere - the plasmasphere, ring current, and radiation belts. Satellites operating in the regions of elevated energetic and relativistic electron fluxes can be damaged by deep dielectric or surface charging during severe space weather events. Predicting the dynamics of the charged particles and mitigating their effects on the infrastructure is of particular importance, due to our increasing reliance on space technologies. The dynamics of particles in the plasmasphere, ring current, and radiation belts are strongly coupled by means of collisions and collisionless interactions with electromagnetic fields induced by the motion of charged particles. Multidimensional numerical models simplify the treatment of transport, acceleration, and loss processes of these particles, and allow us to predict how the near-Earth space environment responds to solar storms. The models inevitably rely on a number of simplifications and assumptions that affect model accuracy and complicate the interpretation of the results. In this dissertation, we quantify the processes that control electron dynamics in the inner magnetosphere, paying particular attention to the uncertainties of the employed numerical codes and tools. We use a set of convenient analytical solutions for advection and diffusion equations to test the accuracy and stability of the four-dimensional Versatile Electron Radiation Belt (VERB-4D) code. We show that numerical schemes implemented in the code converge to the analytical solutions and that the VERB-4D code demonstrates stable behavior independent of the assumed time step. The order of the numerical scheme for the convection equation is demonstrated to affect results of ring current and radiation belt simulations, and it is crucially important to use high-order numerical schemes to decrease numerical errors in the model. Using the thoroughly tested VERB-4D code, we model the dynamics of the ring current electrons during the 17 March 2013 storm. The discrepancies between the model and observations above 4.5 Earth's radii can be explained by uncertainties in the outer boundary conditions. Simulation results indicate that the electrons were transported from the geostationary orbit towards the Earth by the global-scale electric and magnetic fields. We investigate how simulation results depend on the input models and parameters. The model is shown to be particularly sensitive to the global electric field and electron lifetimes below 4.5 Earth's radii. The effects of radial diffusion and subauroral polarization streams are also quantified. We developed a data-assimilative code that blends together a convection model of energetic electron transport and loss and Van Allen Probes satellite data by means of the Kalman filter. We show that the Kalman filter can correct model uncertainties in the convection electric field, electron lifetimes, and boundary conditions. It is also demonstrated how the innovation vector - the difference between observations and model prediction - can be used to identify physical processes missing in the model of energetic electron dynamics. We computed radial profiles of phase space density of ultrarelativistic electrons, using Van Allen Probes measurements. We analyze the shape of the profiles during geomagnetically quiet and disturbed times and show that the formation of new local minimums in the radial profiles coincides with the ground observations of electromagnetic ion-cyclotron (EMIC) waves. This correlation indicates that EMIC waves are responsible for the loss of ultrarelativistic electrons from the heart of the outer radiation belt into the Earth's atmosphere.}, language = {en} } @phdthesis{Banerjee2022, author = {Banerjee, Abhirup}, title = {Characterizing the spatio-temporal patterns of extreme events}, doi = {10.25932/publishup-55983}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-559839}, school = {Universit{\"a}t Potsdam}, pages = {xiv, 91}, year = {2022}, abstract = {Over the past decades, there has been a growing interest in 'extreme events' owing to the increasing threats that climate-related extremes such as floods, heatwaves, droughts, etc., pose to society. While extreme events have diverse definitions across various disciplines, ranging from earth science to neuroscience, they are characterized mainly as dynamic occurrences within a limited time frame that impedes the normal functioning of a system. Although extreme events are rare in occurrence, it has been found in various hydro-meteorological and physiological time series (e.g., river flows, temperatures, heartbeat intervals) that they may exhibit recurrent behavior, i.e., do not end the lifetime of the system. The aim of this thesis to develop some sophisticated methods to study various properties of extreme events. One of the main challenges in analyzing such extreme event-like time series is that they have large temporal gaps due to the paucity of the number of observations of extreme events. As a result, existing time series analysis tools are usually not helpful to decode the underlying information. I use the edit distance (ED) method to analyze extreme event-like time series in their unaltered form. ED is a specific distance metric, mainly designed to measure the similarity/dissimilarity between point process-like data. I combine ED with recurrence plot techniques to identify the recurrence property of flood events in the Mississippi River in the United States. I also use recurrence quantification analysis to show the deterministic properties and serial dependency in flood events. After that, I use this non-linear similarity measure (ED) to compute the pairwise dependency in extreme precipitation event series. I incorporate the similarity measure within the framework of complex network theory to study the collective behavior of climate extremes. Under this architecture, the nodes are defined by the spatial grid points of the given spatio-temporal climate dataset. Each node is associated with a time series corresponding to the temporal evolution of the climate observation at that grid point. Finally, the network links are functions of the pairwise statistical interdependence between the nodes. Various network measures, such as degree, betweenness centrality, clustering coefficient, etc., can be used to quantify the network's topology. We apply the methodology mentioned above to study the spatio-temporal coherence pattern of extreme rainfall events in the United States and the Ganga River basin, which reveals its relation to various climate processes and the orography of the region. The identification of precursors associated with the occurrence of extreme events in the near future is extremely important to prepare the masses for an upcoming disaster and mitigate the potential risks associated with such events. Under this motivation, I propose an in-data prediction recipe for predicting the data structures that typically occur prior to extreme events using the Echo state network, a type of Recurrent Neural Network which is a part of the reservoir computing framework. However, unlike previous works that identify precursory structures in the same variable in which extreme events are manifested (active variable), I try to predict these structures by using data from another dynamic variable (passive variable) which does not show large excursions from the nominal condition but carries imprints of these extreme events. Furthermore, my results demonstrate that the quality of prediction depends on the magnitude of events, i.e., the higher the magnitude of the extreme, the better is its predictability skill. I show quantitatively that this is because the input signals collectively form a more coherent pattern for an extreme event of higher magnitude, which enhances the efficiency of the machine to predict the forthcoming extreme events.}, language = {en} } @phdthesis{NovakovicMarinkovic2024, author = {Novakovic-Marinkovic, Nina}, title = {Optical control of bubble domains and skyrmions in thin films}, doi = {10.25932/publishup-64706}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-647069}, school = {Universit{\"a}t Potsdam}, pages = {ii, 106}, year = {2024}, abstract = {Laser induced switching offers an attractive possibility to manipulate small magnetic domains for prospective memory and logic devices on ultrashort time scales. Moreover, optical control of magnetization without high applied magnetic fields allows manipulation of magnetic domains individually and locally, without expensive heat dissipation. One of the major challenges for developing novel optically controlled magnetic memory and logic devices is reliable formation and annihilation of non-volatile magnetic domains that can serve as memory bits in ambient conditions. Magnetic skyrmions, topologically nontrivial spin textures, have been studied intensively since their discovery due to their stability and scalability in potential spintronic devices. However, skyrmion formation and, especially, annihilation processes are still not completely understood and further investigation on such mechanisms are needed. The aim of this thesis is to contribute to better understanding of the physical processes behind the optical control of magnetism in thin films, with the goal of optimizing material parameters and methods for their potential use in next generation memory and logic devices. First part of the thesis is dedicated to investigation of all-optical helicity-dependent switching (AO-HDS) as a method for magnetization manipulation. AO-HDS in Co/Pt multilayer and CoFeB alloys with and without the presence of Dzyaloshinskii-Moriya interaction (DMI), which is a type of exchange interaction, have been investigated by magnetic imaging using photo-emission electron microscopy (PEEM) in combination with X-ray magnetic circular dichroism (XMCD). The results show that in a narrow range of the laser fluence, circularly polarized laser light induces a drag on domain walls. This enables a local deterministic transformation of the magnetic domain pattern from stripes to bubbles in out-of-plane magnetized Co/Pt multilayers, only controlled by the helicity of ultrashort laser pulses. The temperature and characteristic fields at which the stripe-bubble transformation occurs has been calculated using theory for isolated magnetic bubbles, using as parameters experimentally determined average size of stripe domains and the magnetic layer thickness. The second part of the work aims at purely optical formation and annihilation of magnetic skyrmions by a single laser pulse. The presence of a skyrmion phase in the investigated CoFeB alloys was first confirmed using a Kerr microscope. Then the helicity-dependent skyrmion manipulation was studied using AO-HDS at different laser fluences. It was found that formation or annihilation individual skyrmions using AO-HDS is possible, but not always reliable, as fluctuations in the laser fluence or position can easily overwrite the helicity-dependent effect of AO-HDS. However, the experimental results and magnetic simulations showed that the threshold values for the laser fluence for the formation and annihilation of skyrmions are different. A higher fluence is required for skyrmion formation, and existing skyrmions can be annihilated by pulses with a slightly lower fluence. This provides a further option for controlling formation and annihilation of skyrmions using the laser fluence. Micromagnetic simulations provide additional insights into the formation and annihilation mechanism. The ability to manipulate the magnetic state of individual skyrmions is of fundamental importance for magnetic data storage technologies. Our results show for the first time that the optical formation and annihilation of skyrmions is possible without changing the external field. These results enable further investigations to optimise the magnetic layer to maximise the energy gap between the formation and annihilation barrier. As a result, unwanted switching due to small laser fluctuations can be avoided and fully deterministic optical switching can be achieved.}, language = {en} } @phdthesis{Toenjes2007, author = {T{\"o}njes, Ralf}, title = {Pattern formation through synchronization in systems of nonidentical autonomous oscillators}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-15973}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {This work is concerned with the spatio-temporal structures that emerge when non-identical, diffusively coupled oscillators synchronize. It contains analytical results and their confirmation through extensive computer simulations. We use the Kuramoto model which reduces general oscillatory systems to phase dynamics. The symmetry of the coupling plays an important role for the formation of patterns. We have studied the ordering influence of an asymmetry (non-isochronicity) in the phase coupling function on the phase profile in synchronization and the intricate interplay between this asymmetry and the frequency heterogeneity in the system. The thesis is divided into three main parts. Chapter 2 and 3 introduce the basic model of Kuramoto and conditions for stable synchronization. In Chapter 4 we characterize the phase profiles in synchronization for various special cases and in an exponential approximation of the phase coupling function, which allows for an analytical treatment. Finally, in the third part (Chapter 5) we study the influence of non-isochronicity on the synchronization frequency in continuous, reaction diffusion systems and discrete networks of oscillators.}, language = {en} }