@phdthesis{Reppert2021, author = {Reppert, Alexander von}, title = {Magnetic strain contributions in laser-excited metals studied by time-resolved X-ray diffraction}, doi = {10.25932/publishup-53558}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-535582}, school = {Universit{\"a}t Potsdam}, pages = {XV, 311}, year = {2021}, abstract = {In this work I explore the impact of magnetic order on the laser-induced ultrafast strain response of metals. Few experiments with femto- or picosecond time-resolution have so far investigated magnetic stresses. This is contrasted by the industrial usage of magnetic invar materials or magnetostrictive transducers for ultrasound generation, which already utilize magnetostrictive stresses in the low frequency regime. In the reported experiments I investigate how the energy deposition by the absorption of femtosecond laser pulses in thin metal films leads to an ultrafast stress generation. I utilize that this stress drives an expansion that emits nanoscopic strain pulses, so called hypersound, into adjacent layers. Both the expansion and the strain pulses change the average inter-atomic distance in the sample, which can be tracked with sub-picosecond time resolution using an X-ray diffraction setup at a laser-driven Plasma X-ray source. Ultrafast X-ray diffraction can also be applied to buried layers within heterostructures that cannot be accessed by optical methods, which exhibit a limited penetration into metals. The reconstruction of the initial energy transfer processes from the shape of the strain pulse in buried detection layers represents a contribution of this work to the field of picosecond ultrasonics. A central point for the analysis of the experiments is the direct link between the deposited energy density in the nano-structures and the resulting stress on the crystal lattice. The underlying thermodynamical concept of a Gr{\"u}neisen parameter provides the theoretical framework for my work. I demonstrate how the Gr{\"u}neisen principle can be used for the interpretation of the strain response on ultrafast timescales in various materials and that it can be extended to describe magnetic stresses. The class of heavy rare-earth elements exhibits especially large magnetostriction effects, which can even lead to an unconventional contraction of the laser-excited transducer material. Such a dominant contribution of the magnetic stress to the motion of atoms has not been demonstrated previously. The observed rise time of the magnetic stress contribution in Dysprosium is identical to the decrease in the helical spin-order, that has been found previously using time-resolved resonant X-ray diffraction. This indicates that the strength of the magnetic stress can be used as a proxy of the underlying magnetic order. Such magnetostriction measurements are applicable even in case of antiparallel or non-collinear alignment of the magnetic moments and a vanishing magnetization. The strain response of metal films is usually determined by the pressure of electrons and lattice vibrations. I have developed a versatile two-pulse excitation routine that can be used to extract the magnetic contribution to the strain response even if systematic measurements above and below the magnetic ordering temperature are not feasible. A first laser pulse leads to a partial ultrafast demagnetization so that the amplitude and shape of the strain response triggered by the second pulse depends on the remaining magnetic order. With this method I could identify a strongly anisotropic magnetic stress contribution in the magnetic data storage material iron-platinum and identify the recovery of the magnetic order by the variation of the pulse-to-pulse delay. The stark contrast of the expansion of iron-platinum nanograins and thin films shows that the different constraints for the in-plane expansion have a strong influence on the out-of-plane expansion, due to the Poisson effect. I show how such transverse strain contributions need to be accounted for when interpreting the ultrafast out-of-plane strain response using thermal expansion coefficients obtained in near equilibrium conditions. This work contributes an investigation of magnetostriction on ultrafast timescales to the literature of magnetic effects in materials. It develops a method to extract spatial and temporal varying stress contributions based on a model for the amplitude and shape of the emitted strain pulses. Energy transfer processes result in a change of the stress profile with respect to the initial absorption of the laser pulses. One interesting example occurs in nanoscopic gold-nickel heterostructures, where excited electrons rapidly transport energy into a distant nickel layer, that takes up much more energy and expands faster and stronger than the laser-excited gold capping layer. Magnetic excitations in rare earth materials represent a large energy reservoir that delays the energy transfer into adjacent layers. Such magneto-caloric effects are known in thermodynamics but not extensively covered on ultrafast timescales. The combination of ultrafast X-ray diffraction and time-resolved techniques with direct access to the magnetization has a large potential to uncover and quantify such energy transfer processes.}, language = {en} } @phdthesis{Zeuschner2022, author = {Zeuschner, Steffen Peer}, title = {Magnetoacoustics observed with ultrafast x-ray diffraction}, doi = {10.25932/publishup-56109}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-561098}, school = {Universit{\"a}t Potsdam}, pages = {V, 128, IX}, year = {2022}, abstract = {In the present thesis I investigate the lattice dynamics of thin film hetero structures of magnetically ordered materials upon femtosecond laser excitation as a probing and manipulation scheme for the spin system. The quantitative assessment of laser induced thermal dynamics as well as generated picosecond acoustic pulses and their respective impact on the magnetization dynamics of thin films is a challenging endeavor. All the more, the development and implementation of effective experimental tools and comprehensive models are paramount to propel future academic and technological progress. In all experiments in the scope of this cumulative dissertation, I examine the crystal lattice of nanoscale thin films upon the excitation with femtosecond laser pulses. The relative change of the lattice constant due to thermal expansion or picosecond strain pulses is directly monitored by an ultrafast X-ray diffraction (UXRD) setup with a femtosecond laser-driven plasma X-ray source (PXS). Phonons and spins alike exert stress on the lattice, which responds according to the elastic properties of the material, rendering the lattice a versatile sensor for all sorts of ultrafast interactions. On the one hand, I investigate materials with strong magneto-elastic properties; The highly magnetostrictive rare-earth compound TbFe2, elemental Dysprosium or the technological relevant Invar material FePt. On the other hand I conduct a comprehensive study on the lattice dynamics of Bi1Y2Fe5O12 (Bi:YIG), which exhibits high-frequency coherent spin dynamics upon femtosecond laser excitation according to the literature. Higher order standing spinwaves (SSWs) are triggered by coherent and incoherent motion of atoms, in other words phonons, which I quantified with UXRD. We are able to unite the experimental observations of the lattice and magnetization dynamics qualitatively and quantitatively. This is done with a combination of multi-temperature, elastic, magneto-elastic, anisotropy and micro-magnetic modeling. The collective data from UXRD, to probe the lattice, and time-resolved magneto-optical Kerr effect (tr-MOKE) measurements, to monitor the magnetization, were previously collected at different experimental setups. To improve the precision of the quantitative assessment of lattice and magnetization dynamics alike, our group implemented a combination of UXRD and tr-MOKE in a singular experimental setup, which is to my knowledge, the first of its kind. I helped with the conception and commissioning of this novel experimental station, which allows the simultaneous observation of lattice and magnetization dynamics on an ultrafast timescale under identical excitation conditions. Furthermore, I developed a new X-ray diffraction measurement routine which significantly reduces the measurement time of UXRD experiments by up to an order of magnitude. It is called reciprocal space slicing (RSS) and utilizes an area detector to monitor the angular motion of X-ray diffraction peaks, which is associated with lattice constant changes, without a time-consuming scan of the diffraction angles with the goniometer. RSS is particularly useful for ultrafast diffraction experiments, since measurement time at large scale facilities like synchrotrons and free electron lasers is a scarce and expensive resource. However, RSS is not limited to ultrafast experiments and can even be extended to other diffraction techniques with neutrons or electrons.}, language = {en} } @phdthesis{Maiti2023, author = {Maiti, Snehanshu}, title = {Magnetohydrodynamic turbulence and cosmic ray transport}, doi = {10.25932/publishup-58903}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-589030}, school = {Universit{\"a}t Potsdam}, pages = {vii, 81}, year = {2023}, abstract = {The first part of the thesis studies the properties of fast mode in magneto hydro-dynamic (MHD) turbulence. 1D and 3D numerical simulations are carried out to generate decaying fast mode MHD turbulence. The injection of waves are carried out in a collinear and isotropic fashion to generate fast mode turbulence. The properties of fast mode turbulence are analyzed by studying their energy spectral density, 2D structure functions and energy decay/cascade time. The injection wave vector is varied to study the dependence of the above properties on the injection wave vectors. The 1D energy spectrum obtained for the velocity and magnetic fields has 𝐸 (𝑘) ∝ 𝑘-2. The 2D energy spectrum and 2D structure functions in parallel and perpendicular directions shows that fast mode turbulence generated is isotropic in nature. The cascade/decay rate of fast mode MHD turbulence is proportional to 𝑘-0.5 for different kinds of wave vector injection. Simulations are also carried out in 1D and 3D to compare balanced and imbalanced turbulence. The results obtained shows that while 1D imbalanced turbulence decays faster than 1D balanced turbulence, there is no difference in the decay of 3D balanced and imbalanced turbulence for the current resolution of 512 grid points. "The second part of the thesis studies cosmic ray (CR) transport in driven MHD turbulence and is strongly dependent on it's properties. Test particle simulations are carried out to study CR interaction with both total MHD turbulence and decomposed MHD modes. The spatial diffusion coefficients and the pitch angle scattering diffusion coefficients are calculated from the test particle trajectories in turbulence. The results confirms that the fast modes dominate the CR propagation, whereas Alfv{\´e}n, slow modes are much less efficient with similar pitch angle scattering rates. The cross field transport on large and small scales are investigated next. On large/global scales, normal diffusion is observed and the diffusion coefficient is suppressed by 𝑀𝜁𝐴 compared to the parallel diffusion coefficients, with 𝜁 closer to 4 in Alfv{\´e}n modes than that in total turbulence as theoretically expected. For the CR transport on scales smaller than the turbulence injection scale 𝐿, both the local and global magnetic reference frames are adopted. Super diffusion is observed on such small scales in all the cases. Particularly, CR transport in Alfv{\´e}n modes show clear Richardson diffusion in the local reference frame. The diffusion transition smoothly from the Richardson's one with index 1.5 to normal diffusion as particle's mean free path decreases from 𝜆∥ ≫ 𝐿 to 𝜆∥ ≪ 𝐿. These results have broad applications to CRs in various astrophysical environments".}, language = {en} } @phdthesis{Pazienti2007, author = {Pazienti, Antonio}, title = {Manipulations of spike trains and their impact on synchrony analysis}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17447}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {The interaction between neuronal cells can be identified as the computing mechanism of the brain. Neurons are complex cells that do not operate in isolation, but they are organized in a highly connected network structure. There is experimental evidence that groups of neurons dynamically synchronize their activity and process brain functions at all levels of complexity. A fundamental step to prove this hypothesis is to analyze large sets of single neurons recorded in parallel. Techniques to obtain these data are meanwhile available, but advancements are needed in the pre-processing of the large volumes of acquired data and in data analysis techniques. Major issues include extracting the signal of single neurons from the noisy recordings (referred to as spike sorting) and assessing the significance of the synchrony. This dissertation addresses these issues with two complementary strategies, both founded on the manipulation of point processes under rigorous analytical control. On the one hand I modeled the effect of spike sorting errors on correlated spike trains by corrupting them with realistic failures, and studied the corresponding impact on correlation analysis. The results show that correlations between multiple parallel spike trains are severely affected by spike sorting, especially by erroneously missing spikes. When this happens sorting strategies characterized by classifying only good'' spikes (conservative strategies) lead to less accurate results than tolerant'' strategies. On the other hand, I investigated the effectiveness of methods for assessing significance that create surrogate data by displacing spikes around their original position (referred to as dithering). I provide analytical expressions of the probability of coincidence detection after dithering. The effectiveness of spike dithering in creating surrogate data strongly depends on the dithering method and on the method of counting coincidences. Closed-form expressions and bounds are derived for the case where the dither equals the allowed coincidence interval. This work provides new insights into the methodologies of identifying synchrony in large-scale neuronal recordings, and of assessing its significance.}, language = {en} } @phdthesis{Paul2017, author = {Paul, Fabian}, title = {Markov state modeling of binding and conformational changes of proteins}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-404273}, school = {Universit{\"a}t Potsdam}, pages = {X, 112}, year = {2017}, abstract = {Proteins are molecules that are essential for life and carry out an enormous number of functions in organisms. To this end, they change their conformation and bind to other molecules. However, the interplay between conformational change and binding is not fully understood. In this work, this interplay is investigated with molecular dynamics (MD) simulations of the protein-peptide system Mdm2-PMI and by analysis of data from relaxation experiments. The central task it to uncover the binding mechanism, which is described by the sequence of (partial) binding events and conformational change events including their probabilities. In the simplest case, the binding mechanism is described by a two-step model: binding followed by conformational change or conformational change followed by binding. In the general case, longer sequences with multiple conformational changes and partial binding events are possible as well as parallel pathways that differ in their sequences of events. The theory of Markov state models (MSMs) provides the theoretical framework in which all these cases can be modeled. For this purpose, MSMs are estimated in this work from MD data, and rate equation models, which are related to MSMs, are inferred from experimental relaxation data. The MD simulation and Markov modeling of the PMI-Mdm2 system shows that PMI and Mdm2 can bind via multiple pathways. A main result of this work is a dissociation rate on the order of one event per second, which was calculated using Markov modeling and is in agreement with experiment. So far, dissociation rates and transition rates of this magnitude have only been calculated with methods that speed up transitions by acting with time-dependent, external forces on the binding partners. The simulation technique developed in this work, in contrast, allows the estimation of dissociation rates from the combination of free energy calculation and direct MD simulation of the fast binding process. Two new statistical estimators TRAM and TRAMMBAR are developed to estimate a MSM from the joint data of both simulation types. In addition, a new analysis technique for time-series data from chemical relaxation experiments is developed in this work. It allows to identify one of the above-mentioned two-step mechanisms as the mechanism that underlays the data. The new method is valid for a broader range of concentrations than previous methods and therefore allows to choose the concentrations such that the mechanism can be uniquely identified. It is successfully tested with data for the binding of recoverin to a rhodopsin kinase peptide.}, language = {en} } @phdthesis{Yin2010, author = {Yin, Fan}, title = {Mathematic approaches for the calibration of the CHAMP satellite magnetic field measurements}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-41201}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {CHAMP (CHAllenging Minisatellite Payload) is a German small satellite mission to study the earth's gravity field, magnetic field and upper atmosphere. Thanks to the good condition of the satellite so far, the planned 5 years mission is extended to year 2009. The satellite provides continuously a large quantity of measurement data for the purpose of Earth study. The measurements of the magnetic field are undertaken by two Fluxgate Magnetometers (vector magnetometer) and one Overhauser Magnetometer (scalar magnetometer) flown on CHAMP. In order to ensure the quality of the data during the whole mission, the calibration of the magnetometers has to be performed routinely in orbit. The scalar magnetometer serves as the magnetic reference and its readings are compared with the readings of the vector magnetometer. The readings of the vector magnetometer are corrected by the parameters that are derived from this comparison, which is called the scalar calibration. In the routine processing, these calibration parameters are updated every 15 days by means of scalar calibration. There are also magnetic effects coming from the satellite which disturb the measurements. Most of them have been characterized during tests before launch. Among them are the remanent magnetization of the spacecraft and fields generated by currents. They are all considered to be constant over the mission life. The 8 years of operation experience allow us to investigate the long-term behaviors of the magnetometers and the satellite systems. According to the investigation, it was found that for example the scale factors of the FGM show obvious long-term changes which can be described by logarithmic functions. The other parameters (offsets and angles between the three components) can be considered constant. If these continuous parameters are applied for the FGM data processing, the disagreement between the OVM and the FGM readings is limited to \pm1nT over the whole mission. This demonstrates, the magnetometers on CHAMP exhibit a very good stability. However, the daily correction of the parameter Z component offset of the FGM improves the agreement between the magnetometers markedly. The Z component offset plays a very important role for the data quality. It exhibits a linear relationship with the standard deviation of the disagreement between the OVM and the FGM readings. After Z offset correction, the errors are limited to \pm0.5nT (equivalent to a standard deviation of 0.2nT). We improved the corrections of the spacecraft field which are not taken into account in the routine processing. Such disturbance field, e.g. from the power supply system of the satellite, show some systematic errors in the FGM data and are misinterpreted in 9-parameter calibration, which brings false local time related variation of the calibration parameters. These corrections are made by applying a mathematical model to the measured currents. This non-linear model is derived from an inversion technique. If the disturbance field of the satellite body are fully corrected, the standard deviation of scalar error \triangle B remains about 0.1nT. Additionally, in order to keep the OVM readings a reliable standard, the imperfect coefficients of the torquer current correction for the OVM are redetermined by solving a minimization problem. The temporal variation of the spacecraft remanent field is investigated. It was found that the average magnetic moment of the magneto-torquers reflects well the moment of the satellite. This allows for a continuous correction of the spacecraft field. The reasons for the possible unknown systemic error are discussed in this thesis. Particularly, both temperature uncertainties and time errors have influence on the FGM data. Based on the results of this thesis the data processing of future magnetic missions can be designed in an improved way. In particular, the upcoming ESA mission Swarm can take advantage of our findings and provide all the auxiliary measurements needed for a proper recovery of the ambient magnetic field.}, language = {en} } @phdthesis{Landau2020, author = {Landau, Livnat}, title = {Mechanical stimulation of in-vitro tissue growth using magnetic beads}, pages = {112}, year = {2020}, abstract = {Cells and tissues are sensitive to mechanical forces applied to them. In particular, bone forming cells and connective tissues, composed of cells embedded in fibrous extracellular matrix (ECM), are continuously remodeled in response to the loads they bear. The mechanoresponses of cells embedded in tissue include proliferation, differentiation, apoptosis, internal signaling between cells, and formation and resorption of tissue. Experimental in-vitro systems of various designs have demonstrated that forces affect tissue growth, maturation and mineralization. However, the results depended on different parameters such as the type and magnitude of the force applied in each study. Some experiments demonstrated that applied forces increase cell proliferation and inhibit cell maturation rate, while other studies found the opposite effect. When the effect of different magnitudes of forces was compared, some studies showed that higher forces resulted in a cell proliferation increase or differentiation decrease, while other studies observed the opposite trend or no trend at all. In this study, MC3T3-E1 cells, a cell line of pre-osteoblasts (bone forming cells), was used. In this cell line, cell differentiation is known to accelerate after cells stop proliferating, typically at confluency. This makes this cell line an interesting subject for studying the influence of forces on the switch between the proliferation stage of the precursor cell and the differentiation to the mature osteoblasts. A new experimental system was designed to perform systematic investigations of the influence of the type and magnitude of forces on tissue growth. A single well plate contained an array of 80 rectangular pores. Each pore was seeded with MC3T3-E1 cells. The culture medium contained magnetic beads (MBs) of 4.5 μm in diameter that were incorporated into the pre-osteoblast cells. Using an N52 neodymium magnet, forces ranging over three orders of magnitude were applied to MBs incorporated in cells at 10 different distances from the magnet. The amount of formed tissue was assessed after 24 days of culture. The experimental design allowed to obtain data concerning (i) the influence of the type of the force (static, oscillating, no force) on tissue growth; (ii) the influence of the magnitude of force (pN-nN range); (iii) the effect of functionalizing the magnetic beads with the tripeptide Arg-Gly-Asp (RGD). To learn about cell differentiation state, in the final state of the tissue growth experiments, an analysis for the expression of alkaline phosphatase (ALP), a well - known marker of osteoblast differentiation, was performed. The experiments showed that the application of static magnetic forces increased tissue growth compared to control, while oscillating forces resulted in tissue growth reduction. A statistically significant positive correlation was found between the amount of tissue grown and the magnitude of the oscillating magnetic force. A positive but non-significant correlation of the amount of tissue with the magnitude of forces was obtained when static forces were applied. Functionalizing the MBs with RGD peptides and applying oscillating forces resulted in an increase of tissue growth relative to tissues incubated with "plain" epoxy MBs. ALP expression decreased as a function of the magnitude of force both when static and oscillating forces were applied. ALP stain intensity was reduced relative to control when oscillating forces were applied and was not significantly different than control for static forces. The suggested interpretation of the experimental findings is that larger mechanical forces delay cell maturation and keep the pre-osteoblasts in a more proliferative stage characterized by more tissue formed and lower expression of ALP. While the influence of the force magnitude can be well explained by an effect of the force on the switch between proliferation and differentiation, the influence of force type (static or oscillating) is less clear. In particular, it is challenging to reconcile the reduction of tissue formed under oscillating forces as compared to controls with the simultaneous reduction of ALP expression. To better understand this, it may be necessary to refine the staining protocol of the scaffolds and to include the amount and structure of ECM as well as other factors that were not monitored in the experiment and which may influence tissue growth and maturation. The developed experimental system proved well suited for a systematic and efficient study of the mechanoresponsiveness of tissue growth, it allowed a study of the dependence of tissue growth on force magnitude ranging over three orders of magnitude, and a comparison between the effect of static and oscillating forces. Future experiments can explore the multiple parameters that affect tissue growth as a function of the magnitude of the force: by applying different time-dependent forces; by extending the force range studied; or by using different cell lines and manipulating the mechanotransduction in the cells biochemically.}, language = {en} } @phdthesis{Gomez2016, author = {Gomez, David}, title = {Mechanisms of biochemical reactions within crowded environments}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-94593}, school = {Universit{\"a}t Potsdam}, pages = {vii, 112}, year = {2016}, abstract = {The cell interior is a highly packed environment in which biological macromolecules evolve and function. This crowded media has effects in many biological processes such as protein-protein binding, gene regulation, and protein folding. Thus, biochemical reactions that take place in such crowded conditions differ from diluted test tube conditions, and a considerable effort has been invested in order to understand such differences. In this work, we combine different computationally tools to disentangle the effects of molecular crowding on biochemical processes. First, we propose a lattice model to study the implications of molecular crowding on enzymatic reactions. We provide a detailed picture of how crowding affects binding and unbinding events and how the separate effects of crowding on binding equilibrium act together. Then, we implement a lattice model to study the effects of molecular crowding on facilitated diffusion. We find that obstacles on the DNA impair facilitated diffusion. However, the extent of this effect depends on how dynamic obstacles are on the DNA. For the scenario in which crowders are only present in the bulk solution, we find that at some conditions presence of crowding agents can enhance specific-DNA binding. Finally, we make use of structure-based techniques to look at the impact of the presence of crowders on the folding a protein. We find that polymeric crowders have stronger effects on protein stability than spherical crowders. The strength of this effect increases as the polymeric crowders become longer. The methods we propose here are general and can also be applied to more complicated systems.}, language = {en} } @phdthesis{Kav2019, author = {Kav, Batuhan}, title = {Membrane adhesion mediated via lipid-anchored saccharides}, doi = {10.25932/publishup-42879}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-428790}, school = {Universit{\"a}t Potsdam}, pages = {125}, year = {2019}, abstract = {Membrane adhesion is a fundamental biological process in which membranes are attached to neighboring membranes or surfaces. Membrane adhesion emerges from a complex interplay between the binding of membrane-anchored receptors/ligands and the membrane properties. In this work, we study membrane adhesion mediated by lipid-anchored saccharides using microsecond-long full-atomistic molecular dynamics simulations. Motivated by neutron scattering experiments on membrane adhesion via lipid-anchored saccharides, we investigate the role of LeX, Lac1, and Lac2 saccharides and membrane fluctuations in membrane adhesion. We study the binding of saccharides in three different systems: for saccharides in water, for saccharides anchored to essentially planar membranes at fixed separations, and for saccharides anchored to apposing fluctuating membranes. Our simulations of two saccharides in water indicate that the saccharides engage in weak interactions to form dimers. We find that the binding occurs in a continuum of bound states instead of a certain number of well-defined bound structures, which we term as "diffuse binding". The binding of saccharides anchored to essentially planar membranes strongly depends on separation of the membranes, which is fixed in our simulation system. We show that the binding constants for trans-interactions of two lipid-anchored saccharides monotonically decrease with increasing separation. Saccharides anchored to the same membrane leaflet engage in cis-interactions with binding constants comparable to the trans-binding constants at the smallest membrane separations. The interplay of cis- and trans-binding can be investigated in simulation systems with many lipid-anchored saccharides. For Lac2, our simulation results indicate a positive cooperativity of trans- and cis-binding. In this cooperative binding the trans-binding constant is enhanced by the cis-interactions. For LeX, in contrast, we observe no cooperativity between trans- and cis-binding. In addition, we determine the forces generated by trans-binding of lipid-anchored saccharides in planar membranes from the binding-induced deviations of the lipid-anchors. We find that the forces acting on trans-bound saccharides increase with increasing membrane separation to values of the order of 10 pN. The binding of saccharides anchored to the fluctuating membranes results from an interplay between the binding properties of the lipid-anchored saccharides and membrane fluctuations. Our simulations, which have the same average separation of the membranes as obtained from the neutron scattering experiments, yield a binding constant larger than in planar membranes with the same separation. This result demonstrates that membrane fluctuations play an important role at average membrane separations which are seemingly too large for effective binding. We further show that the probability distribution of the local separation can be well approximated by a Gaussian distribution. We calculate the relative membrane roughness and show that our results are in good agreement with the roughness values reported from the neutron scattering experiments.}, language = {en} } @phdthesis{Albus2003, author = {Albus, Alexander P.}, title = {Mixtures of Bosonic and Fermionic atoms}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001065}, school = {Universit{\"a}t Potsdam}, year = {2003}, abstract = {Ziel der Arbeit war die systematische theoretische Behandlung von Gemischen aus bosonischen und fermionischen Atomen in einem Parameterbereich, der sich zur Beschreibung von aktuellen Experimenten mit ultra-kalten atomaren Gasen eignet. Zuerst wurde der Formalismus der Quantenfeldtheorie auf homogene, atomare Boson-Fermion Gemische erweitert, um grundlegende Gr{\"o}ßen wie Quasiteilchenspektren, die Grundzustandsenergie und daraus abgeleitete Gr{\"o}ßen {\"u}ber die Molekularfeldtheorie hinaus zu berechnen. Unter Zuhilfenahme der dieser Resultate System wurde ein Boson-Fermion Gemisch in einem Fallenpotential im Rahmen der Dichtefunktionaltheorie beschrieben. Daraus konnten die Dichteprofile ermittelt werden und es ließen sich drei Bereiche im Phasendiagramm identifizieren: (i) ein Bereich eines stabilen Gemisches, (ii) ein Bereich, in dem die Spezies entmischt sind und (iii) ein Bereich, in dem das System kollabiert. Im letzten dieser drei F{\"a}llen waren Austausch--Korrelationseffekte signifikant. Weiterhin wurde die {\"A}nderung der kritischen Temperatur der Bose-Einstein-Kondensation aufgrund der Boson-Fermion-Wechselwirkung berechnet. Verursacht wird dieser Effekt von Dichtumverteilungen aufgrund der Wechselwirkung. Dann wurden Boson-Fermion Gemische in optischen Gittern betrachtet. Ein Stabilit{\"a}tskriterium gegen Phasenentmischung wurde gefunden und es ließen sich Bedingungen f{\"u}r einen suprafl{\"u}ssig zu Mott-isolations Phasen{\"u}bergang angeben. Diese wurden sowohl mittels einer Molekularfeldrechnung als auch numerisch im Rahmen eines Gutzwilleransatzes gefunden. Es wurden weiterhin neuartige frustrierte Grundzust{\"a}nde im Fall von sehr großen Gitterst{\"a}rken gefunden.}, language = {en} } @phdthesis{Nikolov2004, author = {Nikolov, Vesselin Kirolov}, title = {Model membranes grafted with long polymers}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001409}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {Wir untersuchen, welchen Einfluss die Verankerung von langen, hydrophilen Polymeren in Lipidmembranen auf deren elastische Eigenschaften aus{\"u}bt. Theoretisch werden zwei Grenzbereiche f{\"u}r die spontane Kr{\"u}mmung der Membran erwartet: i) bei kleinen Oberfl{\"a}chenkonzentrationen des Polymers (Pilzgebiet) sollte die spontane Kr{\"u}mmung linear von der Oberfl{\"a}chendichte des verankerten Polymers abh{\"a}ngen; ii) bei hoher Bedeckung (B{\"u}rstengebiet) sollte die Abh{\"a}ngigkeit quadratisch sein. Wir versuchen, Vorhersagen f{\"u}r das B{\"u}rstengebiet zu pr{\"u}fen, indem wir die morphologischen Ver{\"a}nderungen beobachten, die bei Riesen (Giant)- Vesikeln hervorgerufen werden. Als lange Polymere verwenden wir fluoreszenzmarkierte \&\#955;-Phage DNA Molek{\"u}le, die durch eine Biotin-Avidin-Biotin Verbindung an biotinhaltigen Lipidvesikeln befestigt sind. Wir kontrollieren die Oberfl{\"a}chenkonzentration der Anker durch Variation der Menge an biotinhaltigem Lipid in der Membran. Die Menge der an der Membran verankerten DNA wird durch Fluoreszenzmessungen quantifiziert. {\"A}nderungen in den elastischen Eigenschaften der Membran bei Anbindung der DNA, werden {\"u}ber eine Analyse der Vesikel-Fluktuationen kontrolliert. Die spontane Kr{\"u}mmung der Membran steigt mit der Oberfl{\"a}chenbeladung. Bei h{\"o}heren Verankerungen bilden die Vesikel Knospen (budding). Die Gr{\"o}ße der Knospen kann ebenfalls zur Bestimmung der Kr{\"u}mmung der Membran verwendet werden. Der Einfluss auf die Biegesteifigkeit ist Thema weiterer Untersuchungen.}, language = {en} } @phdthesis{Aseev2020, author = {Aseev, Nikita}, title = {Modeling and understanding dynamics of charged particles in the Earth's inner magnetosphere}, doi = {10.25932/publishup-47921}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-479211}, school = {Universit{\"a}t Potsdam}, pages = {xxii, 154}, year = {2020}, abstract = {The Earth's inner magnetosphere is a very dynamic system, mostly driven by the external solar wind forcing exerted upon the magnetic field of our planet. Disturbances in the solar wind, such as coronal mass ejections and co-rotating interaction regions, cause geomagnetic storms, which lead to prominent changes in charged particle populations of the inner magnetosphere - the plasmasphere, ring current, and radiation belts. Satellites operating in the regions of elevated energetic and relativistic electron fluxes can be damaged by deep dielectric or surface charging during severe space weather events. Predicting the dynamics of the charged particles and mitigating their effects on the infrastructure is of particular importance, due to our increasing reliance on space technologies. The dynamics of particles in the plasmasphere, ring current, and radiation belts are strongly coupled by means of collisions and collisionless interactions with electromagnetic fields induced by the motion of charged particles. Multidimensional numerical models simplify the treatment of transport, acceleration, and loss processes of these particles, and allow us to predict how the near-Earth space environment responds to solar storms. The models inevitably rely on a number of simplifications and assumptions that affect model accuracy and complicate the interpretation of the results. In this dissertation, we quantify the processes that control electron dynamics in the inner magnetosphere, paying particular attention to the uncertainties of the employed numerical codes and tools. We use a set of convenient analytical solutions for advection and diffusion equations to test the accuracy and stability of the four-dimensional Versatile Electron Radiation Belt (VERB-4D) code. We show that numerical schemes implemented in the code converge to the analytical solutions and that the VERB-4D code demonstrates stable behavior independent of the assumed time step. The order of the numerical scheme for the convection equation is demonstrated to affect results of ring current and radiation belt simulations, and it is crucially important to use high-order numerical schemes to decrease numerical errors in the model. Using the thoroughly tested VERB-4D code, we model the dynamics of the ring current electrons during the 17 March 2013 storm. The discrepancies between the model and observations above 4.5 Earth's radii can be explained by uncertainties in the outer boundary conditions. Simulation results indicate that the electrons were transported from the geostationary orbit towards the Earth by the global-scale electric and magnetic fields. We investigate how simulation results depend on the input models and parameters. The model is shown to be particularly sensitive to the global electric field and electron lifetimes below 4.5 Earth's radii. The effects of radial diffusion and subauroral polarization streams are also quantified. We developed a data-assimilative code that blends together a convection model of energetic electron transport and loss and Van Allen Probes satellite data by means of the Kalman filter. We show that the Kalman filter can correct model uncertainties in the convection electric field, electron lifetimes, and boundary conditions. It is also demonstrated how the innovation vector - the difference between observations and model prediction - can be used to identify physical processes missing in the model of energetic electron dynamics. We computed radial profiles of phase space density of ultrarelativistic electrons, using Van Allen Probes measurements. We analyze the shape of the profiles during geomagnetically quiet and disturbed times and show that the formation of new local minimums in the radial profiles coincides with the ground observations of electromagnetic ion-cyclotron (EMIC) waves. This correlation indicates that EMIC waves are responsible for the loss of ultrarelativistic electrons from the heart of the outer radiation belt into the Earth's atmosphere.}, language = {en} } @phdthesis{Brugger2021, author = {Brugger, Julia}, title = {Modeling changes in climate during past mass extinctions}, doi = {10.25932/publishup-53246}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-532468}, school = {Universit{\"a}t Potsdam}, pages = {V, 217}, year = {2021}, abstract = {The evolution of life on Earth has been driven by disturbances of different types and magnitudes over the 4.6 million years of Earth's history (Raup, 1994, Alroy, 2008). One example for such disturbances are mass extinctions which are characterized by an exceptional increase in the extinction rate affecting a great number of taxa in a short interval of geologic time (Sepkoski, 1986). During the 541 million years of the Phanerozoic, life on Earth suffered five exceptionally severe mass extinctions named the "Big Five Extinctions". Many mass extinctions are linked to changes in climate (Feulner, 2009). Hence, the study of past mass extinctions is not only intriguing, but can also provide insights into the complex nature of the Earth system. This thesis aims at deepening our understanding of the triggers of mass extinctions and how they affected life. To accomplish this, I investigate changes in climate during two of the Big Five extinctions using a coupled climate model. During the Devonian (419.2-358.9 million years ago) the first vascular plants and vertebrates evolved on land while extinction events occurred in the ocean (Algeo et al., 1995). The causes of these formative changes, their interactions and their links to changes in climate are still poorly understood. Therefore, we explore the sensitivity of the Devonian climate to various boundary conditions using an intermediate-complexity climate model (Brugger et al., 2019). In contrast to Le Hir et al. (2011), we find only a minor biogeophysical effect of changes in vegetation cover due to unrealistically high soil albedo values used in the earlier study. In addition, our results cannot support the strong influence of orbital parameters on the Devonian climate, as simulated with a climate model with a strongly simplified ocean model (De Vleeschouwer et al., 2013, 2014, 2017). We can only reproduce the changes in Devonian climate suggested by proxy data by decreasing atmospheric CO2. Still, finding agreement between the evolution of sea surface temperatures reconstructed from proxy data (Joachimski et al., 2009) and our simulations remains challenging and suggests a lower δ18O ratio of Devonian seawater. Furthermore, our study of the sensitivity of the Devonian climate reveals a prevailing mode of climate variability on a timescale of decades to centuries. The quasi-periodic ocean temperature fluctuations are linked to a physical mechanism of changing sea-ice cover, ocean convection and overturning in high northern latitudes. In the second study of this thesis (Dahl et al., under review) a new reconstruction of atmospheric CO2 for the Devonian, which is based on CO2-sensitive carbon isotope fractionation in the earliest vascular plant fossils, suggests a much earlier drop of atmo- spheric CO2 concentration than previously reconstructed, followed by nearly constant CO2 concentrations during the Middle and Late Devonian. Our simulations for the Early Devonian with identical boundary conditions as in our Devonian sensitivity study (Brugger et al., 2019), but with a low atmospheric CO2 concentration of 500 ppm, show no direct conflict with available proxy and paleobotanical data and confirm that under the simulated climatic conditions carbon isotope fractionation represents a robust proxy for atmospheric CO2. To explain the earlier CO2 drop we suggest that early forms of vascular land plants have already strongly influenced weathering. This new perspective on the Devonian questions previous ideas about the climatic conditions and earlier explanations for the Devonian mass extinctions. The second mass extinction investigated in this thesis is the end-Cretaceous mass extinction (66 million years ago) which differs from the Devonian mass extinctions in terms of the processes involved and the timescale on which the extinctions occurred. In the two studies presented here (Brugger et al., 2017, 2021), we model the climatic effects of the Chicxulub impact, one of the proposed causes of the end-Cretaceous extinction, for the first millennium after the impact. The light-dimming effect of stratospheric sulfate aerosols causes severe cooling, with a decrease of global annual mean surface air temperature of at least 26◦C and a recovery to pre-impact temperatures after more than 30 years. The sudden surface cooling of the ocean induces deep convection which brings nutrients from the deep ocean via upwelling to the surface ocean. Using an ocean biogeochemistry model we explore the combined effect of ocean mixing and iron-rich dust originating from the impactor on the marine biosphere. As soon as light levels have recovered, we find a short, but prominent peak in marine net primary productivity. This newly discovered mechanism could result in toxic effects for marine near-surface ecosystems. Comparison of our model results to proxy data (Vellekoop et al., 2014, 2016, Hull et al., 2020) suggests that carbon release from the terrestrial biosphere is required in addition to the carbon dioxide which can be attributed to the target material. Surface ocean acidification caused by the addition of carbon dioxide and sulfur is only moderate. Taken together, the results indicate a significant contribution of the Chicxulub impact to the end-Cretaceous mass extinction by triggering multiple stressors for the Earth system. Although the sixth extinction we face today is characterized by human intervention in nature, this thesis shows that we can gain many insights into future extinctions from studying past mass extinctions, such as the importance of the rate of change (Rothman, 2017), the interplay of multiple stressors (Gunderson et al., 2016), and changes in the carbon cycle (Rothman, 2017, Tierney et al., 2020).}, language = {en} } @phdthesis{Rikani2023, author = {Rikani, Albano}, title = {Modeling global human migration dynamics under climate change}, doi = {10.25932/publishup-58321}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-583212}, school = {Universit{\"a}t Potsdam}, pages = {x, 133}, year = {2023}, abstract = {International migration has been an increasing phenomenon during the past decades and has involved all the regions of the globe. Together with fertility and mortality rates, net migration rates represent the components that fully define the demographic evolution of the population in a country. Therefore, being able to capture the patterns of international migration flows and to produce projections of how they might change in the future is of relevant importance for demographic studies and for designing policies informed on the potential scenarios. Existing forecasting methods do not account explicitly for the main drivers and processes shaping international migration flows: existing migrant communities at the destination country, termed diasporas, would reduce the costs of migration and facilitate the settling for new migrants, ultimately producing a positive feedback; accounting for the heterogeneity in the type of migration flows, e.g. return and transit Ćows, becomes critical in some specific bilateral migration channels; in low- to middle- income countries economic development could relax poverty constraint and result in an increase of emigration rates. Economic conditions at both origin and destination are identified as major drivers of international migration. At the same time, climate change impacts have already appeared on natural and human-made systems such as the economic productivity. These economic impacts might have already produced a measurable effect on international migration flows. Studies that provide a quantification of the number of migration moves that might have been affected by climate change are usually specific to small regions, do not provide a mechanistic understanding of the pathway leading from climate change to migration and restrict their focus to the effective induced flows, disregarding the impact that climate change might have had in inhibiting other flows. Global climate change is likely to produce impacts on the economic development of the countries during the next decades too. Understanding how these impacts might alter future global migration patterns is relevant for preparing future societies and understanding whether the response in migration flows would reduce or increase population's exposure to climate change impacts. This doctoral research aims at investigating these questions and fill the research gaps outlined above. First, I have built a global bilateral international migration model which accounts explicitly for the diaspora feedback, distinguishes between transit and return flows, and accounts for the observed non-linear effects that link emigration rates to income levels in the country of origin. I have used this migration model within a population dynamic model where I account also for fertility and mortality rates, producing hindcasts and future projections of international migration flows, covering more than 170 countries. Results show that the model reproduces past patterns and trends well. Future projections highlight the fact that,depending on the assumptions regarding future evolution of income levels and between-country inequality, migration at the end of the century might approach net zero or be still high in many countries. The model, parsimonious in the explanatory variables that includes, represents a versatile tool for assessing the impacts of different socioeconomic scenarios on international migration. I consider then a counterfactual past without climate change impacts on the economic productivity. By prescribing these counterfactual economic conditions to the migration model I produce counterfactual migration flows for the past 30 years. I compare the counterfactual migration flows to factual ones, where historical economic conditions are used to produce migration flows. This provides an estimation of the recent international migration flows attributed to climate change impacts. Results show that a counterfactual world without climate change would have seen less migration globally. This effect becomes larger if I consider separately the increase and decrease in migration moves: a Ągure of net change in the migration flows is not representative of the effective magnitude of the climate change impact on migration. Indeed, in my results climate change produces a divergent effect on richer and poorer countries: by slowing down the economic development, climate change might have reduced international mobility from and to countries of the Global South, and increased it from and to richer countries in the Global North. I apply the same methodology to a scenario of future 3℃ global warming above pre-industrial conditions. I Ąnd that climate change impacts, acting by reorganizing the relative economic attractiveness of destination countries or by affecting the economic growth in the origin, might produce a substantial effect in international migration flows, inhibiting some moves and inducing others. Overall my results suggest that climate change might have had and might have in the future a significant effect on global patterns of international migration. It also emerges clearly that, for a comprehensive understanding of the effects of climate change on international migration, we need to go beyond net effects and consider separately induced and inhibited flows.}, language = {en} } @phdthesis{Zickfeld2003, author = {Zickfeld, Kirsten}, title = {Modeling large-scale singular climate events for integrated assessment}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001176}, school = {Universit{\"a}t Potsdam}, year = {2003}, abstract = {Erkenntnisse aus pal{\"a}oklimatologischen Studien, theoretischen Betrachtungen und Modellsimulationen deuten darauf hin, dass anthropogene Emissionen von Treibhausgasen und Aerosolen zu großskaligen, singul{\"a}ren Klimaereignissen f{\"u}hren k{\"o}nnten. Diese bezeichnen stark nichtlineare, abrupte Klima{\"a}nderungen, mit regionalen bis hin zu globalen Auswirkungen. Ziel dieser Arbeit ist die Entwicklung von Modellen zweier maßgeblicher Komponenten des Klimasystems, die singul{\"a}res Verhalten aufweisen k{\"o}nnten: die atlantische thermohaline Zirkulation (THC) und der indische Monsun. Diese Modelle sind so konzipiert, dass sie den Anforderungen der "Integrated Assessment"-Modellierung gen{\"u}gen, d.h., sie sind realistisch, recheneffizient, transparent und flexibel. Das THC-Modell ist ein einfaches, interhemisph{\"a}risches Boxmodell, das anhand von Daten kalibriert wird, die mit einem gekoppelten Klimamodell mittlerer Komplexit{\"a}t erzeugt wurden. Das Modell wird durch die globale Mitteltemperatur angetrieben, die mit Hilfe eines linearen Downscaling-Verfahrens in regionale W{\"a}rme- und S{\"u}ßwasserfl{\"u}sse {\"u}bersetzt wird. Die Ergebnisse einer Vielzahl von zeitabh{\"a}ngigen Simulationen zeigen, dass das Modell in der Lage ist, maßgebliche Eigenschaften des Verhaltens komplexer Klimamodelle wiederzugeben, wie die Sensitivit{\"a}t bez{\"u}glich des Ausmaßes, der regionalen Verteilung und der Rate der Klima{\"a}nderung. Der indische Monsun wird anhand eines neuartigen eindimensionalen Boxmodells der tropischen Atmosph{\"a}re beschrieben. Dieses enth{\"a}lt Parmetrisierungen der Oberfl{\"a}chen- und Strahlungsfl{\"u}sse, des hydrologischen Kreislaufs und derHydrologie der Landoberfl{\"a}che. Trotz des hohen Idealisierungsgrades ist das Modell in der Lage, relevante Aspekte der beobachteten Monsundynamik, wie z.B. den Jahresgang des Niederschlags und das Eintritts- sowie R{\"u}ckzugsdatum des Sommermonsuns, zufrieden stellend zu simulieren. Außerdem erfasst das Modell die Sensitivit{\"a}tdes Monsuns bez{\"u}glich {\"A}nderungen der Treibhausgas- und Aerosolkonzentrationen, die aus komplexeren Modellen bekannt sind. Eine vereinfachte Version des Monsunmodells wird f{\"u}r die Untersuchung des qualitativen Systemverhaltens in Abh{\"a}ngigkeit von {\"A}nderungen der Randbedingungen eingesetzt. Das bemerkenswerteste Ergebnis ist das Auftreten einer Sattelknotenbifurkation des Sommermonsuns f{\"u}r kritische Werte der Albedo oder der Sonneneinstrahlung. Dar{\"u}ber hinaus weist das Modell zwei stabile Zust{\"a}nde auf: neben dem niederschlagsreichen Sommermonsun besteht ein Zustand, der sich durch einen schwachen hydrologischen Kreislauf auszeichnet. Das Beachtliche an diesen Ergebnissen ist, dass anthropogene St{\"o}rungen der plantetaren Albedo, wie Schwefelemissionen und/oder Landnutzungs{\"a}nderungen, zu einer Destabilisierung des indischen Monsuns f{\"u}hren k{\"o}nnten. Das THC-Boxmodell findet exemplarische Anwendung in einem "Integrated Assessment" von Klimaschutzstrategien. Basierend auf dem konzeptionellen und methodischen Ger{\"u}st des Leitplankenansatzes werden Emissionskorridore (d.h. zul{\"a}ssige Spannen an CO2-Emissionen) berechnet, die das Risiko eines THC-Zusammenbruchs begrenzen sowie sozio{\"o}konomische Randbedingungen ber{\"u}cksichtigen. Die Ergebnisse zeigen u.a. eine starke Abh{\"a}ngigkeit der Breite der Emissionskorridore von der Klima- und hydrologischen Sensitivit{\"a}t. F{\"u}r kleine Werte einer oder beider Sensitivit{\"a}ten liegt der obere Korridorrand bei weit h{\"o}heren Emissionswerten als jene, die von plausiblen Emissionsszenarien f{\"u}r das 21. Jahrhundert erreicht werden. F{\"u}r große Werte der Sensitivit{\"a}ten hingegen, verlassen schon niedrige Emissionsszenarien den Korridor in den fr{\"u}hen Jahrzehnten des 21. Jahrhunderts. Dies impliziert eine Abkehr von den gegenw{\"a}rtigen Emissionstrends innherhalb der kommenden Jahrzehnte, wenn das Risko eines THC Zusammenbruchs gering gehalten werden soll. Anhand einer Vielzahl von Anwendungen - von Sensitivit{\"a}ts- {\"u}ber Bifurkationsanalysen hin zu integrierter Modellierung - zeigt diese Arbeit den Wert reduzierter Modelle auf. Die Ergebnisse und die daraus zu ziehenden Schlussfolgerungen liefern einen wertvollen Beitrag zu der wissenschaftlichen und politischen Diskussion bez{\"u}glich der Folgen des anthropogenen Klimawandels und der langfristigen Klimaschutzziele.}, language = {en} } @phdthesis{Zeitz2022, author = {Zeitz, Maria}, title = {Modeling the future resilience of the Greenland Ice Sheet}, doi = {10.25932/publishup-56883}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-568839}, school = {Universit{\"a}t Potsdam}, pages = {x, 189}, year = {2022}, abstract = {The Greenland Ice Sheet is the second-largest mass of ice on Earth. Being almost 2000 km long, more than 700 km wide, and more than 3 km thick at the summit, it holds enough ice to raise global sea levels by 7m if melted completely. Despite its massive size, it is particularly vulnerable to anthropogenic climate change: temperatures over the Greenland Ice Sheet have increased by more than 2.7◦C in the past 30 years, twice as much as the global mean temperature. Consequently, the ice sheet has been significantly losing mass since the 1980s and the rate of loss has increased sixfold since then. Moreover, it is one of the potential tipping elements of the Earth System, which might undergo irreversible change once a warming threshold is exceeded. This thesis aims at extending the understanding of the resilience of the Greenland Ice Sheet against global warming by analyzing processes and feedbacks relevant to its centennial to multi-millennial stability using ice sheet modeling. One of these feedbacks, the melt-elevation-feedback is driven by the temperature rise with decreasing altitudes: As the ice sheet melts, its thickness and surface elevation decrease, exposing the ice surface to warmer air and thus increasing the melt rates even further. The glacial isostatic adjustment (GIA) can partly mitigate this melt-elevation feedback as the bedrock lifts in response to an ice load decrease, forming the negative GIA feedback. In my thesis, I show that the interaction between these two competing feedbacks can lead to qualitatively different dynamical responses of the Greenland Ice Sheet to warming - from permanent loss to incomplete recovery, depending on the feedback parameters. My research shows that the interaction of those feedbacks can initiate self-sustained oscillations of the ice volume while the climate forcing remains constant. Furthermore, the increased surface melt changes the optical properties of the snow or ice surface, e.g. by lowering their albedo, which in turn enhances melt rates - a process known as the melt-albedo feedback. Process-based ice sheet models often neglect this melt-albedo feedback. To close this gap, I implemented a simplified version of the diurnal Energy Balance Model, a computationally efficient approach that can capture the first-order effects of the melt-albedo feedback, into the Parallel Ice Sheet Model (PISM). Using the coupled model, I show in warming experiments that the melt-albedo feedback almost doubles the ice loss until the year 2300 under the low greenhouse gas emission scenario RCP2.6, compared to simulations where the melt-albedo feedback is neglected, and adds up to 58\% additional ice loss under the high emission scenario RCP8.5. Moreover, I find that the melt-albedo feedback dominates the ice loss until 2300, compared to the melt-elevation feedback. Another process that could influence the resilience of the Greenland Ice Sheet is the warming induced softening of the ice and the resulting increase in flow. In my thesis, I show with PISM how the uncertainty in Glen's flow law impacts the simulated response to warming. In a flow line setup at fixed climatic mass balance, the uncertainty in flow parameters leads to a range of ice loss comparable to the range caused by different warming levels. While I focus on fundamental processes, feedbacks, and their interactions in the first three projects of my thesis, I also explore the impact of specific climate scenarios on the sea level rise contribution of the Greenland Ice Sheet. To increase the carbon budget flexibility, some warming scenarios - while still staying within the limits of the Paris Agreement - include a temporal overshoot of global warming. I show that an overshoot by 0.4◦C increases the short-term and long-term ice loss from Greenland by several centimeters. The long-term increase is driven by the warming at high latitudes, which persists even when global warming is reversed. This leads to a substantial long-term commitment of the sea level rise contribution from the Greenland Ice Sheet. Overall, in my thesis I show that the melt-albedo feedback is most relevant for the ice loss of the Greenland Ice Sheet on centennial timescales. In contrast, the melt-elevation feedback and its interplay with the GIA feedback become increasingly relevant on millennial timescales. All of these influence the resilience of the Greenland Ice Sheet against global warming, in the near future and on the long term.}, language = {en} } @phdthesis{Griesel2005, author = {Griesel, Alexa}, title = {Modelling large scale ocean circulation : the role of mixing location and meridional pressure gradients for the Atlantic overturning dynamics}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-2609}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {Due to its relevance for global climate, the realistic representation of the Atlantic meridional overturning circulation (AMOC) in ocean models is a key task. In recent years, two paradigms have evolved around what are its driving mechanisms: diapycnal mixing and Southern Ocean winds. This work aims at clarifying what sets the strength of the Atlantic overturning components in an ocean general circulation model and discusses the role of spatially inhomogeneous mixing, numerical diffusion and winds. Furthermore, the relation of the AMOC with a key quantity, the meridional pressure difference is analyzed. Due to the application of a very low diffusive tracer advection scheme, a realistic Atlantic overturning circulation can be obtained that is purely wind driven. On top of the winddriven circulation, changes of density gradients are caused by increasing the parameterized eddy diffusion in the North Atlantic and Southern Ocean. The linear relation between the maximum of the Atlantic overturning and the meridional pressure difference found in previous studies is confirmed and it is shown to be due to one significant pressure gradient between the average pressure over high latitude deep water formation regions and a relatively uniform pressure between 30°N and 30°S, which can directly be related to a zonal flow through geostrophy. Under constant Southern Ocean windstress forcing, a South Atlantic outflow in the range of 6-16 Sv is obtained for a large variety of experiments. Overall, the circulation is winddriven but its strength not uniquely determined by the Southern Ocean windstress. The scaling of the Atlantic overturning components is linear with the background vertical diffusivity, not confirming the 2/3 power law for one-hemisphere models without wind forcing. The pycnocline depth is constant in the coarse resolution model with large vertical grid extends. It suggests the ocean model operates like the Stommel box model with a linear relation of the pressure difference and fixed vertical scale for the volume transport. However, this seems only valid for vertical diffusivities smaller 0.4 cm²/s, when the dominant upwelling within the Atlantic occurs along the boundaries. For larger vertical diffusivities, a significant amount of interior upwelling occurs. It is further shown that any localized vertical mixing in the deep to bottom ocean cannot drive an Atlantic overturning. However, enhanced boundary mixing at thermocline depths is potentially important. The numerical diffusion is shown to have a large impact on the representation of the Atlantic overturning in the model. While the horizontal numerical diffusion tends to destabilize the Atlantic overturning the verital numerical diffusion denotes an amplifying mechanism.}, subject = {Thermohaline Zirkulation}, language = {en} } @phdthesis{Das2023, author = {Das, Samata}, title = {Modelling particle acceleration in core-collapse supernova remnants inside circumstellar wind-blown bubbles}, doi = {10.25932/publishup-61414}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-614140}, school = {Universit{\"a}t Potsdam}, pages = {142}, year = {2023}, abstract = {Supernova remnants are considered to be the primary sources of galactic cosmic rays. These cosmic rays are assumed to be accelerated by the diffusive shock acceleration mechanism, specifically at shocks in the remnants. Particularly in the core-collapse scenario, these supernova remnant shocks expand inside the wind-blown bubbles structured by massive progenitors during their lifetime. Therefore, the complex environment of wind bubbles can influence the particle acceleration and radiation from the remnants. Further, the evolution of massive stars depends on their Zero Age Main Sequence mass, rotation, and metallicity. Consequently, the structures of the wind bubbles generated during the lifetime of massive stars should be considerably different. Hence, the particle acceleration in the core-collapse supernova remnants should vary, not only from the remnants evolving in the uniform environment but also from one another, depending on their progenitor stars. A core-collapse supernova remnant with a very massive 60 𝑀 ⊙ progenitor star has been considered to study the particle acceleration at the shock considering Bohm-like diffusion. This dissertation demonstrates the modification in particle acceleration and radiation while the remnant propagates through different regions of the wind bubble by impacts from the profiles of gas density, the temperature of the bubble and the magnetic field structure. Subsequently, in this thesis, I discuss the impacts of the non-identical ambient environment of core-collapse supernova remnants on particle spectra and the non-thermal emissions, considering 20 𝑀 ⊙ and 60 𝑀⊙ massive progenitors having different evolutionary tracks. Additionally, I also analyse the effect of cosmic ray streaming instabilities on particle spectra. To model the particle acceleration in the remnants, I have performed simulations in one-dimensional spherical symmetry using RATPaC code. The transport equation for cosmic rays and magnetic turbulence in test-particle approximation, along with the induction equation for the evolution of the large-scale magnetic field, have been solved simultaneously with the hydrodynamic equations for the expansion of remnants inside the pre-supernova circumstellar medium. The results from simulations describe that the spectra of accelerated particles in supernova remnants are regulated by density fluctuations, temperature variations, the large-scale magnetic field configuration and scattering turbulence. Although the diffusive shock acceleration mechanism at supernova remnant shock predicts the spectral index of 2 for the accelerated non-thermal particles, I have obtained the particle spectra that deviate from this prediction, in the core-collapse scenario. I have found that the particle spectral index reaches 2.5 for the supernova remnant with 60 𝑀 ⊙ progenitor when the remnant resides inside the shocked wind region of the wind bubble, and this softness persists at later evolutionary stages even with Bohm-like diffusion for accelerated particles. However, the supernova remnant with 20 𝑀 ⊙ progenitor does not demonstrate persistent softness in particle spectra from the influence of the hydrodynamics of the corresponding wind bubble. At later stages of evolution, the particle spectra illustrate softness at higher energies for both remnants as the consequence of the escape of high-energy particles from the remnants while considering the cosmic ray streaming instabilities. Finally, I have probed the emission morphology of remnants that varies depending on the progenitors, particularly in earlier evolutionary stages. This dissertation provides insight into different core-collapse remnants expanding inside wind bubbles, for instance, the calculated gamma-ray spectral index from the supernova remnant with 60 𝑀 ⊙ progenitor at later evolutionary stages is consistent with that of the observed supernova remnants expanding in dense molecular clouds.}, language = {en} } @phdthesis{Steppa2022, author = {Steppa, Constantin Beverly}, title = {Modelling the galactic population of very-high-energy gamma-ray sources}, doi = {10.25932/publishup-54947}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-549478}, school = {Universit{\"a}t Potsdam}, pages = {106}, year = {2022}, abstract = {The current generation of ground-based instruments has rapidly extended the limits of the range accessible to us with very-high-energy (VHE) gamma-rays, and more than a hundred sources have now been detected in the Milky Way. These sources represent only the tip of the iceberg, but their number has reached a level that allows population studies. In this work, a model of the global population of VHE gamma-ray sources based on the most comprehensive census of Galactic sources in this energy regime, the H.E.S.S. Galactic plane survey (HGPS), will be presented. A population synthesis approach was followed in the construction of the model. Particular attention was paid to correcting for the strong observational bias inherent in the sample of detected sources. The methods developed for estimating the model parameters have been validated with extensive Monte Carlo simulations and will be shown to provide unbiased estimates of the model parameters. With these methods, five models for different spatial distributions of sources have been constructed. To test the validity of these models, their predictions for the composition of sources within the sensitivity range of the HGPS are compared with the observed sample. With one exception, similar results are obtained for all spatial distributions, showing that the observed longitude profile and the source distribution over photon flux are in fair agreement with observation. Regarding the latitude profile and the source distribution over angular extent, it becomes apparent that the model needs to be further adjusted to bring its predictions in agreement with observation. Based on the model, predictions of the global properties of the Galactic population of VHE gamma-ray sources and the prospects of the Cherenkov Telescope Array (CTA) will be presented. CTA will significantly increase our knowledge of VHE gamma-ray sources by lowering the threshold for source detection, primarily through a larger detection area compared to current-generation instruments. In ground-based gamma-ray astronomy, the sensitivity of an instrument depends strongly, in addition to the detection area, on the ability to distinguish images of air showers produced by gamma-rays from those produced by cosmic rays, which are a strong background. This means that the number of detectable sources depends on the background rejection algorithm used and therefore may also be increased by improving the performance of such algorithms. In this context, in addition to the population model, this work presents a study on the application of deep-learning techniques to the task of gamma-hadron separation in the analysis of data from ground-based gamma-ray instruments. Based on a systematic survey of different neural-network architectures, it is shown that robust classifiers can be constructed with competitive performance compared to the best existing algorithms. Despite the broad coverage of neural-network architectures discussed, only part of the potential offered by the application of deep-learning techniques to the analysis of gamma-ray data is exploited in the context of this study. Nevertheless, it provides an important basis for further research on this topic.}, language = {en} } @phdthesis{NarayananNair2006, author = {Narayanan Nair, Arun Kumar}, title = {Molecular dynamics simulations of polyelectrolyte brushes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-7005}, school = {Universit{\"a}t Potsdam}, year = {2006}, abstract = {This thesis studies strong, completely charged polyelectrolyte brushes. Extensive molecular dynamics simulations are performed on different polyelectrolyte brush systems using local compute servers and massively parallel supercomputers. The full Coulomb interaction of charged monomers, counterions, and salt ions is treated explicitly. The polymer chains are anchored by one of their ends to a uncharged planar surface. The chains are treated under good solvent conditions. Monovalent salt ions (1:1 type) are modelled same as counterions. The studies concentrate on three different brush systems at constant temperature and moderate Coulomb interaction strength (Bjerrum length equal to bond length): The first system consists of a single polyelectrolyte brush anchored with varying grafting density to a plane. Results show that chains are extended up to about 2/3 of their contour length. The brush thickness slightly grows with increasing anchoring density. This slight dependence of the brush height on grafting density is in contrast to the well known scaling result for the osmotic brush regime. That is why the result obtained by simulations has stimulated further development of theory as well as new experimental investigations on polyelectrolyte brushes. This observation can be understood on a semi-quantitative level using a simple scaling model that incorporates excluded volume effects in a free-volume formulation where an effective cross section is assigned to the polymer chain from where couterions are excluded. The resulting regime is called nonlinear osmotic brush regime. Recently this regime was also obtained in experiments. The second system studied consists of polyelectrolyte brushes with added salt in the nonlinear osmotic regime. Varying salt is an important parameter to tune the structure and properties of polyelectrolytes. Further motivation is due to a theoretical scaling prediction by Pincus for the salt dependence of brush thickness. In the high salt limit (salt concentration much larger than counterion concentration) the brush height is predicted to decrease with increasing external salt, but with a relatively weak power law showing an exponent -1/3. There is some experimental and theoretical work that confirms this prediction, but there are other results that are in contradiction. In such a situation simulations are performed to validate the theoretical prediction. The simulation result shows that brush thickness decreases with added salt, and indeed is in quite good agreement with the scaling prediction by Pincus. The relation between buffer concentration and the effective ion strength inside the brush at varying salt concentration is of interest both from theoretical as well as experimental point of view. The simulation result shows that mobile ions (counterions as well as salt) distribute nonhomogeneously inside and outside of the brush. To explain the relation between the internal ion concentration with the buffer concentration a Donnan equilibrium approach is employed. Modifying the Donnan approach by taking into account the self-volume of polyelectrolyte chains as indicated above, the simulation result can be explained using the same effective cross section for the polymer chains. The extended Donnan equilibrium relation represents a interesting theoretical prediction that should be checked by experimental data. The third system consist of two interacting polyelectrolyte brushes that are grafted to two parallel surfaces. The interactions between brushes are important, for instance, in stabilization of dispersions against flocculation. In the simulations pressure is evaluated as a function of separation D between the two grafting planes. The pressure behavior shows different regimes for decreasing separation. This behavior is in qualitative agreement with experimental data. At relatively weak compression the pressure behavior obtained in the simulation agrees with a 1/D power law predicted by scaling theory. Beyond that the present study could supply new insight for understanding the interaction between polyelectrolyte brushes.}, subject = {Molekulardynamik}, language = {en} } @phdthesis{Christ2020, author = {Christ, Simon}, title = {Morphological transitions of vesicles exposed to nonuniform spatio-temporal conditions}, doi = {10.25932/publishup-48078}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-480788}, school = {Universit{\"a}t Potsdam}, pages = {viii, 105}, year = {2020}, abstract = {Giant unilamellar vesicles are an important tool in todays experimental efforts to understand the structure and behaviour of biological cells. Their simple structure allows the isolation of the physical elastic properties of the lipid membrane. A central physical property is the bending energy of the membrane, since the many different shapes of giant vesicles can be obtained by finding the minimum of the bending energy. In the spontaneous curvature model the bending energy is a function of the bending rigidity as well as the mean curvature and an additional parameter called the spontaneous curvature, which describes an internal preference of the lipid-bilayer to bend towards one side or the other. The spontaneous and mean curvature are local properties of the membrane. Additional constraints arise from the conservation of the membrane surface area and the enclosed volume, which are global properties. In this thesis the spontaneous curvature model is used to explain the experimental observation of a periodic shape oscillation of a giant unilamellar vesicle that was filled with a protein complex that periodically binds to and unbinds from the membrane. By assuming that the binding of the proteins to the membrane induces a change in the spontaneous curvature the experimentally observed shapes could successfully be explained. This involves the numerical solution of the differential equations as obtained from the minimization of the bending energy respecting the area and volume constraints, the so called shape equations. Vice versa this approach can be used to estimate the spontaneous curvature from experimentally measurable quantities. The second topic of this thesis is the analysis of concentration gradients in rigid conic membrane compartments. Gradients of an ideal gas due to gravity and gradients generated by the directed stochastic movement of molecular motors along a microtubulus were considered. It was possible to calculate the free energy and the bending energy analytically for the ideal gas. In the case of the non-equilibrium system with molecular motors, the characteristic length of the density profile, the jam-length, and its dependency on the opening angle of the conic compartment have been calculated in the mean-field limit. The mean field results agree qualitatively with stochastic particle simulations.}, language = {en} } @phdthesis{Pingel2013, author = {Pingel, Patrick}, title = {Morphology, charge transport properties, and molecular doping of thiophene-based organic semiconducting thin films}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-69805}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Organic semiconductors combine the benefits of organic materials, i.e., low-cost production, mechanical flexibility, lightweight, and robustness, with the fundamental semiconductor properties light absorption, emission, and electrical conductivity. This class of material has several advantages over conventional inorganic semiconductors that have led, for instance, to the commercialization of organic light-emitting diodes which can nowadays be found in the displays of TVs and smartphones. Moreover, organic semiconductors will possibly lead to new electronic applications which rely on the unique mechanical and electrical properties of these materials. In order to push the development and the success of organic semiconductors forward, it is essential to understand the fundamental processes in these materials. This thesis concentrates on understanding how the charge transport in thiophene-based semiconductor layers depends on the layer morphology and how the charge transport properties can be intentionally modified by doping these layers with a strong electron acceptor. By means of optical spectroscopy, the layer morphologies of poly(3-hexylthiophene), P3HT, P3HT-fullerene bulk heterojunction blends, and oligomeric polyquaterthiophene, oligo-PQT-12, are studied as a function of temperature, molecular weight, and processing conditions. The analyses rely on the decomposition of the absorption contributions from the ordered and the disordered parts of the layers. The ordered-phase spectra are analyzed using Spano's model. It is figured out that the fraction of aggregated chains and the interconnectivity of these domains is fundamental to a high charge carrier mobility. In P3HT layers, such structures can be grown with high-molecular weight, long P3HT chains. Low and medium molecular weight P3HT layers do also contain a significant amount of chain aggregates with high intragrain mobility; however, intergranular connectivity and, therefore, efficient macroscopic charge transport are absent. In P3HT-fullerene blend layers, a highly crystalline morphology that favors the hole transport and the solar cell efficiency can be induced by annealing procedures and the choice of a high-boiling point processing solvent. Based on scanning near-field and polarization optical microscopy, the morphology of oligo-PQT-12 layers is found to be highly crystalline which explains the rather high field-effect mobility in this material as compared to low molecular weight polythiophene fractions. On the other hand, crystalline dislocations and grain boundaries are identified which clearly limit the charge carrier mobility in oligo-PQT-12 layers. The charge transport properties of organic semiconductors can be widely tuned by molecular doping. Indeed, molecular doping is a key to highly efficient organic light-emitting diodes and solar cells. Despite this vital role, it is still not understood how mobile charge carriers are induced into the bulk semiconductor upon the doping process. This thesis contains a detailed study of the doping mechanism and the electrical properties of P3HT layers which have been p-doped by the strong molecular acceptor tetrafluorotetracyanoquinodimethane, F4TCNQ. The density of doping-induced mobile holes, their mobility, and the electrical conductivity are characterized in a broad range of acceptor concentrations. A long-standing debate on the nature of the charge transfer between P3HT and F4TCNQ is resolved by showing that almost every F4TCNQ acceptor undergoes a full-electron charge transfer with a P3HT site. However, only 5\% of these charge transfer pairs can dissociate and induce a mobile hole into P3HT which contributes electrical conduction. Moreover, it is shown that the left-behind F4TCNQ ions broaden the density-of-states distribution for the doping-induced mobile holes, which is due to the longrange Coulomb attraction in the low-permittivity organic semiconductors.}, language = {en} } @phdthesis{Klumpp2003, author = {Klumpp, Stefan}, title = {Movements of molecular motors : diffusion and directed walks}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000806}, school = {Universit{\"a}t Potsdam}, year = {2003}, abstract = {Bewegungen von prozessiven molekularen Motoren des Zytoskeletts sind durch ein Wechselspiel von gerichteter Bewegung entlang von Filamenten und Diffusion in der umgebenden L{\"o}sung gekennzeichnet. Diese eigent{\"u}mlichen Bewegungen werden in der vorliegenden Arbeit untersucht, indem sie als Random Walks auf einem Gitter modelliert werden. Ein weiterer Gegenstand der Untersuchung sind Effekte von Wechselwirkungen zwischen den Motoren auf diese Bewegungen. Im einzelnen werden vier Transportph{\"a}nomene untersucht: (i) Random Walks von einzelnen Motoren in Kompartimenten verschiedener Geometrien, (ii) station{\"a}re Konzentrationsprofile, die sich in geschlossenen Kompartimenten infolge dieser Bewegungen einstellen, (iii) randinduzierte Phasen{\"u}berg{\"a}nge in offenen r{\"o}hrenartigen Kompartimenten, die an Motorenreservoirs gekoppelt sind, und (iv) der Einfluß von kooperativen Effekten bei der Motor-Filament-Bindung auf die Bewegung. Alle diese Ph{\"a}nomene sind experimentell zug{\"a}nglich, und m{\"o}gliche experimentelle Realisierungen werden diskutiert.}, language = {en} } @phdthesis{Wagle2019, author = {Wagle, Swapnil}, title = {Multi scale modeling of SNARE-mimetic peptides for their applications in membrane fusion}, pages = {105}, year = {2019}, language = {en} } @phdthesis{Dronov2007, author = {Dronov, Roman}, title = {Multi-component protein films by layer-by-layer : assembly and electron transfer}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17281}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {Electron transfer phenomena in proteins represent one of the most common types of biochemical reactions. They play a central role in energy conversion pathways in living cells, and are crucial components in respiration and photosynthesis. These complex biochemical reaction cascades consist of a series of proteins and protein complexes that couple a charge transfer to different forms of chemical energy. The efficiency and sophisticated optimisation of signal transfer in these natural redox chains has inspired engineering of artificial architectures mimicking essential properties of their natural analogues. Implementation of direct electron transfer (DET) in protein assemblies was a breakthrough in bioelectronics, providing a simple and efficient way for coupling biological recognition events to a signal transducer. DET avoids the use of redox mediators, reducing potential interferences and side reactions, as well as being more compatible with in vivo conditions. However, only a few haem proteins, including the redox protein cytochrome c (cyt.c), and blue copper enzymes show efficient DET on different kinds of electrodes. Previous investigations with cyt.c have mainly focused on heterogeneous electron transfer of monolayers of this protein on gold. An important advance was the fabrication of cyt.c multilayers by electrostatic layer-by-layer self-assembly. The ease of fabrication, the stability, and the controllable permeability of polyelectrolyte multilayers have made them particularly attractive for electroanalytical applications. With cyt.c and sulfonated polyaniline it was for the first time possible that fully electro-active multilayers of the redox protein could be prepared. This approach was extended to design an analytical signal chain based on multilayers of cyt.c and xanthine oxidase (XOD). The system does not need an external mediator but relies on an in situ generation of a mediating radical and thus allows a signal transfer from hypoxanthine via the substrate converting enzyme and cyt.c to the electrode. Another kind of a signal chain is based on assembling proteins in complexes on electrodes in such a way that a direct protein-protein electron transfer becomes feasible. This design does not need a redox mediator in analogy to natural protein communication. For this purpose, cyt.c and the enzyme bilirubin oxidase (BOD, EC 1.3.3.5) are co-immobilized in a self-assembled polyelectrolyte multilayer on gold electrodes. Although these two proteins are not natural reaction partners, the protein architecture facilitates an electron transfer from the electrode via multiple protein layers to molecular oxygen resulting in a significant catalytic reduction current. Finally, we describe a novel strategy for multi-protein layer-by-layer self-assembly combining cyt.c with an enzyme sulfite oxidase (SOx) without use of any additional polymer. Electrostatic interactions between these two proteins with rather separated pI values during the assembly process from a low ionic strength buffer were found sufficient for the layer-by-layer deposition of the both biomolecules. It is anticipated that the concepts described in this work will stimulate further progress in multilayer design of even more complex biomimetic signal cascades taking advantage of direct communication between proteins.}, language = {en} } @phdthesis{Kappel2015, author = {Kappel, David}, title = {Multi-spectrum retrieval of maps of Venus' surface emissivity in the infrared}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-85301}, school = {Universit{\"a}t Potsdam}, pages = {xix, 226}, year = {2015}, abstract = {The main goal of this cumulative thesis is the derivation of surface emissivity data in the infrared from radiance measurements of Venus. Since these data are diagnostic of the chemical composition and grain size of the surface material, they can help to improve knowledge of the planet's geology. Spectrally resolved images of nightside emissions in the range 1.0-5.1 μm were recently acquired by the InfraRed Mapping channel of the Visible and InfraRed Thermal Imaging Spectrometer (VIRTIS-M-IR) aboard ESA's Venus EXpress (VEX). Surface and deep atmospheric thermal emissions in this spectral range are strongly obscured by the extremely opaque atmosphere, but three narrow spectral windows at 1.02, 1.10, and 1.18 μm allow the sounding of the surface. Additional windows between 1.3 and 2.6 μm provide information on atmospheric parameters that is required to interpret the surface signals. Quantitative data on surface and atmosphere can be retrieved from the measured spectra by comparing them to simulated spectra. A numerical radiative transfer model is used in this work to simulate the observable radiation as a function of atmospheric, surface, and instrumental parameters. It is a line-by-line model taking into account thermal emissions by surface and atmosphere as well as absorption and multiple scattering by gases and clouds. The VIRTIS-M-IR measurements are first preprocessed to obtain an optimal data basis for the subsequent steps. In this process, a detailed detector responsivity analysis enables the optimization of the data consistency. The measurement data have a relatively low spectral information content, and different parameter vectors can describe the same measured spectrum equally well. A usual method to regularize the retrieval of the wanted parameters from a measured spectrum is to take into account a priori mean values and standard deviations of the parameters to be retrieved. This decreases the probability to obtain unreasonable parameter values. The multi-spectrum retrieval algorithm MSR is developed to additionally consider physically realistic spatial and temporal a priori correlations between retrieval parameters describing different measurements. Neglecting geologic activity, MSR also allows the retrieval of an emissivity map as a parameter vector that is common to several spectrally resolved images that cover the same surface target. Even applying MSR, it is difficult to obtain reliable emissivity maps in absolute values. A detailed retrieval error analysis based on synthetic spectra reveals that this is mainly due to interferences from parameters that cannot be derived from the spectra themselves, but that have to be set to assumed values to enable the radiative transfer simulations. The MSR retrieval of emissivity maps relative to a fixed emissivity is shown to effectively avoid most emissivity retrieval errors. Relative emissivity maps at 1.02, 1.10, and 1.18 μm are finally derived from many VIRTIS-M-IR measurements that cover a surface target at Themis Regio. They are interpreted as spatial variations relative to an assumed emissivity mean of the target. It is verified that the maps are largely independent of the choice of many interfering parameters as well as the utilized measurement data set. These are the first Venus IR emissivity data maps based on a consistent application of a full radiative transfer simulation and a retrieval algorithm that respects a priori information. The maps are sufficiently reliable for future geologic interpretations.}, language = {en} } @phdthesis{Kraut2001, author = {Kraut, Suso}, title = {Multistable systems under the influence of noise}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000424}, school = {Universit{\"a}t Potsdam}, year = {2001}, abstract = {Nichtlineare multistabile Systeme unter dem Einfluss von Rauschen weisen vielschichtige dynamische Eigenschaften auf. Ein mittleres Rauschlevel zeitigt ein Springen zwischen den metastabilen Zustaenden. Dieser "attractor-hopping" Prozess ist gekennzeichnet durch laminare Bewegung in der Naehe von Attraktoren und erratische Bewegung, die sich auf chaotischen Satteln abspielt, welche in die fraktalen Einzugsgebietsgrenzen eingebettet sind. Er hat rauschinduziertes Chaos zur Folge. Bei der Untersuchung der dissipativen Standardabbildung wurde das Phaenomen der Praeferenz von Attraktoren durch die Wirkung des Rauschens gefunden. Dies bedeutet, dass einige Attraktoren eine groessere Wahrscheinlichkeit erhalten aufzutreten, als dies fuer das rauschfreie System der Fall waere. Bei einer bestimmten Rauschstaerke ist diese Bevorzugung maximal. Andere Attraktoren werden aufgrund des Rauschens weniger oft angelaufen. Bei einer entsprechend hohen Rauschstaerke werden sie komplett ausgeloescht. Die Komplexitaet des Sprungprozesses wird fuer das Modell zweier gekoppelter logistischer Abbildungen mit symbolischer Dynamik untersucht. Bei Variation eines Parameters steigt an einem bestimmten Wert des Parameters die topologische Entropie steil an, die neben der Shannon Entropie als Komplexitaetsmass verwendet wird. Dieser Anstieg wird auf eine neuartige Bifurkation von chaotischen Satteln zurueckgefuehrt, die in einem Verschmelzen zweier Sattel besteht und durch einen "Snap-back"-Repellor vermittelt wird. Skalierungsgesetze sowohl der Verweilzeit auf einem der zuvor getrennten Teile des Sattels als auch des Wachsens der fraktalen Dimension des entstandenen Sattels beschreiben diese neuartige Bifurkation genauer. Wenn ein chaotischer Sattel eingebettet in der offenen Umgebung eines Einzugsgebietes eines metastabilen Zustandes liegt, fuehrt das zu einer deutlichen Senkung der Schwelle des rauschinduzierten Tunnelns. Dies wird anhand der Ikeda-Abbildung, die ein Lasersystem mit einer zeitverzoegerden Interferenz beschreibt, demonstriert. Dieses Resultat wird unter Verwendung der Theorie der Quasipotentiale erzielt. Sowohl dieser Effekt, die Senkung der Schwelle f{\"u}r rauschinduziertes Tunneln aus einem metastabilen Zustand durch einen chaotischen Sattel, als auch die beiden Skalierungsgesteze sind von experimenteller Relevanz.}, language = {en} } @phdthesis{Ronneberger2024, author = {Ronneberger, Sebastian}, title = {Nanolayer Fused Deposition Modeling (NanoFDM)}, school = {Universit{\"a}t Potsdam}, pages = {170}, year = {2024}, language = {en} } @phdthesis{Ullner2004, author = {Ullner, Ekkehard}, title = {Noise-induced phenomena of signal transmission in excitable neural models}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001522}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {Meine Dissertation behandelt verschiedene neue rauschinduzierte Ph{\"a}nomene in anregbaren Neuronenmodellen, insbesondere solche mit FitzHugh-Nagumo Dynamik. Ich beschreibe das Auftreten von vibronischer Resonanz in anregbaren Systemen. Sowohl in einer anregbaren elektronischen Schaltung als auch im FitzHugh-Nagumo Modell zeige ich, daß eine optimale Amplitude einer hochfrequenten externen Kraft die Signalantwort bez{\"u}glich eines niederfrequenten Signals verbessert. Weiterhin wird der Einfluß von additivem Rauschen auf das Zusammenwirken von stochastischer und vibronischer Resonanz untersucht. Weiterhin untersuche ich Systeme, die sowohl oszillierende als auch anregbare Eigenschaften beinhalten und dadurch zwei interne Frequenzen aufweisen. Ich zeige, daß in solchen Systemen der Effekt der stochastischen Resonanz deutlich erh{\"o}ht werden kann, wenn eine zus{\"a}tzliche hochfrequente Kraft in Resonanz mit den kleinen Oszillationen unterhalb der Anregungsschwelle hinzugenommen wird. Es ist beachtenswert, daß diese Verst{\"a}rkung der stochastischen Resonanz eine geringere Rauschintensit{\"a}t zum Erreichen des Optimums ben{\"o}tigt als die standartm{\"a}ßige stochastische Resonanz in anregbaren Systemen. Ich untersuche Frequenzselektivit{\"a}t bei der rauschinduzierten Signalverarbeitung von Signalen unterhalb der Anregungsschwelle in Systemen mit vielen rauschunterst{\"u}tzten stochastischen Attraktoren. Diese neuen Attraktoren mit abweichenden gemittelten Perioden weisen auch unterschiedliche Phasenbeziehungen zwischen den einzelnen Elementen auf. Ich zeige, daß die Signalantwort des gekoppelten Systems unter verschiedenen Rauscheinwirkungen deutlich verbessert oder auch reduziert werden kann durch das Treiben einzelner Elemente in Resonanz mit diesen neuen Resonanzfrequenzen, die mit passenden Phasenbeziehungen korrespondieren. Weiterhin konnte ich einen rauschinduzierten Phasen{\"u}bergang von einem selbstoszillierenden System zu einem anregbaren System nachweisen. Dieser {\"U}bergang erfolgt durch eine rauschinduzierte Stabilisierung eines deterministisch instabilen Fixpunktes der lokalen Dynamik, w{\"a}hrend die gesamte Phasenraumstruktur des Systems erhalten bleibt. Die gemeinsame Wirkung von Kopplung und Rauschen f{\"u}hrt zu einem neuen Typ von Phasen{\"u}berg{\"a}ngen und bewirkt eine Stabilisierung des Systems. Das sich daraus ergebende rauschinduziert anregbare Regime zeigt charakteristische Eigenschaften von klassisch anregbaren Systemen, wie stochastische Resonanz und Wellenausbreitung. Dieser rauschinduzierte Phasen{\"u}bergang erm{\"o}glicht dadurch die {\"U}bertragung von Signalen durch ansonsten global oszillierende Systeme und die Kontrolle der Signal{\"u}bertragung durch Ver{\"a}nderung der Rauschintensit{\"a}t. Insbesondere er{\"o}ffnen diese theoretischen Ergebnisse einen m{\"o}glichen Mechanismus zur Unterdr{\"u}ckung unerw{\"u}nschter globaler Oszillationen in neuronalen Netzwerken, welche charakteristisch f{\"u}r abnorme medizinische Zust{\"a}nde, wie z.B. bei der Parkinson\′schen Krankheit oder Epilepsie, sind. Die Wirkung von Rauschen w{\"u}rde dann wieder die Anregbarkeit herstellen, die den normalen Zustand der erkrankten Neuronen darstellt.}, language = {en} } @phdthesis{Kraikivski2005, author = {Kraikivski, Pavel}, title = {Non-equilibrium dynamics of adsorbed polymers and filaments}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-5979}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {In the present work, we discuss two subjects related to the nonequilibrium dynamics of polymers or biological filaments adsorbed to two-dimensional substrates. The first part is dedicated to thermally activated dynamics of polymers on structured substrates in the presence or absence of a driving force. The structured substrate is represented by double-well or periodic potentials. We consider both homogeneous and point driving forces. Point-like driving forces can be realized in single molecule manipulation by atomic force microscopy tips. Uniform driving forces can be generated by hydrodynamic flow or by electric fields for charged polymers. In the second part, we consider collective filament motion in motility assays for motor proteins, where filaments glide over a motor-coated substrate. The model for the simulation of the filament dynamics contains interactive deformable filaments that move under the influence of forces from molecular motors and thermal noise. Motor tails are attached to the substrate and modeled as flexible polymers (entropic springs), motor heads perform a directed walk with a given force-velocity relation. We study the collective filament dynamics and pattern formation as a function of the motor and filament density, the force-velocity characteristics, the detachment rate of motor proteins and the filament interaction. In particular, the formation and statistics of filament patterns such as nematic ordering due to motor activity or clusters due to blocking effects are investigated. Our results are experimentally accessible and possible experimental realizations are discussed.}, subject = {Polymere}, language = {en} } @phdthesis{Hosseini2022, author = {Hosseini, Seyed Mehrdad}, title = {Non-Langevin Recombination in Fullerene and Non-Fullerene Acceptor Solar Cells}, doi = {10.25932/publishup-54783}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-547831}, school = {Universit{\"a}t Potsdam}, pages = {XII, 103}, year = {2022}, abstract = {Organic solar cells (OSCs), in recent years, have shown high efficiencies through the development of novel non-fullerene acceptors (NFAs). Fullerene derivatives have been the centerpiece of the accepting materials used throughout organic photovoltaic (OPV) research. However, since 2015 novel NFAs have been a game-changer and have overtaken fullerenes. However, the current understanding of the properties of NFAs for OPV is still relatively limited and critical mechanisms defining the performance of OPVs are still topics of debate. In this thesis, attention is paid to understanding reduced-Langevin recombination with respect to the device physics properties of fullerene and non-fullerene systems. The work is comprised of four closely linked studies. The first is a detailed exploration of the fill factor (FF) expressed in terms of transport and recombination properties in a comparison of fullerene and non-fullerene acceptors. We investigated the key reason behind the reduced FF in the NFA (ITIC-based) devices which is faster non-geminate recombination relative to the fullerene (PCBM[70]-based) devices. This is then followed by a consideration of a newly synthesized NFA Y-series derivative which exhibits the highest power conversion efficiency for OSC at the time. Such that in the second study, we illustrated the role of disorder on the non-geminate recombination and charge extraction of thick NFA (Y6-based) devices. As a result, we enhanced the FF of thick PM6:Y6 by reducing the disorder which leads to suppressing the non-geminate recombination toward non-Langevin system. In the third work, we revealed the reason behind thickness independence of the short circuit current of PM6:Y6 devices, caused by the extraordinarily long diffusion length of Y6. The fourth study entails a broad comparison of a selection of fullerene and non-fullerene blends with respect to charge generation efficiency and recombination to unveil the importance of efficient charge generation for achieving reduced recombination. I employed transient measurements such as Time Delayed Collection Field (TDCF), Resistance dependent Photovoltage (RPV), and steady-state techniques such as Bias Assisted Charge Extraction (BACE), Temperature-Dependent Space Charge Limited Current (T-SCLC), Capacitance-Voltage (CV), and Photo-Induce Absorption (PIA), to analyze the OSCs. The outcomes in this thesis together draw a complex picture of multiple factors that affect reduced-Langevin recombination and thereby the FF and overall performance. This provides a suitable platform for identifying important parameters when designing new blend systems. As a result, we succeeded to improve the overall performance through enhancing the FF of thick NFA device by adjustment of the amount of the solvent additive in the active blend solution. It also highlights potentially critical gaps in the current experimental understanding of fundamental charge interaction and recombination dynamics.}, language = {en} } @phdthesis{Bachmann2019, author = {Bachmann, Felix}, title = {Non-linearity of magnetic micropropellers}, school = {Universit{\"a}t Potsdam}, pages = {120}, year = {2019}, language = {en} } @phdthesis{Graetz2020, author = {Gr{\"a}tz, Fabio M.}, title = {Nonlinear diffusion in granular gases and dense planetary rings}, school = {Universit{\"a}t Potsdam}, pages = {101}, year = {2020}, abstract = {Small moonlets or moons embedded in dense planetary rings create S-shaped density modulations called propellers if their masses are smaller than a certain threshold, alternatively they create a circumferential gap in the disk if the embedded body's mass exceeds this threshold (Spahn and Sremčević, 2000). The gravitational perturber scatters the ring particles, depletes the disk's density, and, thus, clears a gap, whereas counteracting viscous diffusion of the ring material has the tendency to close the created gap, thereby forming a propeller. Propeller objects were predicted by Spahn and Sremčević (2000) and Sremčević et al. (2002) and were later discovered by the Cassini space probe (Tiscareno et al., 2006, Sremčević et al., 2007, Tiscareno et al., 2008, and Tiscareno et al., 2010). The ring moons Pan and Daphnis are massive enough to maintain the circumferential Encke and Keeler gaps in Saturn's A ring and were detected by Showalter (1991) and Porco (2005) in Voyager and Cassini images, respectively. In this thesis, a nonlinear axisymmetric diffusion model is developed to describe radial density profiles of circumferential gaps in planetary rings created by embedded moons (Grätz et al., 2018). The model accounts for the gravitational scattering of the ring particles by the embedded moon and for the counteracting viscous diffusion of the ring matter back into the gap. With test particle simulations it is shown that the scattering of the ring particles passing the moon is larger for small impact parameters than estimated by Goldreich and Tremaine (1980). This is especially significant for the modeling of the Keeler gap. The model is applied to the Encke and Keeler gaps with the aim to estimate the shear viscosity of the ring in their vicinities. In addition, the model is used to analyze whether tiny icy moons whose dimensions lie below Cassini's resolution capabilities would be able to cause the poorly understood gap structure of the C ring and the Cassini Division. One of the most intriguing facets of Saturn's rings are the extremely sharp edges of the Encke and Keeler gaps: UVIS-scans of their gap edges show that the optical depth drops from order unity to zero over a range of far less than 100 m, a spatial scale comparable to the ring's vertical extent. This occurs despite the fact that the range over which a moon transfers angular momentum onto the ring material is much larger. Borderies et al. (1982, 1989) have shown that this striking feature is likely related to the local reversal of the usually outward-directed viscous transport of angular momentum in strongly perturbed regions. We have revised the Borderies et al. (1989) model using a granular flow model to define the shear and bulk viscosities, ν and ζ, in order to incorporate the angular momentum flux reversal effect into the axisymmetric diffusion model for circumferential gaps presented in this thesis (Grätz et al., 2019). The sharp Encke and Keeler gap edges are modeled and conclusions regarding the shear and bulk viscosities of the ring are discussed. Finally, we explore the question of whether the radial density profile of the central and outer A ring, recently measured by Tiscareno and Harris (2018) in the highest resolution to date, and in particular, the sharp outer A ring edge can be modeled consistently from the balance of gravitational scattering by several outer moons and the mass and momentum transport. To this aim, the developed model is extended to account for the inward drifts caused by multiple discrete and overlapping resonances with multiple outer satellites and is then used to hydrodynamically simulate the normalized surface mass density profile of the A ring. This section of the thesis is based on studies by Tajeddine et al. (2017a) who recently discussed the common misconception that the 7:6 resonance with Janus alone maintains the outer A ring edge, showing that the combined effort of several resonances with several outer moons is required to confine the A ring as observed by the Cassini spacecraft.}, language = {en} } @phdthesis{Wu2010, author = {Wu, Ye}, title = {Nonlinear dynamics in complex networks and modeling human dynamics}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-47358}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {Durch große Datenmengen k{\"o}nnen die Forscher die Eigenschaften komplexer Systeme untersuchen, z.B. komplexe Netzwerk und die Dynamik des menschlichen Verhaltens. Eine große Anzahl an Systemen werden als große und komplexe Netzwerke dargestellt, z.B. das Internet, Stromnetze, Wirtschaftssysteme. Immer mehr Forscher haben großes Interesse an der Dynamik des komplexen Netzwerks. Diese Arbeit besteht aus den folgenden drei Teilen. Der erste Teil ist ein einfacher dynamischer Optimierungs-Kopplungs-Mechanismus, aber sehr wirksam. Durch den Mechanismus kann synchronisation in komplexen Netzwerken mit und ohne Zeitverz{\"o}gerung realisiert, und die F{\"a}higkeit der Synchronisation von small-world und scale-free Netze verbessert werden. Im zweiten Teil geht um die Verst{\"a}rkung der Robustheit der scale-free Netze im Zusammenhang mit der Gemeinden-Struktur. Einige Reaktionsmuster und topologische Gemeinden sind einheitlich. Die Ergebnisse zeigen einen neuen Aspekt der Beziehung zwischen den Funktionen und der Netzwerk-Topologie von komplexen Netzwerken. Im dritten Teil welche eine wichtige Rolle in komplexen Netzwerken spielt, wird die Verhaltens-Dynamik der menschliche Mitteilung durch Daten- und Modellanalysierung erforscht, dann entsteht ein neues Mitteilungsmodell. Mit Hilfe von einem Interaktion priority-Queue Model kann das neue Modell erkl{\"a}rt werden. Mit Hilfe des Models k{\"o}nnen viele praktische Interaktions-Systeme erkl{\"a}rt werden, z.B. E-Mail und Briefe (oder Post). Mit Hilfe meiner Untersuchung kann man menschliches Verhalten auf der Individuums- und Netzwerkebene neu kennenlernen. Im vierter Teil kann ich nachweisen, dass menschliches Kommentar-Verhalten in on-line Sozialsystemen, eine andere Art der Interaktionsdynamik von Mensch non-Poisson ist und dieses am Modell erkl{\"a}ren. Mit Hilfe der non-Poisson Prozesse kann man das pers{\"o}nliche Anziehungskraft-Modell besser verstehen. Die Ergebnisse sind hilfreich zum Kennenlernen des Musters des menschlichen Verhaltens in on-line Gesellschaften und der Entwicklung von {\"o}ffentlicher Meinung nicht nur in der virtuellen Gesellschaftn sondern auch in der Realgesellschaft. Am Ende geht es um eine Prognose von menschlicher Dynamik und komplexen Netzwerken.}, language = {en} } @phdthesis{Ghani2012, author = {Ghani, Fatemeh}, title = {Nucleation and growth of unsubstituted metal phthalocyanine films from solution on planar substrates}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-64699}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {Organic solar cells (OSC) are interesting as low cost alternative to conventional solar cells. Unsubstituted Metal-phthalocyanines (Pc) are excellent electron donating molecules for heterojunction OSC. Usually organic solar cells with Pcs are produced by vapor deposition, although solution based deposition (like spin casting) is cheaper and offers more possibilities to control the structure of the film. With solution based deposition several parameters (like temperature, solvent and etc.) affect the self-organized structure formation via nucleation and growth. The reason why vapor deposition is typically used is the poor solubility of the metal-phthalocyanines in most common solvents. Furthermore the process of nucleation and growth of Pc aggregates from solution is not well understood. For preparation of Pc films from solution, it is necessary to find the appropriate solvents, assess the solution deposition techniques, such as dip coating, and spin casting. It is necessary to understand the nucleation and growth process for aggregation/precipitation and to use this knowledge to produce nanostructures appropriate for OSC. This is important because the nanostructure of the films determines their performance. In this thesis, optical absorption and the stability of 8 different unsubstituted metal Pc's were studied quantitatively in 28 different solvents. Among the several solution based deposited thin films produced based on this study, copper phthalocyanine (CuPc) dissolved in trifluoroacetic acid (TFA) is chosen as a model system for an in-depth study. CuPc has sufficient solubility and stability in TFA and upon solution processing forms appropriate structures for OSCs. CuPc molecules aggregate into layers of nanoribbons with a thickness of ~ 1 nm and an adjustable width and length. The morphology and the number of deposited layers in the thin films are controlled by different parameters, like temperature and solution concentration. Material properties of CuPc deposited from TFA are studied in detail via x-ray diffraction, UV-Vis and FT-IR spectroscopy. Atomic force microscopy was used to study the morphology of the dried film. The mechanism of the formation of CuPc nanoribbons from spin casted CuPc/TFA solution in ambient temperature is investigated and explained. The parameters (e.g. solution concentration profile) governing nucleation and growth are calculated based on the spin casting theory of a binary mixture of a nonvolatile solute and evaporative solvent. Based on this and intermolecular interactions between CuPc and substrate a nucleation and growth model is developed explaining the aggregation of CuPc in a supersaturated TFA solution. Finally, a solution processed thin film of CuPc is applied as a donor layer in a functioning bilayer heterojunction OSC and the influence of the structure on OSC performance is studied.}, language = {en} } @phdthesis{HernandezAnguizola2020, author = {Hernandez Anguizola, Eloy Luis}, title = {Numerical simulations in multimode fibres for astronomical spectroscopy}, doi = {10.25932/publishup-47236}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-472363}, school = {Universit{\"a}t Potsdam}, pages = {xvi, 114}, year = {2020}, abstract = {The goal of this thesis was to thoroughly investigate the behavior of multimode fibres to aid the development of modern and forthcoming fibre-fed spectrograph systems. Based on the Eigenmode Expansion Method, a field propagation model was created that can emulate effects in fibres relevant for astronomical spectroscopy, such as modal noise, scrambling, and focal ratio degradation. These effects are of major concern for any fibre-coupled spectrograph used in astronomical research. Changes in the focal ratio, modal distribution of light or non-perfect scrambling limit the accuracy of measurements, e.g. the flux determination of the astronomical object, the sky-background subtraction and detection limit for faint galaxies, or the spectral line position accuracy used for the detection of extra-solar planets. Usually, fibres used for astronomical instrumentation are characterized empirically through tests. The results of this work allow to predict the fibre behaviour under various conditions using sophisticated software tools to simulate the waveguide behaviour and mode transport of fibres. The simulation environment works with two software interfaces. The first is the mode solver module FemSIM from Rsoft. It is used to calculate all the propagation modes and effective refractive indexes of a given system. The second interface consists of Python scripts which enable the simulation of the near- and far-field outputs of a given fibre. The characteristics of the input field can be manipulated to emulate real conditions. Focus variations, spatial translation, angular fluctuations, and disturbances through the mode coupling factor can also be simulated. To date, complete coherent propagation or complete incoherent propagation can be simulated. Partial coherence was not addressed in this work. Another limitation of the simulations is that they work exclusively for the monochromatic case and that the loss coefficient of the fibres is not considered. Nevertheless, the simulations were able to match the results of realistic measurements. To test the validity of the simulations, real fibre measurements were used for comparison. Two fibres with different cross-sections were characterized. The first fibre had a circular cross-section, and the second one had an octagonal cross-section. The utilized test-bench was originally developed for the prototype fibres of the 4MOST fibre feed characterization. It allowed for parallel laser beam measurements, light cone measurements, and scrambling measurements. Through the appropriate configuration, the acquisition of the near- and/or far-field was feasible. By means of modal noise analysis, it was possible to compare the near-field speckle patterns of simulations and measurements as a function of the input angle. The spatial frequencies that originate from the modal interference could be analyzed by using the power spectral density analysis. Measurements and simulations yielded similar results. Measurements with induced modal scrambling were compared to simulations using incoherent propagation and once again similar results were achieved. Through both measurements and simulations, the enlargement of the near-field distribution could be observed and analyzed. The simulations made it possible to explain incoherent intensity fluctuations that appear in real measurements due to the field distribution of the active propagation modes. By using the Voigt analysis in the far-field distribution, it was possible to separate the modal diffusion component in order to compare it with the simulations. Through an appropriate assessment, the modal diffusion component as a function of the input angle could be translated into angular divergence. The simulations gave the minimal angular divergence of the system. Through the mean of the difference between simulations and measurements, a figure of merit is given which can be used to characterize the angular divergence of real fibres using the simulations. Furthermore, it was possible to simulate light cone measurements. Due to the overall consistent results, it can be stated that the simulations represent a good tool to assist the fibre characterization process for fibre-fed spectrograph systems. This work was possible through the BMBF Grant 05A14BA1 which was part of the phase A study of the fibre system for MOSAIC, a multi-object spectrograph for the Extremely Large Telescope (ELT-MOS).}, language = {en} } @phdthesis{Loeffler2005, author = {L{\"o}ffler, Frank}, title = {Numerical simulations of neutron star - black hole mergers}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-7743}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {Collisions of black holes and neutron stars, named mixed binaries in the following, are interesting because of at least two reasons. Firstly, it is expected that they emit a large amount of energy as gravitational waves, which could be measured by new detectors. The form of those waves is expected to carry information about the internal structure of such systems. Secondly, collisions of such objects are the prime suspects of short gamma ray bursts. The exact mechanism for the energy emission is unknown so far. In the past, Newtonian theory of gravitation and modifications to it were often used for numerical simulations of collisions of mixed binary systems. However, near to such objects, the gravitational forces are so strong, that the use of General Relativity is necessary for accurate predictions. There are a lot of problems in general relativistic simulations. However, systems of two neutron stars and systems of two black holes have been studies extensively in the past and a lot of those problems have been solved. One of the remaining problems so far has been the use of hydrodynamic on excision boundaries. Inside excision regions, no evolution is carried out. Such regions are often used inside black holes to circumvent instabilities of the numerical methods near the singularity. Methods to handle hydrodynamics at such boundaries have been described and tests are shown in this work. One important test and the first application of those methods has been the simulation of a collapsing neutron star to a black hole. The success of these simulations and in particular the performance of the excision methods was an important step towards simulations of mixed binaries. Initial data are necessary for every numerical simulation. However, the creation of such initial data for general relativistic situations is in general very complicated. In this work it is shown how to obtain initial data for mixed binary systems using an already existing method for initial data of two black holes. These initial data have been used for evolutions of such systems and problems encountered are discussed in this work. One of the problems are instabilities due to different methods, which could be solved by dissipation of appropriate strength. Another problem is the expected drift of the black hole towards the neutron star. It is shown, that this can be solved by using special gauge conditions, which prevent the black hole from moving on the computational grid. The methods and simulations shown in this work are only the starting step for a much more detailed study of mixed binary system. Better methods, models and simulations with higher resolution and even better gauge conditions will be focus of future work. It is expected that such detailed studies can give information about the emitted gravitational waves, which is important in view of the newly built gravitational wave detectors. In addition, these simulations could give insight into the processes responsible for short gamma ray bursts.}, subject = {Relativistische Astrophysik}, language = {en} } @phdthesis{Koppitz2004, author = {Koppitz, Michael}, title = {Numerical studies of Black Hole initial data}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001245}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {Diese Doktorarbeit behandelt neue Methoden der numerischen Evolution von Systemen mit bin{\"a}ren Schwarzen L{\"o}chern. Wir analysieren und vergleichen Evolutionen von verschiedenen physikalisch motivierten Anfangsdaten und zeigen Resultate der ersten Evolution von so genannten 'Thin Sandwich' Daten, die von der Gruppe in Meudon entwickelt wurden. Zum ersten Mal wurden zwei verschiedene Anfangsdaten anhand von dreidimensionalen Evolutionen verglichen: die Puncture-Daten und die Thin-Sandwich Daten. Diese zwei Datentypen wurden im Hinblick auf die physikalischen Eigenschaften w{\"a}hrend der Evolution verglichen. Die Evolutionen zeigen, dass die Meudon Daten im Vergleich zu Puncture Daten wesentlich mehr Zeit ben{\"o}tigen bevor sie kollidieren. Dies deutet auf eine bessere Absch{\"a}tzung der Parameter hin. Die Kollisionszeiten der numerischen Evolutionen sind konsistent mit unabh{\"a}ngigen Sch{\"a}tzungen basierend auf Post-Newtonschen N{\"a}herungen die vorhersagen, dass die Schwarzen L{\"o}cher ca. 60\% eines Orbits rotieren bevor sie kollidieren.}, language = {en} } @phdthesis{Knopf2006, author = {Knopf, Brigitte}, title = {On intrinsic uncertainties in earth system modelling}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-10949}, school = {Universit{\"a}t Potsdam}, year = {2006}, abstract = {Uncertainties are pervasive in the Earth System modelling. This is not just due to a lack of knowledge about physical processes but has its seeds in intrinsic, i.e. inevitable and irreducible, uncertainties concerning the process of modelling as well. Therefore, it is indispensable to quantify uncertainty in order to determine, which are robust results under this inherent uncertainty. The central goal of this thesis is to explore how uncertainties map on the properties of interest such as phase space topology and qualitative dynamics of the system. We will address several types of uncertainty and apply methods of dynamical systems theory on a trendsetting field of climate research, i.e. the Indian monsoon. For the systematic analysis concerning the different facets of uncertainty, a box model of the Indian monsoon is investigated, which shows a saddle node bifurcation against those parameters that influence the heat budget of the system and that goes along with a regime shift from a wet to a dry summer monsoon. As some of these parameters are crucially influenced by anthropogenic perturbations, the question is whether the occurrence of this bifurcation is robust against uncertainties in parameters and in the number of considered processes and secondly, whether the bifurcation can be reached under climate change. Results indicate, for example, the robustness of the bifurcation point against all considered parameter uncertainties. The possibility of reaching the critical point under climate change seems rather improbable. A novel method is applied for the analysis of the occurrence and the position of the bifurcation point in the monsoon model against parameter uncertainties. This method combines two standard approaches: a bifurcation analysis with multi-parameter ensemble simulations. As a model-independent and therefore universal procedure, this method allows investigating the uncertainty referring to a bifurcation in a high dimensional parameter space in many other models. With the monsoon model the uncertainty about the external influence of El Ni{\~n}o / Southern Oscillation (ENSO) is determined. There is evidence that ENSO influences the variability of the Indian monsoon, but the underlying physical mechanism is discussed controversially. As a contribution to the debate three different hypotheses are tested of how ENSO and the Indian summer monsoon are linked. In this thesis the coupling through the trade winds is identified as key in linking these two key climate constituents. On the basis of this physical mechanism the observed monsoon rainfall data can be reproduced to a great extent. Moreover, this mechanism can be identified in two general circulation models (GCMs) for the present day situation and for future projections under climate change. Furthermore, uncertainties in the process of coupling models are investigated, where the focus is on a comparison of forced dynamics as opposed to fully coupled dynamics. The former describes a particular type of coupling, where the dynamics from one sub-module is substituted by data. Intrinsic uncertainties and constraints are identified that prevent the consistency of a forced model with its fully coupled counterpart. Qualitative discrepancies between the two modelling approaches are highlighted, which lead to an overestimation of predictability and produce artificial predictability in the forced system. The results suggest that bistability and intermittent predictability, when found in a forced model set-up, should always be cross-validated with alternative coupling designs before being taken for granted. All in this, this thesis contributes to the fundamental issue of dealing with uncertainties the climate modelling community is confronted with. Although some uncertainties allow for including them in the interpretation of the model results, intrinsic uncertainties could be identified, which are inevitable within a certain modelling paradigm and are provoked by the specific modelling approach.}, subject = {Unsicherheit}, language = {en} } @phdthesis{KianiAlibagheri2017, author = {Kiani Alibagheri, Bahareh}, title = {On structural properties of magnetosome chains}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-398849}, school = {Universit{\"a}t Potsdam}, pages = {XIV, 117}, year = {2017}, abstract = {Magnetotaktische Bakterien besitzen eine intrazellul{\"a}re Struktur, die Magnetosomenkette genannt wird. Magnetosomenketten enthalten Nanopartikel von Eisenkristallen, die von einer Membran umschlossen und entlang eines Zytoskelettfilaments ausgerichtet sind. Dank der Magnetosomenkette ist es magnetotaktischen Bakterien m{\"o}glich sich in Magnetfeldern auszurichten und entlang magnetischer Feldlinien zu schwimmen. Die ausf{\"u}hrliche Untersuchung der strukturellen Eigenschaften der Magnetosomenkette in magnetotaktischen Bakterien sind von grundlegendem wissenschaftlichen Interesse, weil sie Einblicke in die Anordnung des Zytoskeletts von Bakterien erlauben. In dieser Studie haben wir ein neues theoretisches Modell entwickelt, dass sich dazu eignet, die strukturellen Eigenschaften der Magnetosomenketten in magnetotaktischen Bakterien zu erforschen. Zuerst wenden wir uns der Biegesteifigkeit von Magnetosomenketten zu, die von zwei Faktoren beeinflusst wird: Die magnetische Wechselwirkung der Magnetosomenpartikel und der Biegesteifigkeit des Zytoskelettfilaments auf welchem die Magnetosome verankert sind. Unsere Analyse zeigt, dass sich die lineare Konfiguration von Magnetosomenpartikeln ohne die Stabilisierung durch das Zytoskelett zu einer ring{\"o}rmigen Struktur biegen w{\"u}rde, die kein magnetisches Moment aufweist und daher nicht die Funktion eines Kompass in der zellul{\"a}ren Navigation einnehmen k{\"o}nnte. Wir schlussfolgern, dass das Zytoskelettfilament eine stabilisierende Wirkung auf die lineare Konfiguration hat und eine ringf{\"o}rmige Anordnung verhindert. Wir untersuchen weiter die Gleichgewichtskonfiguration der Magnetosomenpartikel in einer linearen Kette und in einer geschlossenen ringf{\"o}rmigen Struktur. Dabei beobachteten wir ebenfalls, dass f{\"u}r eine stabile lineare Anordnung eine Bindung an ein Zytoskelettfilament notwendig ist. In einem externen magnetischen Feld wird die Stabilit{\"a}t der Magnetosomenketten durch die Dipol-Dipol-Wechselwirkung, {\"u}ber die Steifheit und die Bindungsenergie der Proteinstruktur, die die Partikel des Magnetosomen mit dem Filament verbinden, erreicht. Durch Beobachtungen w{\"a}hrend und nach der Behandlung einer Magnetosomenkette mit einem externen magnetischen Feld, l{\"a}sst sich begr{\"u}nden, dass die Stabilisierung von Magnetosomenketten durch Zytoskelettfilamente {\"u}ber proteinhaltige Bindeglieder und die dynamischen Eigenschaften dieser Strukturen realisiert wird. Abschließend wenden wir unser Modell bei der Untersuchung von ferromagnetischen Resonanz-Spektren von Magnetosomenketten in einzelnen Zellen von magnetotaktischen Bakterien an. Wir erforschen den Effekt der magnetokristallinen Anistropie in ihrer dreifach-Symmetrie, die in ferromagnetischen Ressonanz Spektren beobachtet wurden und die Besonderheit von verschiedenen Spektren, die bei Mutanten dieser Bakterien auftreten.}, language = {en} } @phdthesis{Niedermayer2012, author = {Niedermayer, Thomas}, title = {On the depolymerization of actin filaments}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-63605}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {Actin is one of the most abundant and highly conserved proteins in eukaryotic cells. The globular protein assembles into long filaments, which form a variety of different networks within the cytoskeleton. The dynamic reorganization of these networks - which is pivotal for cell motility, cell adhesion, and cell division - is based on cycles of polymerization (assembly) and depolymerization (disassembly) of actin filaments. Actin binds ATP and within the filament, actin-bound ATP is hydrolyzed into ADP on a time scale of a few minutes. As ADP-actin dissociates faster from the filament ends than ATP-actin, the filament becomes less stable as it grows older. Recent single filament experiments, where abrupt dynamical changes during filament depolymerization have been observed, suggest the opposite behavior, however, namely that the actin filaments become increasingly stable with time. Several mechanisms for this stabilization have been proposed, ranging from structural transitions of the whole filament to surface attachment of the filament ends. The key issue of this thesis is to elucidate the unexpected interruptions of depolymerization by a combination of experimental and theoretical studies. In new depolymerization experiments on single filaments, we confirm that filaments cease to shrink in an abrupt manner and determine the time from the initiation of depolymerization until the occurrence of the first interruption. This duration differs from filament to filament and represents a stochastic variable. We consider various hypothetical mechanisms that may cause the observed interruptions. These mechanisms cannot be distinguished directly, but they give rise to distinct distributions of the time until the first interruption, which we compute by modeling the underlying stochastic processes. A comparison with the measured distribution reveals that the sudden truncation of the shrinkage process neither arises from blocking of the ends nor from a collective transition of the whole filament. Instead, we predict a local transition process occurring at random sites within the filament. The combination of additional experimental findings and our theoretical approach confirms the notion of a local transition mechanism and identifies the transition as the photo-induced formation of an actin dimer within the filaments. Unlabeled actin filaments do not exhibit pauses, which implies that, in vivo, older filaments become destabilized by ATP hydrolysis. This destabilization can be identified with an acceleration of the depolymerization prior to the interruption. In the final part of this thesis, we theoretically analyze this acceleration to infer the mechanism of ATP hydrolysis. We show that the rate of ATP hydrolysis is constant within the filament, corresponding to a random as opposed to a vectorial hydrolysis mechanism.}, language = {en} } @phdthesis{PerdigonToro2022, author = {Perdig{\´o}n-Toro, Lorena}, title = {On the Generation and Fate of Free Carriers in Non-Fullerene Acceptor Organic Solar Cells}, doi = {10.25932/publishup-55807}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-558072}, school = {Universit{\"a}t Potsdam}, pages = {ix, 191}, year = {2022}, abstract = {Organic solar cells offer an efficient and cost-effective alternative for solar energy harvesting. This type of photovoltaic cell typically consists of a blend of two organic semiconductors, an electron donating polymer and a low molecular weight electron acceptor to create what is known as a bulk heterojunction (BHJ) morphology. Traditionally, fullerene-based acceptors have been used for this purpose. In recent years, the development of new acceptor molecules, so-called non-fullerene acceptors (NFA), has breathed new life into organic solar cell research, enabling record efficiencies close to 19\%. Today, NFA-based solar cells are approaching their inorganic competitors in terms of photocurrent generation, but lag in terms of open circuit voltage (V_OC). Interestingly, the V_OC of these cells benefits from small offsets of orbital energies at the donor-NFA interface, although previous knowledge considered large energy offsets to be critical for efficient charge carrier generation. In addition, there are several other electronic and structural features that distinguish NFAs from fullerenes. My thesis focuses on understanding the interplay between the unique attributes of NFAs and the physical processes occurring in solar cells. By combining various experimental techniques with drift-diffusion simulations, the generation of free charge carriers as well as their recombination in state-of-the-art NFA-based solar cells is characterized. For this purpose, solar cells based on the donor polymer PM6 and the NFA Y6 have been investigated. The generation of free charge carriers in PM6:Y6 is efficient and independent of electric field and excitation energy. Temperature-dependent measurements show a very low activation energy for photocurrent generation (about 6 meV), indicating barrierless charge carrier separation. Theoretical modeling suggests that Y6 molecules have large quadrupole moments, leading to band bending at the donor-acceptor interface and thereby reducing the electrostatic Coulomb dissociation barrier. In this regard, this work identifies poor extraction of free charges in competition with nongeminate recombination as a dominant loss process in PM6:Y6 devices. Subsequently, the spectral characteristics of PM6:Y6 solar cells were investigated with respect to the dominant process of charge carrier recombination. It was found that the photon emission under open-circuit conditions can be almost entirely attributed to the occupation and recombination of Y6 singlet excitons. Nevertheless, the recombination pathway via the singlet state contributes only 1\% to the total recombination, which is dominated by the charge transfer state (CT-state) at the donor-acceptor interface. Further V_OC gains can therefore only be expected if the density and/or recombination rate of these CT-states can be significantly reduced. Finally, the role of energetic disorder in NFA solar cells is investigated by comparing Y6 with a structurally related derivative, named N4. Layer morphology studies combined with temperature-dependent charge transport experiments show significantly lower structural and energetic disorder in the case of the PM6:Y6 blend. For both PM6:Y6 and PM6:N4, disorder determines the maximum achievable V_OC, with PM6:Y6 benefiting from improved morphological order. Overall, the obtained findings point to avenues for the realization of NFA-based solar cells with even smaller V_OC losses. Further reduction of nongeminate recombination and energetic disorder should result in organic solar cells with efficiencies above 20\% in the future.}, language = {en} } @phdthesis{Albers2006, author = {Albers, Nicole}, title = {On the relevance of adhesion : applications to Saturn's rings}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-10848}, school = {Universit{\"a}t Potsdam}, year = {2006}, abstract = {Since their discovery in 1610 by Galileo Galilei, Saturn's rings continue to fascinate both experts and amateurs. Countless numbers of icy grains in almost Keplerian orbits reveal a wealth of structures such as ringlets, voids and gaps, wakes and waves, and many more. Grains are found to increase in size with increasing radial distance to Saturn. Recently discovered "propeller" structures in the Cassini spacecraft data, provide evidence for the existence of embedded moonlets. In the wake of these findings, the discussion resumes about origin and evolution of planetary rings, and growth processes in tidal environments. In this thesis, a contact model for binary adhesive, viscoelastic collisions is developed that accounts for agglomeration as well as restitution. Collisional outcomes are crucially determined by the impact speed and masses of the collision partners and yield a maximal impact velocity at which agglomeration still occurs. Based on the latter, a self-consistent kinetic concept is proposed. The model considers all possible collisional outcomes as there are coagulation, restitution, and fragmentation. Emphasizing the evolution of the mass spectrum and furthermore concentrating on coagulation alone, a coagulation equation, including a restricted sticking probability is derived. The otherwise phenomenological Smoluchowski equation is reproduced from basic principles and denotes a limit case to the derived coagulation equation. Qualitative and quantitative analysis of the relevance of adhesion to force-free granular gases and to those under the influence of Keplerian shear is investigated. Capture probability, agglomerate stability, and the mass spectrum evolution are investigated in the context of adhesive interactions. A size dependent radial limit distance from the central planet is obtained refining the Roche criterion. Furthermore, capture probability in the presence of adhesion is generally different compared to the case of pure gravitational capture. In contrast to a Smoluchowski-type evolution of the mass spectrum, numerical simulations of the obtained coagulation equation revealed, that a transition from smaller grains to larger bodies cannot occur via a collisional cascade alone. For parameters used in this study, effective growth ceases at an average size of centimeters.}, subject = {Saturn}, language = {en} } @phdthesis{Arora2018, author = {Arora, Ashima}, title = {Optical and electric field control of magnetism}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-421479}, school = {Universit{\"a}t Potsdam}, pages = {ii, 126}, year = {2018}, abstract = {Future magnetic recording industry needs a high-density data storage technology. However, switching the magnetization of small bits requires high magnetic fields that cause excessive heat dissipation. Therefore, controlling magnetism without applying external magnetic field is an important research topic for potential applications in data storage devices with low power consumption. Among the different approaches being investigated, two of them stand out, namely i) all-optical helicity dependent switching (AO-HDS) and ii) ferroelectric control of magnetism. This thesis aims to contribute towards a better understanding of the physical processes behinds these effects as well as reporting new and exciting possibility for the optical and/or electric control of magnetic properties. Hence, the thesis contains two differentiated chapters of results; the first devoted to AO-HDS on TbFe alloys and the second to the electric field control of magnetism in an archetypal Fe/BaTiO3 system. In the first part, the scalability of the AO-HDS to small laser spot-sizes of few microns in the ferrimagnetic TbFe alloy is investigated by spatially resolving the magnetic contrast with photo-emission electron microscopy (PEEM) and X-ray magnetic circular dichroism (XMCD). The results show that the AO-HDS is a local effect within the laser spot size that occurs in the ring-shaped region in the vicinity of thermal demagnetization. Within the ring region, the helicity dependent switching occurs via thermally activated domain wall motion. Further, the thesis reports on a novel effect of thickness dependent inversion of the switching orientation. It addresses some of the important questions like the role of laser heating and the microscopic mechanism driving AO-HDS. The second part of the thesis focuses on the electric field control of magnetism in an artificial multiferroic heterostructure. The sample consists of an Fe wedge with thickness varying between 0:5 nm and 3 nm, deposited on top of a ferroelectric and ferroelastic BaTiO3 [001]-oriented single crystal substrate. Here, the magnetic contrast is imaged via PEEM and XMCD as a function of out-of-plane voltage. The results show the evidence of the electric field control of superparamagnetism mediated by a ferroelastic modification of the magnetic anisotropy. The changes in the magnetoelastic anisotropy drive the transition from the superparamagnetic to superferromagnetic state at localized sample positions.}, language = {en} } @phdthesis{Sharma2023, author = {Sharma, Anjali}, title = {Optical manipulation of multi-responsive microgels}, school = {Universit{\"a}t Potsdam}, pages = {207}, year = {2023}, abstract = {This dissertation focuses on the understanding of the optical manipulation of microgels dispersed in aqueous solution of azobenzene containing surfactant. The work consists of three parts where each part is a systematic investigation of the (1) photo-isomerization kinetics of the surfactant in complex with the microgel polymer matrix, (2) light driven diffusiosmosis (LDDO) in microgels and (3) photo-responsivity of microgel on complexation with spiropyran. The first part comprises three publications where the first one [P1] investigates the photo-isomerization kinetics and corresponding isomer composition at a photo-stationary state of the photo-sensitive surfactant conjugated with charged polymers or micro sized polymer networks to understand the structural response of such photo-sensitive complexes. We report that the photo-isomerization of the azobenzene-containing cationic surfactant is slower in a polymer complex compared to being purely dissolved in an aqueous solution. The surfactant aggregates near the polyelectrolyte chains at concentrations much lower than the bulk critical micelle concentration. This, along with the inhibition of the photo-isomerization kinetics due to steric hindrance within the densely packed aggregates, pushes the isomer-ratio to a higher trans-isomer concentration for all irradiation wavelengths. The second publication [P2] combines experimental results and non-adiabatic dynamic simulations for the same surfactant molecules embedded in the micelles with absorption spectroscopy measurements of micellar solutions to uncover the reasons responsible for the slowdown in photo induced trans → cis azobenzene isomerization at concentrations higher than the critical micelle concentration (CMC). The simulations reveal a decrease of isomerization quantum yields for molecules inside the micelles and observes a reduction of extinction coefficients upon micellization. These findings explain the deceleration of the trans → cis switching in micelles of the azobenzene-containing surfactants. Finally, the third publication [P3] focusses on the kinetics of adsorption and desorption of the same surfactant within anionic microgels in the dark and under continuous irradiation. Experimental data demonstrate, that microgels can serve as a selective absorber of the trans isomers. The interaction of the isomers with the gel matrix induces a remotely controllable collapse or swelling on appropriate irradiation wavelengths. Measuring the kinetics of the microgel size response and knowing the exact isomer composition under light exposure, we calculate the adsorption rate of the trans-isomers. The second part comprises two publications. The first publication [P4] reports on the phenomenon of light-driven diffusioosmotic (DO) long-range attractive and repulsive interactions between micro-sized objects, whose range extends several times the size of microparticles and can be adjusted to point towards or away from the particle by varying irradiation parameters such as intensity or wavelength of light. The phenomenon is fueled by the aforementioned photosensitive surfactant. The complex interaction of dynamic exchange of isomers and photo-isomerization rate yields to relative concentrations gradients of the isomers in the vicinity of micro-sized object inducing a local diffusioosmotic (DO) flow thereby making a surface act as a micropump. The second publication [P5] exclusively aims the visualization and investigation of the DO flows generated from microgels by using small tracer particles. Similar to micro sized objects, the flow is able to push adjacent tracers over distances several times larger than microgel size. Here we report that the direction and the strength of the l-LDDO depends on the intensity, irradiation wavelength and the amount of surfactant adsorbed by the microgel. For example, the flow pattern around a microgel is directed radially outward and can be maintained quasi-indefinitely under exposure at 455 nm when the trans:cis ratio is 2:1, whereas irradiation at 365 nm, generates a radially transient flow pattern, which inverts at lower intensities. Lastly, the third part consists of one publication [P6] which, unlike the previous works, reports on the study of the kinetics of photo- and thermo-switching of a new surfactant namely, spiropyran, upon exposure with light of different wavelengths and its interaction with p(NIPAM-AA) microgels. The surfactant being an amphiphile, switches between its ring closed spiropyran (SP) form and ring open merocyanine (MC) form which results in a change in the hydrophilic-hydrophobic balance of the surfactant as MC being a zwitterionic form along with the charged head group, generates three charges on the molecule. Therefore, the MC form of the surfactant is more hydrophilic than in the case of the neutral SP state. Here, we investigate the initial shrinkage of the gel particles via charge compensation on first exposure to SP molecules which results from the complex formation of the molecules with the gel matrix, triggering them to become photo responsive. The size and VPTT of the microgels during irradiation is shown to be a combination of heating up of the solution during light absorption by the surfactant (more pronounced in the case of UV irradiation) and the change in the hydrophobicity of the surfactant.}, language = {en} } @phdthesis{ThielemannKuehn2017, author = {Thielemann-K{\"u}hn, Nele}, title = {Optically induced ferro- and antiferromagnetic dynamics in the rare-earth metal dysprosium}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-402994}, school = {Universit{\"a}t Potsdam}, pages = {iv, 121}, year = {2017}, abstract = {Approaching physical limits in speed and size of today's magnetic storage and processing technologies demands new concepts for controlling magnetization and moves researches on optically induced magnetic dynamics. Studies on photoinduced magnetization dynamics and their underlying mechanisms have been primarily performed on ferromagnetic metals. Ferromagnetic dynamics bases on transfer of the conserved angular momentum connected with atomic magnetic moments out of the parallel aligned magnetic system into other degrees of freedom. In this thesis the so far rarely studied response of antiferromagnetic order to ultra-short optical laser pulses in a metal is investigated. The experiments were performed at the FemtoSpex slicing facility at the storage ring BESSY II, an unique source for ultra-short elliptically polarized x-ray pulses. Laser-induced changes of the 4f-magnetic order parameter in ferro- and antiferromagnetic dysprosium (Dy), were studied by x-ray methods, which yield directly comparable quantities. The discovered fundamental differences in the temporal and spatial behavior of ferro- and antiferrmagnetic dynamics are assinged to an additional channel for angular momentum transfer, which reduces the antiferromagnetic order by redistributing angular momentum within the non-parallel aligned magnetic system, and hence conserves the zero net magnetization. It is shown that antiferromagnetic dynamics proceeds considerably faster and more energy-efficient than demagnetization in ferromagnets. By probing antiferromagnetic order in time and space, it is found to be affected along the whole sample depth of an in situ grown 73 nm tick Dy film. Interatomic transfer of angular momentum via fast diffusion of laser-excited 5d electrons is held responsible for the out-most long-ranging effect. Ultrafast ferromagnetic dynamics can be expected to base on the same origin, which however leads to demagnetization only in regions close to interfaces caused by super-diffusive spin transport. Dynamics due to local scattering processes of excited but less mobile electrons, occur in both magnetic alignments only in directly excited regions of the sample and on slower pisosecond timescales. The thesis provides fundamental insights into photoinduced magnetic dynamics by directly comparing ferro- and antiferromagnetic dynamics in the same material and by consideration of the laser-induced magnetic depth profile.}, language = {en} } @phdthesis{GostkowskaLekner2024, author = {Gostkowska-Lekner, Natalia Katarzyna}, title = {Organic-inorganic hybrids based on P3HT and mesoporous silicon for thermoelectric applications}, doi = {10.25932/publishup-62047}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-620475}, school = {Universit{\"a}t Potsdam}, pages = {121}, year = {2024}, abstract = {This thesis presents a comprehensive study on synthesis, structure and thermoelectric transport properties of organic-inorganic hybrids based on P3HT and porous silicon. The effect of embedding polymer in silicon pores on the electrical and thermal transport is studied. Morphological studies confirm successful polymer infiltration and diffusion doping with roughly 50\% of the pore space occupied by conjugated polymer. Synchrotron diffraction experiments reveal no specific ordering of the polymer inside the pores. P3HT-pSi hybrids show improved electrical transport by five orders of magnitude compared to porous silicon and power factor values comparable or exceeding other P3HT-inorganic hybrids. The analysis suggests different transport mechanisms in both materials. In pSi, the transport mechanism relates to a Meyer-Neldel compansation rule. The analysis of hybrids' data using the power law in Kang-Snyder model suggests that a doped polymer mainly provides charge carriers to the pSi matrix, similar to the behavior of a doped semiconductor. Heavily suppressed thermal transport in porous silicon is treated with a modified Landauer/Lundstrom model and effective medium theories, which reveal that pSi agrees well with the Kirkpatrick model with a 68\% percolation threshold. Thermal conductivities of hybrids show an increase compared to the empty pSi but the overall thermoelectric figure of merit ZT of P3HT-pSi hybrid exceeds both pSi and P3HT as well as bulk Si.}, language = {en} } @phdthesis{KranjcHorvat2022, author = {Kranjc Horvat, Anja}, title = {Particle physics in high-school education}, doi = {10.25932/publishup-56026}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-560260}, school = {Universit{\"a}t Potsdam}, pages = {137}, year = {2022}, abstract = {Elementary particle physics is a contemporary topic in science that is slowly being integrated into high-school education. These new implementations are challenging teachers' professional knowledge worldwide. Therefore, physics education research is faced with two important questions, namely, how can particle physics be integrated in high-school physics curricula and how best to support teachers in enhancing their professional knowledge on particle physics. This doctoral research project set up to provide better guidelines for answering these two questions by conducting three studies on high-school particle physics education. First, an expert concept mapping study was conducted to elicit experts' expectations on what high-school students should learn about particle physics. Overall, 13 experts in particle physics, computing, and physics education participated in 9 concept mapping rounds. The broad knowledge base of the experts ensured that the final expert concept map covers all major particle physics aspects. Specifically, the final expert concept map includes 180 concepts and examples, connected with 266 links and crosslinks. Among them are also several links to students' prior knowledge in topics such as mechanics and thermodynamics. The high interconnectedness of the concepts shows possible opportunities for including particle physics as a context for other curricular topics. As such, the resulting expert concept map is showcased as a well-suited tool for teachers to scaffold their instructional practice. Second, a review of 27 high-school physics curricula was conducted. The review uncovered which concepts related to particle physics can be identified in most curricula. Each curriculum was reviewed by two reviewers that followed a codebook with 60 concepts related to particle physics. The analysis showed that most curricula mention cosmology, elementary particles, and charges, all of which are considered theoretical particle physics concepts. None of the experimental particle physics concepts appeared in more than half of the reviewed curricula. Additional analysis was done on two curricular subsets, namely curricula with and curricula without an explicit particle physics chapter. Curricula with an explicit particle physics chapter mention several additional explicit particle physics concepts, namely the Standard Model of particle physics, fundamental interactions, antimatter research, and particle accelerators. The latter is an example of experimental particle physics concepts. Additionally, the analysis revealed that, overall, most curricula include Nature of Science and history of physics, albeit both are typically used as context or as a tool for teaching, respectively. Third, a Delphi study was conducted to investigate stakeholders' expectations regarding what teachers should learn in particle physics professional development programmes. Over 100 stakeholders from 41 countries represented four stakeholder groups, namely physics education researchers, research scientists, government representatives, and high-school teachers. The study resulted in a ranked list of the 13 most important topics to be included in particle physics professional development programmes. The highest-ranked topics are cosmology, the Standard Model, and real-life applications of particle physics. All stakeholder groups agreed on the overall ranking of the topics. While the highest-ranked topics are again more theoretical, stakeholders also expect teachers to learn about experimental particle physics topics, which are ranked as medium importance topics. The three studies addressed two research aims of this doctoral project. The first research aim was to explore to what extent particle physics is featured in high-school physics curricula. The comparison of the outcomes of the curricular review and the expert concept map showed that curricula cover significantly less than what experts expect high-school students to learn about particle physics. For example, most curricula do not include concepts that could be classified as experimental particle physics. However, the strong connections between the different concept show that experimental particle physics can be used as context for theoretical particle physics concepts, Nature of Science, and other curricular topics. In doing so, particle physics can be introduced in classrooms even though it is not (yet) explicitly mentioned in the respective curriculum. The second research aim was to identify which aspects of content knowledge teachers are expected to learn about particle physics. The comparison of the Delphi study results to the outcomes of the curricular review and the expert concept map showed that stakeholders generally expect teachers to enhance their school knowledge as defined by the curricula. Furthermore, teachers are also expected to enhance their deeper school knowledge by learning how to connect concepts from their school knowledge to other concepts in particle physics and beyond. As such, professional development programmes that focus on enhancing teachers' school knowledge and deeper school knowledge best support teachers in building relevant context in their instruction. Overall, this doctoral research project reviewed the current state of high-school particle physics education and provided guidelines for future enhancements of the particle physics content in high-school student and teacher education. The outcomes of the project support further implementations of particle physics in high-school education both as explicit content and as context for other curricular topics. Furthermore, the mixed-methods approach and the outcomes of this research project lead to several implications for professional development programmes and science education research, that are discussed in the final chapters of this dissertation.}, language = {en} } @phdthesis{Wieland2015, author = {Wieland, Volkmar}, title = {Particle-in-cell simulations of perpendicular supernova shock fronts}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-74532}, school = {Universit{\"a}t Potsdam}, pages = {v, 89}, year = {2015}, abstract = {The origin of cosmic rays was the subject of several studies for over a century. The investigations done within this dissertation are one small step to shed some more light on this mystery. Locating the sources of cosmic rays is not trivial due to the interstellar magnetic field. However, the Hillas criterion allows us to arrive at the conclusion that supernova remnants are our main suspect for the origin of galactic cosmic rays. The mechanism by which they are accelerating particles is found within the field of shock physics as diffusive shock acceleration. To allow particles to enter this process also known as Fermi acceleration pre-acceleration processes like shock surfing acceleration and shock drift acceleration are necessary. Investigating the processes happening in the plasma shocks of supernova remnants is possible by utilising a simplified model which can be simulated on a computer using Particle-in-Cell simulations. We developed a new and clean setup to simulate the formation of a double shock, i.e., consisting of a forward and a reverse shock and a contact discontinuity, by the collision of two counter-streaming plasmas, in which a magnetic field can be woven into. In a previous work, we investigated the processes at unmagnetised and at magnetised parallel shocks, whereas in the current work, we move our investigation on to magnetised perpendicular shocks. Due to a much stronger confinement of the particles to the collision region the perpendicular shock develops much faster than the parallel shock. On the other hand, this leads to much weaker turbulence. We are able to find indications for shock surfing acceleration and shock drift acceleration happening at the two shocks leading to populations of pre-accelerated particles that are suitable as a seed population to be injected into further diffusive shock acceleration to be accelerated to even higher energies. We observe the development of filamentary structures in the shock ramp of the forward shock, but not at the reverse shock. This leads to the conclusion that the development of such structures in the shock ramp of quasi-perpendicular collisionless shocks might not necessarily be determined by the existence of a critical sonic Mach number but by a critical shock speed. The results of the investigations done within this dissertation might be useful for further studies of oblique shocks and for studies using hybrid or magnetohydrodynamic simulations. Together with more sophisticated observational methods, these studies will help to bring us closer to an answer as to how particles can be accelerated in supernova remnants and eventually become cosmic rays that can be detected on Earth.}, language = {en} } @phdthesis{Toenjes2007, author = {T{\"o}njes, Ralf}, title = {Pattern formation through synchronization in systems of nonidentical autonomous oscillators}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-15973}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {This work is concerned with the spatio-temporal structures that emerge when non-identical, diffusively coupled oscillators synchronize. It contains analytical results and their confirmation through extensive computer simulations. We use the Kuramoto model which reduces general oscillatory systems to phase dynamics. The symmetry of the coupling plays an important role for the formation of patterns. We have studied the ordering influence of an asymmetry (non-isochronicity) in the phase coupling function on the phase profile in synchronization and the intricate interplay between this asymmetry and the frequency heterogeneity in the system. The thesis is divided into three main parts. Chapter 2 and 3 introduce the basic model of Kuramoto and conditions for stable synchronization. In Chapter 4 we characterize the phase profiles in synchronization for various special cases and in an exponential approximation of the phase coupling function, which allows for an analytical treatment. Finally, in the third part (Chapter 5) we study the influence of non-isochronicity on the synchronization frequency in continuous, reaction diffusion systems and discrete networks of oscillators.}, language = {en} } @phdthesis{Li2008, author = {Li, Yanhong}, title = {Phase separation in giant vesicles}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-29138}, school = {Universit{\"a}t Potsdam}, year = {2008}, abstract = {Giant vesicles may contain several spatial compartments formed by phase separation within their enclosed aqueous solution. This phenomenon might be related to molecular crowding, fractionation and protein sorting in cells. To elucidate this process we used two chemically dissimilar polymers, polyethylene glycol (PEG) and dextran, encapsulated in giant vesicles. The dynamics of the phase separation of this polymer solution enclosed in vesicles is studied by concentration quench, i.e. exposing the vesicles to hypertonic solutions. The excess membrane area, produced by dehydration, can either form tubular structures (also known as tethers) or be utilized to perform morphological changes of the vesicle, depending on the interfacial tension between the coexisting phases and those between the membrane and the two phases. Membrane tube formation is coupled to the phase separation process. Apparently, the energy released from the phase separation is utilized to overcome the energy barrier for tube formation. The tubes may be absorbed at the interface to form a 2-demensional structure. The membrane stored in the form of tubes can be retracted under small tension perturbation. Furthermore, a wetting transition, which has been reported only in a few experimental systems, was discovered in this system. By increasing the polymer concentration, the PEG-rich phase changed from complete wetting to partial wetting of the membrane. If sufficient excess membrane area is available in the vesicle where both phases wet the membrane, one of the phases will bud off from the vesicle body, which leads to the separation of the two phases. This wetting-induced budding is governed by the surface energy and modulated by the membrane tension. This was demonstrated by micropipette aspiration experiments on vesicles encapsulating two phases. The budding of one phase can significantly decrease the surface energy by decreasing the contact area between the coexisting phases. The elasticity of the membrane allows it to adjust its tension automatically to balance the pulling force exerted by the interfacial tension of the two liquid phases at the three-phase contact line. The budding of the phase enriched with one polymer may be relevant to the selective protein transportation among lumens by means of vesicle in cells.}, language = {en} } @phdthesis{Allefeld2004, author = {Allefeld, Carsten}, title = {Phase synchronization analysis of event-related brain potentials in language processing}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001873}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {Das Forschungsthema Synchronisation bildet einen Schnittpunkt von Nichtlinearer Dynamik und Neurowissenschaft. So hat zum einen neurobiologische Forschung gezeigt, daß die Synchronisation neuronaler Aktivit{\"a}t einen wesentlichen Aspekt der Funktionsweise des Gehirns darstellt. Zum anderen haben Fortschritte in der physikalischen Theorie zur Entdeckung des Ph{\"a}nomens der Phasensynchronisation gef{\"u}hrt. Eine dadurch motivierte Datenanalysemethode, die Phasensynchronisations-Analyse, ist bereits mit Erfolg auf empirische Daten angewandt worden. Die vorliegende Dissertation kn{\"u}pft an diese konvergierenden Forschungslinien an. Ihren Gegenstand bilden methodische Beitr{\"a}ge zur Fortentwicklung der Phasensynchronisations-Analyse, sowie deren Anwendung auf ereigniskorrelierte Potentiale, eine besonders in den Kognitionswissenschaften wichtige Form von EEG-Daten. Die methodischen Beitr{\"a}ge dieser Arbeit bestehen zum ersten in einer Reihe spezialisierter statistischer Tests auf einen Unterschied der Synchronisationsst{\"a}rke in zwei verschiedenen Zust{\"a}nden eines Systems zweier Oszillatoren. Zweitens wird im Hinblick auf den viel-kanaligen Charakter von EEG-Daten ein Ansatz zur multivariaten Phasensynchronisations-Analyse vorgestellt. Zur empirischen Untersuchung neuronaler Synchronisation wurde ein klassisches Experiment zur Sprachverarbeitung repliziert, in dem der Effekt einer semantischen Verletzung im Satzkontext mit demjenigen der Manipulation physischer Reizeigenschaften (Schriftfarbe) verglichen wird. Hier zeigt die Phasensynchronisations-Analyse eine Verringerung der globalen Synchronisationsst{\"a}rke f{\"u}r die semantische Verletzung sowie eine Verst{\"a}rkung f{\"u}r die physische Manipulation. Im zweiten Fall l{\"a}ßt sich der global beobachtete Synchronisationseffekt mittels der multivariaten Analyse auf die Interaktion zweier symmetrisch gelegener Gehirnareale zur{\"u}ckf{\"u}hren. Die vorgelegten Befunde zeigen, daß die physikalisch motivierte Methode der Phasensynchronisations-Analyse einen wesentlichen Beitrag zur Untersuchung ereigniskorrelierter Potentiale in den Kognitionswissenschaften zu leisten vermag.}, language = {en} } @phdthesis{Ata2016, author = {Ata, Metin}, title = {Phase-space reconstructions of cosmic velocities and the cosmic web}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-403565}, school = {Universit{\"a}t Potsdam}, pages = {xi, 155}, year = {2016}, abstract = {In the current paradigm of cosmology, the formation of large-scale structures is mainly driven by non-radiating dark matter, making up the dominant part of the matter budget of the Universe. Cosmological observations however, rely on the detection of luminous galaxies, which are biased tracers of the underlying dark matter. In this thesis I present cosmological reconstructions of both, the dark matter density field that forms the cosmic web, and cosmic velocities, for which both aspects of my work are delved into, the theoretical formalism and the results of its applications to cosmological simulations and also to a galaxy redshift survey.The foundation of our method is relying on a statistical approach, in which a given galaxy catalogue is interpreted as a biased realization of the underlying dark matter density field. The inference is computationally performed on a mesh grid by sampling from a probability density function, which describes the joint posterior distribution of matter density and the three dimensional velocity field. The statistical background of our method is described in Chapter "Implementation of argo", where the introduction in sampling methods is given, paying special attention to Markov Chain Monte-Carlo techniques. In Chapter "Phase-Space Reconstructions with N-body Simulations", I introduce and implement a novel biasing scheme to relate the galaxy number density to the underlying dark matter, which I decompose into a deterministic part, described by a non-linear and scale-dependent analytic expression, and a stochastic part, by presenting a negative binomial (NB) likelihood function that models deviations from Poissonity. Both bias components had already been studied theoretically, but were so far never tested in a reconstruction algorithm. I test these new contributions againstN-body simulations to quantify improvements and show that, compared to state-of-the-art methods, the stochastic bias is inevitable at wave numbers of k≥0.15h Mpc^-1 in the power spectrum in order to obtain unbiased results from the reconstructions. In the second part of Chapter "Phase-Space Reconstructions with N-body Simulations" I describe and validate our approach to infer the three dimensional cosmic velocity field jointly with the dark matter density. I use linear perturbation theory for the large-scale bulk flows and a dispersion term to model virialized galaxy motions, showing that our method is accurately recovering the real-space positions of the redshift-space distorted galaxies. I analyze the results with the isotropic and also the two-dimensional power spectrum.Finally, in Chapter "Phase-space Reconstructions with Galaxy Redshift Surveys", I show how I combine all findings and results and apply the method to the CMASS (for Constant (stellar) Mass) galaxy catalogue of the Baryon Oscillation Spectroscopic Survey (BOSS). I describe how our method is accounting for the observational selection effects inside our reconstruction algorithm. Also, I demonstrate that the renormalization of the prior distribution function is mandatory to account for higher order contributions in the structure formation model, and finally a redshift-dependent bias factor is theoretically motivated and implemented into our method. The various refinements yield unbiased results of the dark matter until scales of k≤0.2 h Mpc^-1in the power spectrum and isotropize the galaxy catalogue down to distances of r∼20h^-1 Mpc in the correlation function. We further test the results of our cosmic velocity field reconstruction by comparing them to a synthetic mock galaxy catalogue, finding a strong correlation between the mock and the reconstructed velocities. The applications of both, the density field without redshift-space distortions, and the velocity reconstructions, are very broad and can be used for improved analyses of the baryonic acoustic oscillations, environmental studies of the cosmic web, the kinematic Sunyaev-Zel'dovic or integrated Sachs-Wolfe effect.}, language = {en} } @phdthesis{Holler2014, author = {Holler, Markus}, title = {Photon reconstruction for the H.E.S.S. 28 m telescope and analysis of Crab Nebula and galactic centre observations}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-72099}, school = {Universit{\"a}t Potsdam}, year = {2014}, abstract = {In the presented thesis, the most advanced photon reconstruction technique of ground-based γ-ray astronomy is adapted to the H.E.S.S. 28 m telescope. The method is based on a semi-analytical model of electromagnetic particle showers in the atmosphere. The properties of cosmic γ-rays are reconstructed by comparing the camera image of the telescope with the Cherenkov emission that is expected from the shower model. To suppress the dominant background from charged cosmic rays, events are selected based on several criteria. The performance of the analysis is evaluated with simulated events. The method is then applied to two sources that are known to emit γ-rays. The first of these is the Crab Nebula, the standard candle of ground-based γ-ray astronomy. The results of this source confirm the expected performance of the reconstruction method, where the much lower energy threshold compared to H.E.S.S. I is of particular importance. A second analysis is performed on the region around the Galactic Centre. The analysis results emphasise the capabilities of the new telescope to measure γ-rays in an energy range that is interesting for both theoretical and experimental astrophysics. The presented analysis features the lowest energy threshold that has ever been reached in ground-based γ-ray astronomy, opening a new window to the precise measurement of the physical properties of time-variable sources at energies of several tens of GeV.}, language = {en} } @phdthesis{Diercke2021, author = {Diercke, Andrea}, title = {Physical environment of large-scale high-latitude and polar crown filaments}, doi = {10.25932/publishup-51130}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-511301}, school = {Universit{\"a}t Potsdam}, pages = {133}, year = {2021}, abstract = {Filaments are omnipresent features in the solar chromosphere, one of the atmospheric layers of the Sun, which is located above the photosphere, the visible surface of the Sun. They are clouds of plasma reaching from the photosphere to the chromosphere, and even to the outer-most atmospheric layer, the corona. They are stabalized by the magnetic field. If the magnetic field is disturbed, filaments can erupt as coronal mass ejections (CME), releasing plasma into space, which can also hit the Earth. A special type of filaments are polar crown filaments, which form at the interface of the unipolar field of the poles and flux of opposite magnetic polarity, which was transported towards the poles. This flux transport is related to the global dynamo of the Sun and can therefore be analyzed indirectly with polar crown filaments. The main objective of this thesis is to better understand the physical properties and environment of high-latitude and polar crown filaments, which can be approached from two perspectives: (1) analyzing the large-scale properties of high-latitude and polar crown filaments with full-disk Hα observations from the Chromospheric Telescope (ChroTel) and (2) determining the relation of polar crown and high-latitude filaments from the chromosphere to the lower-lying photosphere with high-spatial resolution observations of the Vacuum Tower Telescope (VTT), which reveal the smallest details. The Chromospheric Telescope (ChroTel) is a small 10-cm robotic telescope at Observatorio del Teide on Tenerife (Spain), which observes the entire Sun in Hα, Ca IIK, and He I 10830 {\AA}. We present a new calibration method that includes limb-darkening correction, removal of non-uniform filter transmission, and determination of He I Doppler velocities. Chromospheric full-disk filtergrams are often obtained with Lyot filters, which may display non-uniform transmission causing large-scale intensity variations across the solar disk. Removal of a 2D symmetric limb-darkening function from full-disk images results in a flat background. However, transmission artifacts remain and are even more distinct in these contrast-enhanced images. Zernike polynomials are uniquely appropriate to fit these large-scale intensity variations of the background. The Zernike coefficients show a distinct temporal evolution for ChroTel data, which is likely related to the telescope's alt-azimuth mount that introduces image rotation. In addition, applying this calibration to sets of seven filtergrams that cover the He I triplet facilitates determining chromospheric Doppler velocities. To validate the method, we use three datasets with varying levels of solar activity. The Doppler velocities are benchmarked with respect to co-temporal high-resolution spectroscopic data of the GREGOR Infrared Spectrograph (GRIS). Furthermore, this technique can be applied to ChroTel Hα and Ca IIK data. The calibration method for ChroTel filtergrams can be easily adapted to other full-disk data exhibiting unwanted large-scale variations. The spectral region of the He I triplet is a primary choice for high-resolution near-infrared spectropolarimetry. Here, the improved calibration of ChroTel data will provide valuable context data. Polar crown filaments form above the polarity inversion line between the old magnetic flux of the previous cycle and the new magnetic flux of the current cycle. Studying their appearance and their properties can lead to a better understanding of the solar cycle. We use full-disk data of the ChroTel at Observatorio del Teide, Tenerife, Spain, which were taken in three different chromospheric absorption lines (Hα 6563 {\AA}, Ca IIK 3933 {\AA}, and He I 10830 {\AA}), and we create synoptic maps. In addition, the spectroscopic He I data allow us to compute Doppler velocities and to create synoptic Doppler maps. ChroTel data cover the rising and decaying phase of Solar Cycle 24 on about 1000 days between 2012 and 2018. Based on these data, we automatically extract polar crown filaments with image-processing tools and study their properties. We compare contrast maps of polar crown filaments with those of quiet-Sun filaments. Furthermore, we present a super-synoptic map summarizing the entire ChroTel database. In summary, we provide statistical properties, i.e. number and location of filaments, area, and tilt angle for both the maximum and declining phase of Solar Cycle 24. This demonstrates that ChroTel provides a promising dataset to study the solar cycle. The cyclic behavior of polar crown filaments can be monitored by regular full-disk Hα observations. ChroTel provides such regular observations of the Sun in three chromospheric wavelengths. To analyze the cyclic behavior and the statistical properties of polar crown filaments, we have to extract the filaments from the images. Manual extraction is tedious, and extraction with morphological image processing tools produces a large number of false positive detections and the manual extraction of these takes too much time. Automatic object detection and extraction in a reliable manner allows us to process more data in a shorter time. We will present an overview of the ChroTel database and a proof of concept of a machine learning application, which allows us a unified extraction of, for example, filaments from ChroTel data. The chromospheric Hα spectral line dominates the spectrum of the Sun and other stars. In the stellar regime, this spectral line is already used as a powerful tracer of magnetic activity. For the Sun, other tracers are typically used to monitor solar activity. Nonetheless, the Sun is observed constantly in Hα with globally distributed ground-based full-disk imagers. The aim of this study is to introduce Hα as a tracer of solar activity and compare it to other established indicators. We discuss the newly created imaging Hα excess in the perspective of possible application for modelling of stellar atmospheres. In particular, we try to determine how constant is the mean intensity of the Hα excess and number density of low-activity regions between solar maximum and minimum. Furthermore, we investigate whether the active region coverage fraction or the changing emission strength in the active regions dominates time variability in solar Hα observations. We use ChroTel observations of full-disk Hα filtergrams and morphological image processing techniques to extract the positive and negative imaging Hα excess, for bright features (plage regions) and dark absorption features (filaments and sunspots), respectively. We describe the evolution of the Hα excess during Solar Cycle 24 and compare it to other well established tracers: the relative sunspot number, the F10.7 cm radio flux, and the Mg II index. Moreover, we discuss possible applications of the Hα excess for stellar activity diagnostics and the contamination of exoplanet transmission spectra. The positive and negative Hα excess follow the behavior of the solar activity over the course of the cycle. Thereby, positive Hα excess is closely correlated to the chromospheric Mg II index. On the other hand, the negative Hα excess, created from dark features like filaments and sunspots, is introduced as a tracer of solar activity for the first time. We investigated the mean intensity distribution for active regions for solar minimum and maximum and found that the shape of both distributions is very similar but with different amplitudes. This might be related with the relatively stable coronal temperature component during the solar cycle. Furthermore, we found that the coverage fraction of Hα excess and the Hα excess of bright features are strongly correlated, which will influence modelling of stellar and exoplanet atmospheres. High-resolution observations of polar crown and high-latitude filaments are scarce. We present a unique sample of such filaments observed in high-resolution Hα narrow-band filtergrams and broad-band images, which were obtained with a new fast camera system at the VTT. ChroTel provided full-disk context observations in Hα, Ca IIK, and He I 10830 {\AA}. The Helioseismic and Magnetic Imager (HMI) and the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) provided line-of-sight magnetograms and ultraviolet (UV) 1700 {\AA} filtergrams, respectively. We study filigree in the vicinity of polar crown and high-latitude filaments and relate their locations to magnetic concentrations at the filaments' footpoints. Bright points are a well studied phenomenon in the photosphere at low latitudes, but they were not yet studied in the quiet network close to the poles. We examine size, area, and eccentricity of bright points and find that their morphology is very similar to their counterparts at lower latitudes, but their sizes and areas are larger. Bright points at the footpoints of polar crown filaments are preferentially located at stronger magnetic flux concentrations, which are related to bright regions at the border of supergranules as observed in UV filtergrams. Examining the evolution of bright points on three consecutive days reveals that their amount increases while the filament decays, which indicates they impact the equilibrium of the cool plasma contained in filaments.}, language = {en} } @phdthesis{Mitzscherling2015, author = {Mitzscherling, Steffen}, title = {Polyelectrolyte multilayers for plasmonics and picosecond ultrasonics}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-80833}, school = {Universit{\"a}t Potsdam}, pages = {93}, year = {2015}, abstract = {This thesis investigates the application of polyelectrolyte multilayers in plasmonics and picosecond acoustics. The observed samples were fabricated by the spin-assisted layer-by-layer deposition technique that allowed a precise tuning of layer thickness in the range of few nanometers. The first field of interest deals with the interaction of light-induced localized surface plasmons (LSP) of rod-shaped gold nanoparticles with the particles' environment. The environment consists of an air phase and a phase of polyelectrolytes, whose ratio affects the spectral position of the LSP resonance. Measured UV-VIS spectra showed the shift of the LSP absorption peak as a function of the cover layer thickness of the particles. The data are modeled using an average dielectric function instead of the dielectric functions of air and polyelectrolytes. In addition using a measured dielectric function of the gold nanoparticles, the position of the LSP absorption peak could be simulated with good agreement to the data. The analytic model helps to understand the optical properties of metal nanoparticles in an inhomogeneous environment. The second part of this work discusses the applicability of PAzo/PAH and dye-doped PSS/PAH polyelectrolyte multilayers as transducers to generate hypersound pulses. The generated strain pulses were detected by time-domain Brillouin scattering (TDBS) using a pump-probe laser setup. Transducer layers made of polyelectrolytes were compared qualitatively to common aluminum transducers in terms of measured TDBS signal amplitude, degradation due to laser excitation, and sample preparation. The measurements proved that fast and easy prepared polyelectrolyte transducers provided stronger TDBS signals than the aluminum transducer. AFM topography measurements showed a degradation of the polyelectrolyte structures, especially for the PAzo/PAH sample. To quantify the induced strain, optical barriers were introduced to separate the transducer material from the medium of the hypersound propagation. Difficulties in the sample preparation prohibited a reliable quantification. But the experiments showed that a coating with transparent polyelectrolytes increases the efficiency of aluminum transducers and modifies the excited phonon distribution. The adoption of polyelectrolytes to the scientific field of picosecond acoustics enables a cheap and fast fabrication of transducer layers on most surfaces. In contrast to aluminum layers the polyelectrolytes are transparent over a wide spectral range. Thus, the strain modulation can be probed from surface and back.}, language = {en} } @phdthesis{Breidenich2000, author = {Breidenich, Markus}, title = {Polymers at membranes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000284}, school = {Universit{\"a}t Potsdam}, year = {2000}, abstract = {Die Oberfl{\"a}che biologischer Zellen besteht aus einer Lipidmembran und einer Vielzahl von Proteinen und Polymeren, die in die Membran eingebaut sind. Die Beeinflussung der Membran durch Polymere, die mit einem Ende an der Membran verankert sind, wird im Rahmen dieser Arbeit anhand eines vereinfachten biomimetischen Systems studiert. Der entropische Druck, den das Polymer durch St{\"o}ße auf die Membran aus{\"u}bt, f{\"u}hrt dazu, dass sich die Membran vom Polymer weg kr{\"u}mmt. Die resultierende Membranform ist ein Kegel in der N{\"a}he des Ankers und ein Katenoid in grossem Abstand vom Ankerpunkt. Monte Carlo-Simulationen best{\"a}tigen die perturbativ berechneten Resultate. Bei Hinzunahme eines attraktiven Potentials zwischen Polymer und Membran verringert sich die urspr{\"u}nglich vom Polymer induzierte Kr{\"u}mmung. Im Limes starker Adsorption, in welchem das Polymer ganz auf der Membranoberfl{\"a}che lokalisiert ist, verschwindet der Polymerdruck und die durch diesen induzierte Kr{\"u}mmung der Membran. Falls das Polymer nicht direkt auf der Membranoberfl{\"a}che verankert ist, sondern in endlichem Ankerabstand, biegt sich die Membran im adsorbierten Fall zum Polymer hin. Im letzten Teil der Arbeit werden nicht verankerte Polymere in L{\"o}sung betrachtet. Untersucht wird der Einfluss einer solchen Polymerl{\"o}sung auf die Kr{\"u}mmung der Membran. Im Grenzfall einer rein sterischen, repulsiven Wechselwirkung zwischen Polymeren und Membran biegt sich diese, im Gegensatz zur verankerten Situation, zur L{\"o}sung hin. Bei zunehmender Attraktion biegt sich die Membran im Limes starker Adsorption der Polymere von der L{\"o}sung weg.}, language = {en} } @phdthesis{Patra2013, author = {Patra, Pintu}, title = {Population dynamics of bacterial persistence}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-69253}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {The life of microorganisms is characterized by two main tasks, rapid growth under conditions permitting growth and survival under stressful conditions. The environments, in which microorganisms dwell, vary in space and time. The microorganisms innovate diverse strategies to readily adapt to the regularly fluctuating environments. Phenotypic heterogeneity is one such strategy, where an isogenic population splits into subpopulations that respond differently under identical environments. Bacterial persistence is a prime example of such phenotypic heterogeneity, whereby a population survives under an antibiotic attack, by keeping a fraction of population in a drug tolerant state, the persister state. Specifically, persister cells grow more slowly than normal cells under growth conditions, but survive longer under stress conditions such as the antibiotic administrations. Bacterial persistence is identified experimentally by examining the population survival upon an antibiotic treatment and the population resuscitation in a growth medium. The underlying population dynamics is explained with a two state model for reversible phenotype switching in a cell within the population. We study this existing model with a new theoretical approach and present analytical expressions for the time scale observed in population growth and resuscitation, that can be easily used to extract underlying model parameters of bacterial persistence. In addition, we recapitulate previously known results on the evolution of such structured population under periodically fluctuating environment using our simple approximation method. Using our analysis, we determine model parameters for Staphylococcus aureus population under several antibiotics and interpret the outcome of cross-drug treatment. Next, we consider the expansion of a population exhibiting phenotype switching in a spatially structured environment consisting of two growth permitting patches separated by an antibiotic patch. The dynamic interplay of growth, death and migration of cells in different patches leads to distinct regimes in population propagation speed as a function of migration rate. We map out the region in parameter space of phenotype switching and migration rate to observe the condition under which persistence is beneficial. Furthermore, we present an extended model that allows mutation from the two phenotypic states to a resistant state. We find that the presence of persister cells may enhance the probability of resistant mutation in a population. Using this model, we explain the experimental results showing the emergence of antibiotic resistance in a Staphylococcus aureus population upon tobramycin treatment. In summary, we identify several roles of bacterial persistence, such as help in spatial expansion, development of multidrug tolerance and emergence of antibiotic resistance. Our study provides a theoretical perspective on the dynamics of bacterial persistence in different environmental conditions. These results can be utilized to design further experiments, and to develop novel strategies to eradicate persistent infections.}, language = {en} } @phdthesis{Schreck2014, author = {Schreck, Simon Frederik}, title = {Potential energy surfaces, femtosecond dynamics and nonlinear X-Ray-Matter interactions from resonant inelastic soft x-Ray scattering}, pages = {164}, year = {2014}, language = {en} } @phdthesis{Sborikas2015, author = {Sborikas, Martynas}, title = {Preparation and characterization of acoustic electret and electromechanical properties of polypropylene ferroelectrets}, pages = {129}, year = {2015}, language = {en} } @phdthesis{Xue2004, author = {X{\"u}, Chenggang}, title = {Preparation and characterization of vapour deposited films based on substituted 2,5-diphenyl-1,3,4-oxadiazole derivatives}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001358}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {Diese Arbeit befasst sich mit dem Einfluss der molekularen Struktur von 2,5-Diphenyl-1,3,4-Oxadiazol-Derivaten auf die Pr{\"a}parierung d{\"u}nner Schichten mittels Vakuumdeposition. D{\"u}nne Schichten von diesen Substanzen wurden auf Si/SiO2 aufgedampft und ihre Struktur systematisch mittels XSR, AFM und IR untersucht. Das Ergebnis zeigt, dass die Schichtstrukturen offenbar von Substratetemperatur (Ts) abh{\"a}ngig sind. Im untersuchten Ts-Bereich bilden etherverbr{\"u}ckte Oxadiazole immer geordnete Schichten und die Schichtperiodicit{\"a}t h{\"a}ngt linear von der L{\"a}ngen der aliphatischen Ketten, w{\"a}hrend sich bei den amidverbr{\"u}ckten Oxadiazolen nur bei hohen Ts geordnete Schichten bilden k{\"o}nnen. Diese Unterschiede sind auf die intermolekularen Wasserstoffbr{\"u}cken zur{\"u}ckzuf{\"u}hren. Der Tilt-Winkel der Molek{\"u}le ist durch die Wechselwirkung zwischen dem aromatischen Teil bestimmt. Die Wechselwirkungen zwischen den Kopfgruppen k{\"o}nnen durch Tempern abgeschw{\"a}cht werden und f{\"u}hren zur Strukturumwandlung von Schichten, die auf etherverbr{\"u}ckten Oxadiazolen basieren. Alle Schichten von etherverbr{\"u}ckten Oxadiazolen haben Doppelschicht-Struktur, aber amidverbr{\"u}ckte Oxadiazole bilden nur Doppelschicht-Strukturen, wenn die Molek{\"u}le eine Kopfgruppe besitzen.}, language = {en} } @phdthesis{Fang2010, author = {Fang, Peng}, title = {Preparation and investigation of polymer-foam films and polymer-layer systems for ferroelectrets}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-48412}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {Piezoelectric materials are very useful for applications in sensors and actuators. In addition to traditional ferroelectric ceramics and ferroelectric polymers, ferroelectrets have recently become a new group of piezoelectrics. Ferroelectrets are functional polymer systems for electromechanical transduction, with elastically heterogeneous cellular structures and internal quasi-permanent dipole moments. The piezoelectricity of ferroelectrets stems from linear changes of the dipole moments in response to external mechanical or electrical stress. Over the past two decades, polypropylene (PP) foams have been investigated with the aim of ferroelectret applications, and some products are already on the market. PP-foam ferroelectrets may exhibit piezoelectric d33 coefficients of 600 pC/N and more. Their operating temperature can, however, not be much higher than 60 °C. Recently developed polyethylene-terephthalate (PET) and cyclo-olefin copolymer (COC) foam ferroelectrets show slightly better d33 thermal stabilities, but usually at the price of smaller d33 values. Therefore, the main aim of this work is the development of new thermally stable ferroelectrets with appreciable piezoelectricity. Physical foaming is a promising technique for generating polymer foams from solid films without any pollution or impurity. Supercritical carbon dioxide (CO2) or nitrogen (N2) are usually employed as foaming agents due to their good solubility in several polymers. Polyethylene propylene (PEN) is a polyester with slightly better properties than PET. A "voiding + inflation + stretching" process has been specifically developed to prepare PEN foams. Solid PEN films are saturated with supercritical CO2 at high pressure and then thermally voided at high temperatures. Controlled inflation (Gas-Diffusion Expansion or GDE) is applied in order to adjust the void dimensions. Additional biaxial stretching decreases the void heights, since it is known lens-shaped voids lead to lower elastic moduli and therefore also to stronger piezoelectricity. Both, contact and corona charging are suitable for the electric charging of PEN foams. The light emission from the dielectric-barrier discharges (DBDs) can be clearly observed. Corona charging in a gas of high dielectric strength such as sulfur hexafluoride (SF6) results in higher gas-breakdown strength in the voids and therefore increases the piezoelectricity. PEN foams can exhibit piezoelectric d33 coefficients as high as 500 pC/N. Dielectric-resonance spectra show elastic moduli c33 of 1 - 12 MPa, anti-resonance frequencies of 0.2 - 0.8 MHz, and electromechanical coupling factors of 0.016 - 0.069. As expected, it is found that PEN foams show better thermal stability than PP and PET. Samples charged at room temperature can be utilized up to 80 - 100 °C. Annealing after charging or charging at elevated temperatures may improve thermal stabilities. Samples charged at suitable elevated temperatures show working temperatures as high as 110 - 120 °C. Acoustic measurements at frequencies of 2 Hz - 20 kHz show that PEN foams can be well applied in this frequency range. Fluorinated ethylene-propylene (FEP) copolymers are fluoropolymers with very good physical, chemical and electrical properties. The charge-storage ability of solid FEP films can be significantly improved by adding boron nitride (BN) filler particles. FEP foams are prepared by means of a one-step procedure consisting of CO2 saturation and subsequent in-situ high-temperature voiding. Piezoelectric d33 coefficients up to 40 pC/N are measured on such FEP foams. Mechanical fatigue tests show that the as-prepared PEN and FEP foams are mechanically stable for long periods of time. Although polymer-foam ferroelectrets have a high application potential, their piezoelectric properties strongly depend on the cellular morphology, i.e. on size, shape, and distribution of the voids. On the other hand, controlled preparation of optimized cellular structures is still a technical challenge. Consequently, new ferroelectrets based on polymer-layer system (sandwiches) have been prepared from FEP. By sandwiching an FEP mesh between two solid FEP films and fusing the polymer system with a laser beam, a well-designed uniform macroscopic cellular structure can be formed. Dielectric resonance spectroscopy reveals piezoelectric d33 coefficients as high as 350 pC/N, elastic moduli of about 0.3 MPa, anti-resonance frequencies of about 30 kHz, and electromechanical coupling factors of about 0.05. Samples charged at elevated temperatures show better thermal stabilities than those charged at room temperature, and the higher the charging temperature, the better is the stability. After proper charging at 140 °C, the working temperatures can be as high as 110 - 120 °C. Acoustic measurements at frequencies of 200 Hz - 20 kHz indicate that the FEP layer systems are suitable for applications at least in this range.}, language = {en} } @phdthesis{Jappsen2005, author = {Jappsen, Anne-Katharina}, title = {Present and early star formation : a study on rotational and thermal properties}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-7591}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {We investigate the rotational and thermal properties of star-forming molecular clouds using hydrodynamic simulations. Stars form from molecular cloud cores by gravoturbulent fragmentation. Understanding the angular momentum and the thermal evolution of cloud cores thus plays a fundamental role in completing the theoretical picture of star formation. This is true not only for current star formation as observed in regions like the Orion nebula or the ρ-Ophiuchi molecular cloud but also for the formation of stars of the first or second generation in the universe. In this thesis we show how the angular momentum of prestellar and protostellar cores evolves and compare our results with observed quantities. The specific angular momentum of prestellar cores in our models agree remarkably well with observations of cloud cores. Some prestellar cores go into collapse to build up stars and stellar systems. The resulting protostellar objects have specific angular momenta that fall into the range of observed binaries. We find that collapse induced by gravoturbulent fragmentation is accompanied by a substantial loss of specific angular momentum. This eases the "angular momentum problem" in star formation even in the absence of magnetic fields. The distribution of stellar masses at birth (the initial mass function, IMF) is another aspect that any theory of star formation must explain. We focus on the influence of the thermodynamic properties of star-forming gas and address this issue by studying the effects of a piecewise polytropic equation of state on the formation of stellar clusters. We increase the polytropic exponent γ from a value below unity to a value above unity at a certain critical density. The change of the thermodynamic state at the critical density selects a characteristic mass scale for fragmentation, which we relate to the peak of the IMF observed in the solar neighborhood. Our investigation generally supports the idea that the distribution of stellar masses depends mainly on the thermodynamic state of the gas. A common assumption is that the chemical evolution of the star-forming gas can be decoupled from its dynamical evolution, with the former never affecting the latter. Although justified in some circumstances, this assumption is not true in every case. In particular, in low-metallicity gas the timescales for reaching the chemical equilibrium are comparable or larger than the dynamical timescales. In this thesis we take a first approach to combine a chemical network with a hydrodynamical code in order to study the influence of low levels of metal enrichment on the cooling and collapse of ionized gas in small protogalactic halos. Our initial conditions represent protogalaxies forming within a fossil HII region -- a previously ionized HII region which has not yet had time to cool and recombine. We show that in these regions, H2 is the dominant and most effective coolant, and that it is the amount of H2 formed that controls whether or not the gas can collapse and form stars. For metallicities Z <= 10-3 Zsun, metal line cooling alters the density and temperature evolution of the gas by less than 1\% compared to the metal-free case at densities below 1 cm-3 and temperatures above 2000 K. We also find that an external ultraviolet background delays or suppresses the cooling and collapse of the gas regardless of whether it is metal-enriched or not. Finally, we study the dependence of this process on redshift and mass of the dark matter halo.}, subject = {Sternentstehung}, language = {en} } @phdthesis{Jay2020, author = {Jay, Raphael Martin}, title = {Principles of charge distribution and separation}, school = {Universit{\"a}t Potsdam}, pages = {xi, 162}, year = {2020}, abstract = {The electronic charge distributions of transition metal complexes fundamentally determine their chemical reactivity. Experimental access to the local valence electronic structure is therefore crucial in order to determine how frontier orbitals are delocalized between different atomic sites and electronic charge is spread throughout the transition metal complex. To that end, X-ray spectroscopies are employed in this thesis to study a series of solution-phase iron complexes with respect to the response of their local electronic charge distributions to different external influences. Using resonant inelastic X-ray scattering (RIXS) and X-ray absorption spectroscopy (XAS) at the iron L-edge, changes in local charge densities are investigated at the iron center depending on different ligand cages as well as solvent environments. A varying degree of charge delocalization from the metal center onto the ligands is observed, which is governed by the capabilities of the ligands to accept charge density into their unoccupied orbitals. Specific solvents are furthermore shown to amplify this process. Solvent molecules of strong Lewis-acids withdraw charge from the ligand allowing in turn for more metal charge to be delocalized onto the ligand. The resulting local charge deficiencies at the metal center are, however, counteracted by competing electron-donation channels from the ligand towards the iron, which are additionally revealed. This is interpreted as a compensating effect which strives to maintain local charge densities at the iron center. This mechanism of charge density preservation is found to be of general nature. Using time-resolved RIXS and XAS at the iron L-edge, an analogous interplay of electron donation and back-donation channels is also revealed for the case of charge-transfer excited states. In such transient configurations, the electronic occupation of iron-centered frontier orbitals has been altered by an optical excitation. Changes in local charge densities that are expected to follow an increased or decreased population of iron-centered orbitals are, however, again counteracted. By scaling the degree of electron donation from the ligand onto the metal, local charge densities at the iron center can be efficiently maintained. Since charge-transfer excitations, however, often constitute the initial step in many electron transfer processes, these findings challenge common notions of charge-separation in transition metal dyes.}, language = {en} } @phdthesis{Kurpiers2019, author = {Kurpiers, Jona}, title = {Probing the pathways of free charge generation and recombination in organic solar cells}, doi = {10.25932/publishup-42909}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-429099}, school = {Universit{\"a}t Potsdam}, pages = {VI, 128, xxi}, year = {2019}, abstract = {Organic semiconductors are a promising class of materials. Their special properties are the particularly good absorption, low weight and easy processing into thin films. Therefore, intense research has been devoted to the realization of thin film organic solar cells (OPVs). Because of the low dielectric constant of organic semiconductors, primary excitations (excitons) are strongly bound and a type II heterojunction needs to be introduced to split these excitations into free charges. Therefore, most organic solar cells consist of at least an electron donor and electron acceptor material. For such donor acceptor systems mainly three states are relevant; the photoexcited exciton on the donor or acceptor material, the charge transfer state at the donor-acceptor interface and the charge separated state of a free electron and hole. The interplay between these states significantly determines the efficiency of organic solar cells. Due to the high absorption and the low charge carrier mobilities, the active layers are usually thin but also, exciton dissociation and free charge formation proceeds rapidely, which makes the study of carrier dynamics highly challenging. Therefore, the focus of this work was first to install new experimental setups for the investigation of the charge carrier dynamics in complete devices with superior sensitivity and time resolution and, second, to apply these methods to prototypical photovoltaic materials to address specific questions in the field of organic and hybrid photovoltaics. Regarding the first goal, a new setup combining transient absorption spectroscopy (TAS) and time delayed collection field (TDCF) was designed and installed in Potsdam. An important part of this work concerned the improvement of the electronic components with respect to time resolution and sensitivity. To this end, a highly sensitive amplifier for driving and detecting the device response in TDCF was developed. This system was then applied to selected organic and hybrid model systems with a particular focus on the understanding of the loss mechanisms that limit the fill factor and short circuit current of organic solar cells. The first model system was a hybrid photovoltaic material comprising inorganic quantum dots decorated with organic ligands. Measurements with TDCF revealed fast free carrier recombination, in part assisted by traps, while bias-assisted charge extraction measurements showed high mobility. The measured parameters then served as input for a successful description of the device performance with an analytical model. With a further improvement of the instrumentation, a second topic was the detailed analysis of non-geminate recombination in a disordered polymer:fullerene blend where an important question was the effect of disorder on the carrier dynamics. The measurements revealed that early time highly mobile charges undergo fast non-geminate recombination at the contacts, causing an apparent field dependence of free charge generation in TDCF experiments if not conducted properly. On the other hand, recombination the later time scale was determined by dispersive recombination in the bulk of the active layer, showing the characteristics of carrier dynamics in an exponential density of state distribution. Importantly, the comparison with steady state recombination data suggested a very weak impact of non-thermalized carriers on the recombination properties of the solar cells under application relevant illumination conditions. Finally, temperature and field dependent studies of free charge generation were performed on three donor-acceptor combinations, with two donor polymers of the same material family blended with two different fullerene acceptor molecules. These particular material combinations were chosen to analyze the influence of the energetic and morphology of the blend on the efficiency of charge generation. To this end, activation energies for photocurrent generation were accurately determined for a wide range of excitation energies. The results prove that the formation of free charge is via thermalized charge transfer states and does not involve hot exciton splitting. Surprisingly, activation energies were of the order of thermal energy at room temperature. This led to the important conclusion that organic solar cells perform well not because of predominate high energy pathways but because the thermalized CT states are weakly bound. In addition, a model is introduced to interconnect the dissociation efficiency of the charge transfer state with its recombination observable with photoluminescence, which rules out a previously proposed two-pool model for free charge formation and recombination. Finally, based on the results, proposals for the further development of organic solar cells are formulated.}, language = {en} } @phdthesis{Lever2022, author = {Lever, Fabiano}, title = {Probing the ultrafast dynamics of 2-Thiouracil with soft x-rays}, doi = {10.25932/publishup-55523}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-555230}, school = {Universit{\"a}t Potsdam}, pages = {129}, year = {2022}, abstract = {Understanding the changes that follow UV-excitation in thionucleobases is of great importance for the study of light-induced DNA lesions and, in a broader context, for their applications in medicine and biochemistry. Their ultrafast photophysical reactions can alter the chemical structure of DNA - leading to damages to the genetic code - as proven by the increased skin cancer risk observed for patients treated with thiouracil for its immunosuppressant properties. In this thesis, I present four research papers that result from an investigation of the ultrafast dynamics of 2-thiouracil by means of ultrafast x-ray probing combined with electron spectroscopy. A molecular jet in the gas phase is excited with a uv pulse and then ionized with x-ray radiation from a Free Electron Laser. The kinetic energy of the emitted electrons is measured in a magnetic bottle spectrometer. The spectra of the measured photo and Auger electrons are used to derive a picture of the changes in the geometrical and electronic configurations. The results allow us to look at the dynamical processes from a new perspective, thanks to the element- and site- sensitivity of x-rays. The custom-built URSA-PQ apparatus used in the experiment is described. It has been commissioned and used at the FL24 beamline of the FLASH2 FEL, showing an electron kinetic energy resolution of ∆E/E ~ 40 and a pump-probe timing resolution of 190 f s. X-ray only photoelectron and Auger spectra of 2-thiouracil are extracted from the data and used as reference. Photoelectrons following the formation a 2p core hole are identified, as well as resonant and non-resonant Auger electrons. At the L 1 edge, Coster-Kronig decay is observed from the 2s core hole. The UV-induced changes in the 2p photoline allow the study the electronic-state dynamics. With the use of an Excited-State Chemical Shift (ESCS) model, we observe a ultrafast ground-state relaxation within 250 f s. Furthermore, an oscillation with a 250 f s period is observed in the 2p binding energy, showing a coherent population exchange between electronic states. Auger electrons from the 2p core hole are analyzed and used to deduce a ultrafast C -S bond expansion on a sub 100 f s scale. A simple Coulomb-model, coupled to quantum chemical calculations, can be used to infer the geometrical changes in the molecular structure.}, language = {en} } @phdthesis{HerreroAlonso2023, author = {Herrero Alonso, Yohana}, title = {Properties of high-redshift galaxies in different environments}, doi = {10.25932/publishup-61328}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-613288}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 114}, year = {2023}, abstract = {The Lyman-𝛼 (Ly𝛼) line commonly assists in the detection of high-redshift galaxies, the so-called Lyman-alpha emitters (LAEs). LAEs are useful tools to study the baryonic matter distribution of the high-redshift universe. Exploring their spatial distribution not only reveals the large-scale structure of the universe at early epochs, but it also provides an insight into the early formation and evolution of the galaxies we observe today. Because dark matter halos (DMHs) serve as sites of galaxy formation, the LAE distribution also traces that of the underlying dark matter. However, the details of this relation and their co-evolution over time remain unclear. Moreover, theoretical studies predict that the spatial distribution of LAEs also impacts their own circumgalactic medium (CGM) by influencing their extended Ly𝛼 gaseous halos (LAHs), whose origin is still under investigation. In this thesis, I make several contributions to improve the knowledge on these fields using samples of LAEs observed with the Multi Unit Spectroscopic Explorer (MUSE) at redshifts of 3 < 𝑧 < 6.}, language = {en} } @phdthesis{Schmeja2006, author = {Schmeja, Stefan}, title = {Properties of turbulent star-forming clusters : models versus observations}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-7364}, school = {Universit{\"a}t Potsdam}, year = {2006}, abstract = {Stars are born in turbulent molecular clouds that fragment and collapse under the influence of their own gravity, forming a cluster of hundred or more stars. The star formation process is controlled by the interplay between supersonic turbulence and gravity. In this work, the properties of stellar clusters created by numerical simulations of gravoturbulent fragmentation are compared to those from observations. This includes the analysis of properties of individual protostars as well as statistical properties of the entire cluster. It is demonstrated that protostellar mass accretion is a highly dynamical and time-variant process. The peak accretion rate is reached shortly after the formation of the protostellar core. It is about one order of magnitude higher than the constant accretion rate predicted by the collapse of a classical singular isothermal sphere, in agreement with the observations. For a more reasonable comparison, the model accretion rates are converted to the observables bolometric temperature, bolometric luminosity, and envelope mass. The accretion rates from the simulations are used as input for an evolutionary scheme. The resulting distribution in the Tbol-Lbol-Menv parameter space is then compared to observational data by means of a 3D Kolmogorov-Smirnov test. The highest probability found that the distributions of model tracks and observational data points are drawn from the same population is 70\%. The ratios of objects belonging to different evolutionary classes in observed star-forming clusters are compared to the temporal evolution of the gravoturbulent models in order to estimate the evolutionary stage of a cluster. While it is difficult to estimate absolute ages, the realtive numbers of young stars reveal the evolutionary status of a cluster with respect to other clusters. The sequence shows Serpens as the youngest and IC 348 as the most evolved of the investigated clusters. Finally the structures of young star clusters are investigated by applying different statistical methods like the normalised mean correlation length and the minimum spanning tree technique and by a newly defined measure for the cluster elongation. The clustering parameters of the model clusters correspond in many cases well to those from observed ones. The temporal evolution of the clustering parameters shows that the star cluster builds up from several subclusters and evolves to a more centrally concentrated cluster, while the cluster expands slower than new stars are formed.}, subject = {Sternentstehung}, language = {en} } @phdthesis{Rudorf2014, author = {Rudorf, Sophia}, title = {Protein Synthesis by Ribosomes}, pages = {xii, 145}, year = {2014}, language = {en} } @phdthesis{Sommerfeld2015, author = {Sommerfeld, Anja}, title = {Quantification of internal variability of the arctic summer atmosphere based on HIRHAM5 ensemble simulations}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-85347}, school = {Universit{\"a}t Potsdam}, pages = {VII, 110, vi}, year = {2015}, abstract = {The non-linear behaviour of the atmospheric dynamics is not well understood and makes the evaluation and usage of regional climate models (RCMs) difficult. Due to these non-linearities, chaos and internal variability (IV) within the RCMs are induced, leading to a sensitivity of RCMs to their initial conditions (IC). The IV is the ability of RCMs to realise different solutions of simulations that differ in their IC, but have the same lower and lateral boundary conditions (LBC), hence can be defined as the across-member spread between the ensemble members. For the investigation of the IV and the dynamical and diabatic contributions generating the IV four ensembles of RCM simulations are performed with the atmospheric regional model HIRHAM5. The integration area is the Arctic and each ensemble consists of 20 members. The ensembles cover the time period from July to September for the years 2006, 2007, 2009 and 2012. The ensemble members have the same LBC and differ in their IC only. The different IC are arranged by an initialisation time that shifts successively by six hours. Within each ensemble the first simulation starts on 1st July at 00 UTC and the last simulation starts on 5th July at 18 UTC and each simulation runs until 30th September. The analysed time period ranges from 6th July to 30th September, the time period that is covered by all ensemble members. The model runs without any nudging to allow a free development of each simulation to get the full internal variability within the HIRHAM5. As a measure of the model generated IV, the across-member standard deviation and the across-member variance is used and the dynamical and diabatic processes influencing the IV are estimated by applying a diagnostic budget study for the IV tendency of the potential temperature developed by Nikiema and Laprise [2010] and Nikiema and Laprise [2011]. The diagnostic budget study is based on the first law of thermodynamics for potential temperature and the mass-continuity equation. The resulting budget equation reveals seven contributions to the potential temperature IV tendency. As a first study, this work analyses the IV within the HIRHAM5. Therefore, atmospheric circulation parameters and the potential temperature for all four ensemble years are investigated. Similar to previous studies, the IV fluctuates strongly in time. Further, due to the fact that all ensemble members are forced with the same LBC, the IV depends on the vertical level within the troposphere, with high values in the lower troposphere and at 500 hPa and low values in the upper troposphere and at the surface. By the same reason, the spatial distribution shows low values of IV at the boundaries of the model domain. The diagnostic budget study for the IV tendency of potential temperature reveals that the seven contributions fluctuate in time like the IV. However, the individual terms reach different absolute magnitudes. The budget study identifies the horizontal and vertical 'baroclinic' terms as the main contributors to the IV tendency, with the horizontal 'baroclinic' term producing and the vertical 'baroclinic' term reducing the IV. The other terms fluctuate around zero, because they are small in general or are balanced due to the domain average. The comparison of the results obtained for the four different ensembles (summers 2006, 2007, 2009 and 2012) reveals that on average the findings for each ensemble are quite similar concerning the magnitude and the general pattern of IV and its contributions. However, near the surface a weaker IV is produced with decreasing sea ice extent. This is caused by a smaller impact of the horizontal 'baroclinic' term over some regions and by the changing diabatic processes, particularly a more intense reducing tendency of the IV due to condensative heating. However, it has to be emphasised that the behaviour of the IV and its dynamical and diabatic contributions are influenced mainly by complex atmospheric feedbacks and large-scale processes and not by the sea ice distribution. Additionally, a comparison with a second RCM covering the Arctic and using the same LBCs and IC is performed. For both models very similar results concerning the IV and its dynamical and diabatic contributions are found. Hence, this investigation leads to the conclusion that the IV is a natural phenomenon and is independent from the applied RCM.}, language = {en} } @phdthesis{Kotha2018, author = {Kotha, Sreeram Reddy}, title = {Quantification of uncertainties in seismic ground-motion prediction}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-415743}, school = {Universit{\"a}t Potsdam}, pages = {xii, 101}, year = {2018}, abstract = {The purpose of Probabilistic Seismic Hazard Assessment (PSHA) at a construction site is to provide the engineers with a probabilistic estimate of ground-motion level that could be equaled or exceeded at least once in the structure's design lifetime. A certainty on the predicted ground-motion allows the engineers to confidently optimize structural design and mitigate the risk of extensive damage, or in worst case, a collapse. It is therefore in interest of engineering, insurance, disaster mitigation, and security of society at large, to reduce uncertainties in prediction of design ground-motion levels. In this study, I am concerned with quantifying and reducing the prediction uncertainty of regression-based Ground-Motion Prediction Equations (GMPEs). Essentially, GMPEs are regressed best-fit formulae relating event, path, and site parameters (predictor variables) to observed ground-motion values at the site (prediction variable). GMPEs are characterized by a parametric median (μ) and a non-parametric variance (σ) of prediction. μ captures the known ground-motion physics i.e., scaling with earthquake rupture properties (event), attenuation with distance from source (region/path), and amplification due to local soil conditions (site); while σ quantifies the natural variability of data that eludes μ. In a broad sense, the GMPE prediction uncertainty is cumulative of 1) uncertainty on estimated regression coefficients (uncertainty on μ,σ_μ), and 2) the inherent natural randomness of data (σ). The extent of μ parametrization, the quantity, and quality of ground-motion data used in a regression, govern the size of its prediction uncertainty: σ_μ and σ. In the first step, I present the impact of μ parametrization on the size of σ_μ and σ. Over-parametrization appears to increase the σ_μ, because of the large number of regression coefficients (in μ) to be estimated with insufficient data. Under-parametrization mitigates σ_μ, but the reduced explanatory strength of μ is reflected in inflated σ. For an optimally parametrized GMPE, a ~10\% reduction in σ is attained by discarding the low-quality data from pan-European events with incorrect parametric values (of predictor variables). In case of regions with scarce ground-motion recordings, without under-parametrization, the only way to mitigate σ_μ is to substitute long-term earthquake data at a location with short-term samples of data across several locations - the Ergodic Assumption. However, the price of ergodic assumption is an increased σ, due to the region-to-region and site-to-site differences in ground-motion physics. σ of an ergodic GMPE developed from generic ergodic dataset is much larger than that of non-ergodic GMPEs developed from region- and site-specific non-ergodic subsets - which were too sparse to produce their specific GMPEs. Fortunately, with the dramatic increase in recorded ground-motion data at several sites across Europe and Middle-East, I could quantify the region- and site-specific differences in ground-motion scaling and upgrade the GMPEs with 1) substantially more accurate region- and site-specific μ for sites in Italy and Turkey, and 2) significantly smaller prediction variance σ. The benefit of such enhancements to GMPEs is quite evident in my comparison of PSHA estimates from ergodic versus region- and site-specific GMPEs; where the differences in predicted design ground-motion levels, at several sites in Europe and Middle-Eastern regions, are as large as ~50\%. Resolving the ergodic assumption with mixed-effects regressions is feasible when the quantified region- and site-specific effects are physically meaningful, and the non-ergodic subsets (regions and sites) are defined a priori through expert knowledge. In absence of expert definitions, I demonstrate the potential of machine learning techniques in identifying efficient clusters of site-specific non-ergodic subsets, based on latent similarities in their ground-motion data. Clustered site-specific GMPEs bridge the gap between site-specific and fully ergodic GMPEs, with their partially non-ergodic μ and, σ ~15\% smaller than the ergodic variance. The methodological refinements to GMPE development produced in this study are applicable to new ground-motion datasets, to further enhance certainty of ground-motion prediction and thereby, seismic hazard assessment. Advanced statistical tools show great potential in improving the predictive capabilities of GMPEs, but the fundamental requirement remains: large quantity of high-quality ground-motion data from several sites for an extended time-period.}, language = {en} } @phdthesis{Varykhalov2005, author = {Varykhalov, Andrei}, title = {Quantum-size effects in the electronic structure of novel self-organized systems with reduced dimensionality}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-5784}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {The Thesis is focused on the properties of self-organized nanostructures. Atomic and electronic properties of different systems have been investigated using methods of electron diffraction, scanning tunneling microscopy and photoelectron spectroscopy. Implementation of the STM technique (including design, construction, and tuning of the UHV experimental set-up) has been done in the framework of present work. This time-consuming work is reported to greater detail in the experimental part of this Thesis. The scientific part starts from the study of quantum-size effects in the electronic structure of a two-dimensional Ag film on the supporting substrate Ni(111). Distinct quantum well states in the sp-band of Ag were observed in photoelectron spectra. Analysis of thickness- and angle-dependent photoemission supplies novel information on the properties of the interface. For the first time the Ni(111) relative band gap was indirectly probed in the ground-state through the electronic structure of quantum well states in the adlayer. This is particularly important for Ni where valence electrons are strongly correlated. Comparison of the experiment with calculations performed in the formalism of the extended phase accumulation model gives the substrate gap which is fully consistent with the one obtained by ab-initio LDA calculations. It is, however, in controversy to the band structure of Ni measured directly by photoemission. These results lend credit to the simplest view of photoemission from Ni, assigning early observed contradictions between theory and experiments to electron correlation effects in the final state of photoemission. Further, nanosystems of lower dimensionality have been studied. Stepped surfaces W(331) and W(551) were used as one-dimensional model systems and as templates for self-organization of Au nanoclusters. Photon energy dependent photoemission revealed a surface resonance which was never observed before on W(110) which is the base plane of the terrace microsurfaces. The dispersion E(k) of this state measured on stepped W(331) and W(551) with angle-resolved photoelectron spectroscopy is modified by a strong umklapp effect. It appears as two parabolas shifted symmetrically relative to the microsurface normal by half of the Brillouin zone of the step superlattice. The reported results are very important for understanding of the electronic properties of low-dimensional nanostructures. It was also established that W(331) and W(551) can serve as templates for self-organization of metallic nanostructures. A combined study of electronic and atomic properties of sub-monolayer amounts of gold deposited on these templates have shown that if the substrate is slightly pre-oxidized and the temperature is elevated, then Au can alloy with the first monolayer of W. As a result, a nanostructure of uniform clusters of a surface alloy is produced all over the steps. Such clusters feature a novel sp-band in the vicinity of the Fermi level, which appears split into constant energy levels due to effects of lateral quantization. The last and main part of this work is devoted to large-scale reconstructions on surfaces and nanostructures self-assembled on top. The two-dimensional surface carbide W(110)/C-R(15x3) has been extensively investigated. Photoemission studies of quantum size effects in the electronic structure of this reconstruction, combined with an investigation of its surface geometry, lead to an advanced structural model of the carbide overlayer. It was discovered that W(110)/C-R(15x3) can control self-organization of adlayers into nanostructures with extremely different electronic and structural properties. Thus, it was established that at elevated temperature the R(15x3) superstructure controls the self-assembly of sub-monolayer amounts of Au into nm-wide nanostripes. Based on the results of core level photoemission, the R(15x3)-induced surface alloying which takes place between Au and W can be claimed as driving force of self-organization. The observed stripes exhibit a characteristic one-dimensional electronic structure with laterally quantized d-bands. Obviously, these are very important for applications, since dimensions of electronic devices have already stepped into the nm-range, where quantum-size phenomena must undoubtedly be considered. Moreover, formation of perfectly uniform molecular clusters of C60 was demonstrated and described in terms of the van der Waals formalism. It is the first experimental observation of two-dimensional fullerene nanoclusters with "magic numbers". Calculations of the cluster potentials using the static approach have revealed characteristic minima in the interaction energy. They are achieved for 4 and 7 molecules per cluster. The obtained "magic numbers" and the corresponding cluster structures are fully consistent with the results of the STM measurements.}, subject = {Nanostruktur}, language = {en} } @phdthesis{Sander2015, author = {Sander, Andreas Alexander Christoph}, title = {Radiatively driven winds of hot stars}, school = {Universit{\"a}t Potsdam}, pages = {153}, year = {2015}, language = {en} } @phdthesis{Mardoukhi2020, author = {Mardoukhi, Yousof}, title = {Random environments and the percolation model}, doi = {10.25932/publishup-47276}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-472762}, school = {Universit{\"a}t Potsdam}, pages = {xxii, 103}, year = {2020}, abstract = {Percolation process, which is intrinsically a phase transition process near the critical point, is ubiquitous in nature. Many of its applications embrace a wide spectrum of natural phenomena ranging from the forest fires, spread of contagious diseases, social behaviour dynamics to mathematical finance, formation of bedrocks and biological systems. The topology generated by the percolation process near the critical point is a random (stochastic) fractal. It is fundamental to the percolation theory that near the critical point, a unique infinite fractal structure, namely the infinite cluster, would emerge. As de Gennes suggested, the properties of the infinite cluster could be deduced by studying the dynamical behaviour of the random walk process taking place on it. He coined the term the ant in the labyrinth. The random walk process on such an infinite fractal cluster exhibits a subdiffusive dynamics in the sense that the mean squared displacement grows as ~t2/dw, where dw, called the fractal dimension of the random walk path, is greater than 2. Thus, the random walk process on the infinite cluster is classified as a process exhibiting the properties of anomalous diffusions. Yet near the critical point, the infinite cluster is not the sole emergent topology, but it coexists with other clusters whose size is finite. Though finite, on specific length scales these finite clusters exhibit fractal properties as well. In this work, it is assumed that the random walk process could take place on these finite size objects as well. Bearing this assumption in mind requires one address the non-equilibrium initial condition. Due to the lack of knowledge on the propagator of the random walk process in stochastic random environments, a phenomenological correspondence between the renowned Ornstein-Uhlenbeck process and the random walk process on finite size clusters is established. It is elucidated that when an ensemble of these finite size clusters and the infinite cluster is considered, the anisotropy and size of these finite clusters effects the mean squared displacement and its time averaged counterpart to grow in time as ~t(d+df (t-2))/dw, where d is the embedding Euclidean dimension, df is the fractal dimension of the infinite cluster, and , called the Fisher exponent, is a critical exponent governing the power-law distribution of the finite size clusters. Moreover, it is demonstrated that, even though the random walk process on a specific finite size cluster is ergodic, it exhibits a persistent non-ergodic behaviour when an ensemble of finite size and the infinite clusters is considered.}, language = {en} } @phdthesis{Dahlke2020, author = {Dahlke, Sandro}, title = {Rapid climate changes in the arctic region of Svalbard}, doi = {10.25932/publishup-44554}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-445542}, school = {Universit{\"a}t Potsdam}, pages = {xv, 123}, year = {2020}, abstract = {Over the last decades, the Arctic regions of the earth have warmed at a rate 2-3 times faster than the global average- a phenomenon called Arctic Amplification. A complex, non-linear interplay of physical processes and unique pecularities in the Arctic climate system is responsible for this, but the relative role of individual processes remains to be debated. This thesis focuses on the climate change and related processes on Svalbard, an archipelago in the North Atlantic sector of the Arctic, which is shown to be a "hotspot" for the amplified recent warming during winter. In this highly dynamical region, both oceanic and atmospheric large-scale transports of heat and moisture interfere with spatially inhomogenous surface conditions, and the corresponding energy exchange strongly shapes the atmospheric boundary layer. In the first part, Pan-Svalbard gradients in the surface air temperature (SAT) and sea ice extent (SIE) in the fjords are quantified and characterized. This analysis is based on observational data from meteorological stations, operational sea ice charts, and hydrographic observations from the adjacent ocean, which cover the 1980-2016 period. It is revealed that typical estimates of SIE during late winter range from 40-50\% (80-90\%) in the western (eastern) parts of Svalbard. However, strong SAT warming during winter of the order of 2-3K per decade dictates excessive ice loss, leaving fjords in the western parts essentially ice-free in recent winters. It is further demostrated that warm water currents on the west coast of Svalbard, as well as meridional winds contribute to regional differences in the SIE evolution. In particular, the proximity to warm water masses of the West Spitsbergen Current can explain 20-37\% of SIE variability in fjords on west Svalbard, while meridional winds and associated ice drift may regionally explain 20-50\% of SIE variability in the north and northeast. Strong SAT warming has overruled these impacts in recent years, though. In the next part of the analysis, the contribution of large-scale atmospheric circulation changes to the Svalbard temperature development over the last 20 years is investigated. A study employing kinematic air-back trajectories for Ny-{\AA}lesund reveals a shift in the source regions of lower-troposheric air over time for both the winter and the summer season. In winter, air in the recent decade is more often of lower-latitude Atlantic origin, and less frequent of Arctic origin. This affects heat- and moisture advection towards Svalbard, potentially manipulating clouds and longwave downward radiation in that region. A closer investigation indicates that this shift during winter is associated with a strengthened Ural blocking high and Icelandic low, and contributes about 25\% to the observed winter warming on Svalbard over the last 20 years. Conversely, circulation changes during summer include a strengthened Greenland blocking high which leads to more frequent cold air advection from the central Arctic towards Svalbard, and less frequent air mass origins in the lower latitudes of the North Atlantic. Hence, circulation changes during winter are shown to have an amplifying effect on the recent warming on Svalbard, while summer circulation changes tend to mask warming. An observational case study using upper air soundings from the AWIPEV research station in Ny-{\AA}lesund during May-June 2017 underlines that such circulation changes during summer are associated with tropospheric anomalies in temperature, humidity and boundary layer height. In the last part of the analysis, the regional representativeness of the above described changes around Svalbard for the broader Arctic is investigated. Therefore, the terms in the diagnostic temperature equation in the Arctic-wide lower troposphere are examined for the Era-Interim atmospheric reanalysis product. Significant positive trends in diabatic heating rates, consistent with latent heat transfer to the atmosphere over regions of increasing ice melt, are found for all seasons over the Barents/Kara Seas, and in individual months in the vicinity of Svalbard. The above introduced warm (cold) advection trends during winter (summer) on Svalbard are successfully reproduced. Regarding winter, they are regionally confined to the Barents Sea and Fram Strait, between 70°-80°N, resembling a unique feature in the whole Arctic. Summer cold advection trends are confined to the area between eastern Greenland and Franz Josef Land, enclosing Svalbard.}, language = {en} } @phdthesis{Jaster2003, author = {Jaster, Nicole}, title = {Ratchet models of molecular motors}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000867}, school = {Universit{\"a}t Potsdam}, year = {2003}, abstract = {Transportvorg{\"a}nge in und von Zellen sind von herausragender Bedeutung f{\"u}r das {\"U}berleben des Organismus. Muskeln m{\"u}ssen sich kontrahieren k{\"o}nnen, Chromosomen w{\"a}hrend der Mitose an entgegengesetzte Enden der Zelle bewegt und Organellen, das sind von Membranen umschlossene Kompartimente, entlang molekularer Schienen transportiert werden. Molekulare Motoren sind Proteine, deren Hauptaufgabe es ist, andere Molek{\"u}le zu bewegen. Dazu wandeln sie die bei der ATP-Hydrolyse freiwerdende chemische Energie in mechanische Arbeit um. Die Motoren des Zellskeletts geh{\"o}ren zu den drei Superfamilien Myosin, Kinesin und Dynein. Ihre Schienen sind Filamente des Zellskeletts, Actin und die Microtubuli. In dieser Arbeit werden stochastische Modelle untersucht, welche dazu dienen, die Fortbewegung dieser linearen molekularen Motoren zu beschreiben. Die Skala, auf der wir die Bewegung betrachten, reicht von einzelnen Schritten eines Motorproteins bis in den Bereich der gerichteten Bewegung entlang eines Filaments. Ein Einzelschritt {\"u}berbr{\"u}ckt je nach Protein etwa 10 nm und wird in ungef{\"a}hr 10 ms zur{\"u}ckgelegt. Unsere Modelle umfassen M Zust{\"a}nde oder Konformationen, die der Motor annehmen kann, w{\"a}hrend er sich entlang einer eindimensionalen Schiene bewegt. An K Orten dieser Schiene sind {\"U}berg{\"a}nge zwischen den Zust{\"a}nden m{\"o}glich. Die Geschwindigkeit des Proteins l{\"a}sst sich in Abh{\"a}ngigkeit von den vertikalen {\"U}bergangsraten zwischen den einzelnen Zust{\"a}nden analytisch bestimmen. Wir berechnen diese Geschwindigkeit f{\"u}r Systeme mit bis zu vier Zust{\"a}nden und Orten und k{\"o}nnen weiterhin eine Reihe von Regeln ableiten, die uns einsch{\"a}tzen helfen, wie sich ein beliebiges vorgegebenes System verhalten wird. Dar{\"u}ber hinaus betrachten wir entkoppelte Subsysteme, also einen oder mehrere Zust{\"a}nde, die keine Verbindung zum {\"u}brigen System haben. Mit einer bestimmten Wahrscheinlichkeit kann ein Motor einen Zyklus von Konformationen durchlaufen, mit einer anderen Wahrscheinlichkeit einen davon unabh{\"a}ngigen anderen. Aktive Elemente werden in realen Transportvorg{\"a}ngen durch Motorproteine nicht auf die {\"U}berg{\"a}nge zwischen den Zust{\"a}nden beschr{\"a}nkt sein. In verzerrten Netzwerken oder ausgehend von der diskreten Mastergleichung des Systems k{\"o}nnen auch horizontale Raten spezifiziert werden und m{\"u}ssen weiterhin nicht mehr die Bedingungen der detaillierten Balance erf{\"u}llen. Damit ergeben sich eindeutige, komplette Pfade durch das jeweilige Netzwerk und Regeln f{\"u}r die Abh{\"a}ngigkeit des Gesamtstroms von allen Raten des Systems. Außerdem betrachten wir die zeitliche Entwicklung f{\"u}r vorgegebene Anfangsverteilungen. Bei Enzymreaktionen gibt es die Idee des Hauptpfades, dem diese bevorzugt folgen. Wir bestimmen optimale Pfade und den maximalen Fluss durch vorgegebene Netzwerke. Um dar{\"u}ber hinaus die Geschwindigkeit des Motors in Abh{\"a}ngigkeit von seinem Treibstoff ATP angeben zu k{\"o}nnen, betrachten wir m{\"o}gliche Reaktionskinetiken, die den Zusammenhang zwischen den unbalancierten {\"U}bergangsraten und der ATP-Konzentration bestimmen. Je nach Typ der Reaktionskinetik und Anzahl unbalancierter Raten ergeben sich qualitativ unterschiedliche Verl{\"a}ufe der Geschwindigkeitskurven in Abh{\"a}ngigkeit von der ATP-Konzentration. Die molekularen Wechselwirkungspotentiale, die der Motor entlang seiner Schiene erf{\"a}hrt, sind unbekannt.Wir vergleichen unterschiedliche einfache Potentiale und die Auswirkungen auf die Transportkoeffizienten, die sich durch die Lokalisation der vertikalen {\"U}berg{\"a}nge im Netzwerkmodell im Vergleich zu anderen Ans{\"a}tzen ergeben.}, language = {en} } @phdthesis{Thiel2004, author = {Thiel, Marco}, title = {Recurrences : exploiting naturally occurring analogues}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001633}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {In der vorliegenden Arbeit wird die Wiederkehr im Phasenraum ausgenutzt. Dabei werden drei Hauptresultate besprochen. 1. Die Wiederkehr erlaubt die Vorhersagbarkeit des Systems zu quantifizieren. 2. Die Wiederkehr enthaelt (unter bestimmten Voraussetzungen) s{\"a}mtliche relevante Information {\"u}ber die Dynamik im Phasenraum 3. Die Wiederkehr erlaubt die Erzeugung dynamischer Ersatzdaten.}, language = {en} } @phdthesis{Braun2023, author = {Braun, Tobias}, title = {Recurrences in past climates}, doi = {10.25932/publishup-58690}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-586900}, school = {Universit{\"a}t Potsdam}, pages = {xxviii, 251}, year = {2023}, abstract = {Our ability to predict the state of a system relies on its tendency to recur to states it has visited before. Recurrence also pervades common intuitions about the systems we are most familiar with: daily routines, social rituals and the return of the seasons are just a few relatable examples. To this end, recurrence plots (RP) provide a systematic framework to quantify the recurrence of states. Despite their conceptual simplicity, they are a versatile tool in the study of observational data. The global climate is a complex system for which an understanding based on observational data is not only of academical relevance, but vital for the predurance of human societies within the planetary boundaries. Contextualizing current global climate change, however, requires observational data far beyond the instrumental period. The palaeoclimate record offers a valuable archive of proxy data but demands methodological approaches that adequately address its complexities. In this regard, the following dissertation aims at devising novel and further developing existing methods in the framework of recurrence analysis (RA). The proposed research questions focus on using RA to capture scale-dependent properties in nonlinear time series and tailoring recurrence quantification analysis (RQA) to characterize seasonal variability in palaeoclimate records ('Palaeoseasonality'). In the first part of this thesis, we focus on the methodological development of novel approaches in RA. The predictability of nonlinear (palaeo)climate time series is limited by abrupt transitions between regimes that exhibit entirely different dynamical complexity (e.g. crossing of 'tipping points'). These possibly depend on characteristic time scales. RPs are well-established for detecting transitions and capture scale-dependencies, yet few approaches have combined both aspects. We apply existing concepts from the study of self-similar textures to RPs to detect abrupt transitions, considering the most relevant time scales. This combination of methods further results in the definition of a novel recurrence based nonlinear dependence measure. Quantifying lagged interactions between multiple variables is a common problem, especially in the characterization of high-dimensional complex systems. The proposed 'recurrence flow' measure of nonlinear dependence offers an elegant way to characterize such couplings. For spatially extended complex systems, the coupled dynamics of local variables result in the emergence of spatial patterns. These patterns tend to recur in time. Based on this observation, we propose a novel method that entails dynamically distinct regimes of atmospheric circulation based on their recurrent spatial patterns. Bridging the two parts of this dissertation, we next turn to methodological advances of RA for the study of Palaeoseasonality. Observational series of palaeoclimate 'proxy' records involve inherent limitations, such as irregular temporal sampling. We reveal biases in the RQA of time series with a non-stationary sampling rate and propose a correction scheme. In the second part of this thesis, we proceed with applications in Palaeoseasonality. A review of common and promising time series analysis methods shows that numerous valuable tools exist, but their sound application requires adaptions to archive-specific limitations and consolidating transdisciplinary knowledge. Next, we study stalagmite proxy records from the Central Pacific as sensitive recorders of mid-Holocene El Ni{\~n}o-Southern Oscillation (ENSO) dynamics. The records' remarkably high temporal resolution allows to draw links between ENSO and seasonal dynamics, quantified by RA. The final study presented here examines how seasonal predictability could play a role for the stability of agricultural societies. The Classic Maya underwent a period of sociopolitical disintegration that has been linked to drought events. Based on seasonally resolved stable isotope records from Yok Balum cave in Belize, we propose a measure of seasonal predictability. It unveils the potential role declining seasonal predictability could have played in destabilizing agricultural and sociopolitical systems of Classic Maya populations. The methodological approaches and applications presented in this work reveal multiple exciting future research avenues, both for RA and the study of Palaeoseasonality.}, language = {en} } @phdthesis{Clodong2004, author = {Clodong, S{\´e}bastien}, title = {Recurrent outbreaks in ecology : chaotic dynamics in complex networks}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001626}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {Gegenstand der Dissertation ist die Untersuchung von wiederkehrenden Ausbr{\"u}chen (wie z.B. Epidemien) in der Natur. Dies gelang anhand von Modellen, die die Dynamik von Phytoplankton und die Ausbreitung von Krankheiten zwischen St{\"a}dten beschreiben. Diese beide Systeme bilden hervorragende Beispiele f{\"u}r solche Ph{\"a}nomene. Die Frage, ob die in der Zeit wiederkehrenden Ausbr{\"u}che ein Ausdruck chaotischer Dynamik sein k{\"o}nnen, ist aktuell in der {\"O}kologie und fasziniert Wissenschaftler dieser Disziplin. Wir konnten zeigen, dass sich das Plankton-Modell im Falle von periodischem Antreiben {\"u}ber die N{\"a}hrstoffe in einem chaotischen Regime befindet. Diese Dynamik wurde als die komplexe Wechselwirkung zweier Oszillatoren verstanden. Ebenfalls wurde die Ausbreitung von Epidemien in Netzwerken wechselwirkender St{\"a}dte mit unterschiedlichen Gr{\"o}ssen untersucht. Daf{\"u}r wurde zun{\"a}chst die Kopplung zwischen zwei St{\"a}dten als Verh{\"a}ltnis der Stadtgr{\"o}ssen eingef{\"u}hrt. Es konnte gezeigt werden, dass das System sich in einem globalen zweij{\"a}hrigen Zyklus, der auch in den realen Daten beobachtet wird, befinden kann. Der Effekt von Heterogenit{\"a}t in der Gr{\"o}sseverteilung ist durch gewichtete Kopplung von generischen Modellen (Zelt- und Logistische Abbildung) in Netzwerken im Detail untersucht worden. Eine neue Art von Kopplungsfunktion mit nichtlinearer S{\"a}ttigung wurde eingef{\"u}hrt, um die Stabilit{\"a}t des Systems zu gew{\"a}hrleisten. Diese Kopplung beinhaltet einen Parameter, der es erlaubt, die Netzwerktopologie von globaler Kopplung in gerichtete Netzwerke gleichm{\"a}ssig umzuwandeln. Die Dynamik des Systems wurde anhand von Bifurkationsdiagrammen untersucht. Zum Verst{\"a}ndnis dieser Dynamik wurde eine effektive Theorie, die die beobachteten Bifurkationen sehr gut nachahmt, entwickelt.}, language = {en} } @phdthesis{Cemeljic2005, author = {Cemeljic, Miljenko}, title = {Resistive magnetohydrodynamic jets from protostellar accretion disks}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001845}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {Astrophysikalische Jets sind ausgedehnte, kollimierte Massenausfl{\"u}sse von verschiedenen astronomischen Objekten. Zeitabh{\"a}ngige magnetohydrodynamische (MHD) Simulationen der Jet-Entwicklung m{\"u}ssen den Akrretionsprozess in der Scheibe ber{\"u}cksichtigen, da der Jet aus der Scheibenmaterie gespeist wird. Allerdings ist die simultane Berechnung der Entwicklung von Scheibe und Jet schwierig, da die charakteristischen Zeitskalen unterschiedlich sind. Selbst{\"a}hnliche Modelle zeigten, daß eine Beschreibung der Jetentstehung aus einer Akkretionsscheibe durch rein magnetische Prozesse m{\"o}glich ist.}, language = {en} } @phdthesis{Boedecker2013, author = {Boedecker, Geesche}, title = {Resonance Fluorescence in a Photonic Crystal}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-69591}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {The problem under consideration in the thesis is a two level atom in a photonic crystal and a pumping laser. The photonic crystal provides an environment for the atom, that modifies the decay of the exited state, especially if the atom frequency is close to the band gap. The population inversion is investigated als well as the emission spectrum. The dynamics is analysed in the context of open quantum systems. Due to the multiple reflections in the photonic crystal, the system has a finite memory that inhibits the Markovian approximation. In the Heisenberg picture the equations of motion for the system variables form a infinite hierarchy of integro-differential equations. To get a closed system, approximations like a weak coupling approximation are needed. The thesis starts with a simple photonic crystal that is amenable to analytic calculations: a one-dimensional photonic crystal, that consists of alternating layers. The Bloch modes inside and the vacuum modes outside a finite crystal are linked with a transformation matrix that is interpreted as a transfer matrix. Formulas for the band structure, the reflection from a semi-infinite crystal, and the local density of states in absorbing crystals are found; defect modes and negative refraction are discussed. The quantum optics section of the work starts with the discussion of three problems, that are related to the full resonance fluorescence problem: a pure dephasing model, the driven atom and resonance fluorescence in free space. In the lowest order of the system-environment coupling, the one-time expectation values for the full problem are calculated analytically and the stationary states are discussed for certain cases. For the calculation of the two time correlation functions and spectra, the additional problem of correlations between the two times appears. In the Markovian case, the quantum regression theorem is valid. In the general case, the fluctuation dissipation theorem can be used instead. The two-time correlation functions are calculated by the two different methods. Within the chosen approximations, both methods deliver the same result. Several plots show the dependence of the spectrum on the parameters. Some examples for squeezing spectra are shown with different approximations. A projection operator method is used to establish two kinds of Markovian expansion with and without time convolution. The lowest order is identical with the lowest order of system environment coupling, but higher orders give different results.}, language = {en} } @phdthesis{Inal2013, author = {Inal, Sahika}, title = {Responsive polymers for optical sensing applications}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-70806}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {LCST-type synthetic thermoresponsive polymers can reversibly respond to certain stimuli in aqueous media with a massive change of their physical state. When fluorophores, that are sensitive to such changes, are incorporated into the polymeric structure, the response can be translated into a fluorescence signal. Based on this idea, this thesis presents sensing schemes which transduce the stimuli-induced variations in the solubility of polymer chains with covalently-bound fluorophores into a well-detectable fluorescence output. Benefiting from the principles of different photophysical phenomena, i.e. of fluorescence resonance energy transfer and solvatochromism, such fluorescent copolymers enabled monitoring of stimuli such as the solution temperature and ionic strength, but also of association/disassociation mechanisms with other macromolecules or of biochemical binding events through remarkable changes in their fluorescence properties. For instance, an aqueous ratiometric dual sensor for temperature and salts was developed, relying on the delicate supramolecular assembly of a thermoresponsive copolymer with a thiophene-based conjugated polyelectrolyte. Alternatively, by taking advantage of the sensitivity of solvatochromic fluorophores, an increase in solution temperature or the presence of analytes was signaled as an enhancement of the fluorescence intensity. A simultaneous use of the sensitivity of chains towards the temperature and a specific antibody allowed monitoring of more complex phenomena such as competitive binding of analytes. The use of different thermoresponsive polymers, namely poly(N-isopropylacrylamide) and poly(meth)acrylates bearing oligo(ethylene glycol) side chains, revealed that the responsive polymers differed widely in their ability to perform a particular sensing function. In order to address questions regarding the impact of the chemical structure of the host polymer on the sensing performance, the macromolecular assembly behavior below and above the phase transition temperature was evaluated by a combination of fluorescence and light scattering methods. It was found that although the temperature-triggered changes in the macroscopic absorption characteristics were similar for these polymers, properties such as the degree of hydration or the extent of interchain aggregations differed substantially. Therefore, in addition to the demonstration of strategies for fluorescence-based sensing with thermoresponsive polymers, this work highlights the role of the chemical structure of the two popular thermoresponsive polymers on the fluorescence response. The results are fundamentally important for the rational choice of polymeric materials for a specific sensing strategy.}, language = {en} } @phdthesis{Weber2004, author = {Weber, Michael H.}, title = {Robotic telescopes \& Doppler imaging : measuring differential rotation on long-period active stars}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001834}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {Auf der Sonne sind viele Ph{\"a}nomene zu sehen die mit der solaren magnetischen Aktivit{\"a}t zusammenh{\"a}ngen. Das daf{\"u}r zust{\"a}ndige Magnetfeld wird durch einen Dynamo erzeugt, der sich vermutlich am Boden der Konvektionszone in der sogenannten Tachocline befindet. Angetrieben wird der Dynamo teils von der differenziellen Rotation, teils von den magnetischen Turbulenzen in der Konvektionszone. Die differentielle Rotation kann an der Sonnenoberfl{\"a}che durch beobachten der Sonnenfleckbewegungen gemessen werden.Um einen gr{\"o}ßeren Parameterraum zum Testen von Dynamotheorien zu erhalten, kann man diese Messungen auch auf andere Sterne ausdehnen. Das prim{\"a}re Problem dabei ist, dass die Oberfl{\"a}chen von Sternen nicht direkt beobachtet werden k{\"o}nnen. Indirekt kann man dies jedoch mit Hilfe der Doppler-imaging Methode erreichen, die die Doppler-Verbreitung der Spektrallinien von schnell rotierenden Sternen ben{\"u}tzt. Um jedoch ein Bild der Sternoberfl{\"a}che zu erhalten, bedarf es vieler hochaufgel{\"o}ster spektroskopischer Beobachtungen, die gleichm{\"a}ßig {\"u}ber eine Sternrotation verteilt sein m{\"u}ssen. F{\"u}r Sterne mit langen Rotationsperioden sind diese Beobachtungen nur schwierig durchzuf{\"u}hren. Das neue robotische Observatorium STELLA adressiert dieses Problem und bietet eine auf Dopplerimaging abgestimmte Ablaufplanung der Beobachtungen an. Dies wird solche Beobachtungen nicht nur leichter durchf{\"u}hrbar machen, sondern auch effektiver gestalten.Als Vorschau welche Ergebnisse mit STELLA erwartet werden k{\"o}nnen dient eine Studie an sieben Sternen die allesamt eine lange (zwischen sieben und 25 Tagen) Rotationsperiode haben. Alle Sterne zeigen differentielle Rotation, allerdings sind die Messfehler aufgrund der nicht zufriedenstellenden Datenqualit{\"a}t von gleicher Gr{\"o}ßenordnung wie die Ergebnisse, ein Problem das bei STELLA nicht auftreten wird. Um die Konsistenz der Ergebnisse zu pr{\"u}fen wurde wenn m{\"o}glich sowohl eine Kreuzkorrelationsanalyse als auch die sheared-image Methode angewandt. Vier von diesen sieben Sternen weisen eine differentielle Rotation in umgekehrter Richtung auf als auf der Sonne zu sehen ist. Die restlichen drei Sterne weisen schwache, aber in der Richtung sonnen{\"a}hnliche differentielle Rotation auf.Abschließend werden diese neuen Messungen mit bereits publizierten Werten kombiniert, und die so erhaltenen Daten auf Korrelationen zwischen differentieller Rotation, Rotationsperiode, Evolutionsstaus, Spektraltyp und Vorhandensein eines Doppelsterns {\"u}berpr{\"u}ft. Alle Sterne zusammen zeigen eine signifikante Korrelation zwischen dem Betrag der differenziellen Rotation und der Rotationsperiode. Unterscheidet man zwischen den Richtungen der differentiellen Rotation, so bleibt nur eine Korrelation der Sterne mit antisolarem Verhalten. Dar{\"u}berhinaus zeigt sich auch, dass Doppelsterne schw{\"a}cher differentiell rotieren.}, language = {en} } @phdthesis{Kornhuber2017, author = {Kornhuber, Kai}, title = {Rossby wave dynamics and changes in summertime weather extremes}, school = {Universit{\"a}t Potsdam}, pages = {xii, 222}, year = {2017}, abstract = {Extreme weather events like heatwaves and floods severely affect societies with impacts ranging from economic damages to losses in human lifes. Global warming caused by anthropogenic greenhouse gas emissions is expected to increase their frequency and intensity, particularly in the warm season. Next to these thermodynamic changes, climate change might also impact the large scale atmospheric circulation.Such dynamic changes might additionally act on the occurence of extreme weather events, but involved mechanisms are often highly non-linear. Therefore, large uncertainty exists on the exact nature of these changes and the related risks to society. Particularly in the densely populated mid-latitudes weather patterns are governed by the large scale circulation like the jet-streams and storm tracks. Extreme weather in this region is often related to persistent weather systems associated with a strongly meandering jet-stream. Such meanders are called Rossby waves. Under specific conditions they can become slow moving, stretched around the entire hemisphere and generate simultaneaous heat- and rainfall extremes in far-away regions. This thesis aims at enhancing the understanding of synoptic-scale, circumglobal Rossby waves and the associated risks of dynamical changes to society. More specific, the analyses investigate their relation to extreme weather, regions at risk, under which conditions they are generated, and the influence of anthropogenic climate change on those conditions now, in the past and in the future. I find that circumglobal Rossby waves promoted simultaneous occuring weather extremes across the northern hemisphere in several recent summers. Further, I present evidence that they are often linked to quasiresonant-amplification of planetary waves. These events include the 2003 European heatwave and the Moscow heatwave of 2010. This non-linear mechanism acts on the upper level flow through trapping and amplification of stationary synoptic scale waves. I show that this resonance mechanism acts in both hemispheres and is related to extreme weather. A main finding is that circumglobal Rossby waves primarily occur as two specific teleconnection patterns associated with a wave 5 and wave 7 pattern in the northern hemisphere, likely due to the favourable longitudinal distance of prominent mountain ridges here. Furthermore, I identify those regions which are particularly at risk: The central United States, western Europe and the Ukraine/Russian region. Moreover, I present evidence that the wave 7 pattern has and extreme weather in these regions. My results suggest that the increase in frequency can be linked to favourable changes in large scale temperature gradients, which I show to be largely underestimated by model simulations. Using surface temperature fingerprint as proxy for investigating historic and future model ensembles, evidence is presented that anthropogenic warming has likely increased the probability for the occurence of circumglobal Rossby waves. Further it is shown that this might lead to a doubling of such events until the end of the century under a high-emission scenario. Overall, this thesis establishes several atmosphere-dynamical pathways by which changes in large scale temperature gradients might link to persistent boreal summer weather. It highlights the societal risks associated with the increasing occurence of a newly discovered Rossby wave teleconnection pattern, which has the potential to cause simultaneaous heat-extremes in the mid-latitudinal bread-basket regions. In addition, it provides further evidence that the traditional picture by which quasi-stationary Rossby waves occur only in the low wavenumber regime, should be reconsidered.}, language = {en} } @phdthesis{Hlawenka2018, author = {Hlawenka, Peter}, title = {Samarium hexaboride}, school = {Universit{\"a}t Potsdam}, pages = {116, XXI}, year = {2018}, language = {en} } @phdthesis{Ahlers2001, author = {Ahlers, Volker}, title = {Scaling and synchronization in deterministic and stochastic nonlinear dynamical systems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000320}, school = {Universit{\"a}t Potsdam}, year = {2001}, abstract = {Gegenstand dieser Arbeit ist die Untersuchung universeller Skalengesetze, die in gekoppelten chaotischen Systemen beobachtet werden. Ergebnisse werden erzielt durch das Ersetzen der chaotischen Fluktuationen in der St{\"o}rungsdynamik durch stochastische Prozesse. Zun{\"a}chst wird ein zeitkontinuierliches stochastisches Modell f{\"u}rschwach gekoppelte chaotische Systeme eingef{\"u}hrt, um die Skalierung der Lyapunov-Exponenten mit der Kopplungsst{\"a}rke (coupling sensitivity of chaos) zu untersuchen. Mit Hilfe der Fokker-Planck-Gleichung werden Skalengesetze hergeleitet, die von Ergebnissen numerischer Simulationen best{\"a}tigt werden. Anschließend wird der neuartige Effekt der vermiedenen Kreuzung von Lyapunov-Exponenten schwach gekoppelter ungeordneter chaotischer Systeme beschrieben, der qualitativ der Abstoßung zwischen Energieniveaus in Quantensystemen {\"a}hnelt. Unter Benutzung der f{\"u}r die coupling sensitivity of chaos gewonnenen Skalengesetze wird ein asymptotischer Ausdruck f{\"u}r die Verteilungsfunktion kleiner Abst{\"a}nde zwischen Lyapunov-Exponenten hergeleitet und mit Ergebnissen numerischer Simulationen verglichen. Schließlich wird gezeigt, dass der Synchronisations{\"u}bergang in starkgekoppelten r{\"a}umlich ausgedehnten chaotischen Systemen einem kontinuierlichen Phasen{\"u}bergang entspricht, mit der Kopplungsst{\"a}rke und dem Synchronisationsfehler als Kontroll- beziehungsweise Ordnungsparameter. Unter Benutzung von Ergebnissen numerischer Simulationen sowie theoretischen {\"U}berlegungen anhand einer partiellen Differentialgleichung mit multiplikativem Rauschen werden die Universalit{\"a}tsklassen der zwei beobachteten {\"U}bergangsarten bestimmt (Kardar-Parisi-Zhang-Gleichung mit S{\"a}ttigungsterm, gerichtete Perkolation).}, language = {en} } @phdthesis{Kappel2012, author = {Kappel, Marcel}, title = {Scattering effects in the sound wave propagation of instrument soundboards}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-62676}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {In the western hemisphere, the piano is one of the most important instruments. While its evolution lasted for more than three centuries, and the most important physical aspects have already been investigated, some parts in the characterization of the piano remain not well understood. Considering the pivotal piano soundboard, the effect of ribs mounted on the board exerted on the sound radiation and propagation in particular, is mostly neglected in the literature. The present investigation deals exactly with the sound wave propagation effects that emerge in the presence of an array of equally-distant mounted ribs at a soundboard. Solid-state theory proposes particular eigenmodes and -frequencies for such arrangements, which are comparable to single units in a crystal. Following this 'linear chain model' (LCM), differences in the frequency spectrum are observable as a distinct band structure. Also, the amplitudes of the modes are changed, due to differences of the damping factor. These scattering effects were not only investigated for a well-understood conceptional rectangular soundboard (multichord), but also for a genuine piano resonance board manufactured by the piano maker company 'C. Bechstein Pianofortefabrik'. To obtain the possibility to distinguish between the characterizing spectra both with and without mounted ribs, the typical assembly plan for the Bechstein instrument was specially customized. Spectral similarities and differences between both boards are found in terms of damping and tone. Furthermore, specially prepared minimal-invasive piezoelectric polymer sensors made from polyvinylidene fluoride (PVDF) were used to record solid-state vibrations of the investigated system. The essential calibration and characterization of these polymer sensors was performed by determining the electromechanical conversion, which is represented by the piezoelectric coefficient. Therefore, the robust 'sinusoidally varying external force' method was applied, where a dynamic force perpendicular to the sensor's surface, generates movable charge carriers. Crucial parameters were monitored, with the frequency response function as the most important one for acousticians. Along with conventional condenser microphones, the sound was measured as solid-state vibration as well as airborne wave. On this basis, statements can be made about emergence, propagation, and also the overall radiation of the generated modes of the vibrating system. Ultimately, these results acoustically characterize the entire system.}, language = {en} } @phdthesis{Pfrang2023, author = {Pfrang, Konstantin Johannes}, title = {Search for light primordial black holes with VERITAS using gamma γ-ray and optical observations}, doi = {10.25932/publishup-58726}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-587266}, school = {Universit{\"a}t Potsdam}, pages = {139}, year = {2023}, abstract = {The Very Energetic Radiation Imaging Telescope Array System (VERITAS) is an array of four imaging atmospheric Cherenkov telescopes (IACTs). VERITAS is sensitive to very-high-energy gamma-rays in the range of 100 GeV to >30 TeV. Hypothesized primordial black holes (PBHs) are attractive targets for IACTs. If they exist, their potential cosmological impact reaches beyond the candidacy for constituents of dark matter. The sublunar mass window is the largest unconstrained range of PBH masses. This thesis aims to develop novel concepts searching for light PBHs with VERITAS. PBHs below the sublunar window lose mass due to Hawking radiation. They would evaporate at the end of their lifetime, leading to a short burst of gamma-rays. If PBHs formed at about 10^15 g, the evaporation would occur nowadays. Detecting these signals might not only confirm the existence of PBHs but also prove the theory of Hawking radiation. This thesis probes archival VERITAS data recorded between 2012 and 2021 for possible PBH signals. This work presents a new automatic approach to assess the quality of the VERITAS data. The array-trigger rate and far infrared temperature are well suited to identify periods with poor data quality. These are masked by time cuts to obtain a consistent and clean dataset which contains about 4222 hours. The PBH evaporations could occur at any location in the field of view or time within this data. Only a blind search can be performed to identify these short signals. This thesis implements a data-driven deep learning based method to search for short transient signals with VERITAS. It does not depend on the modelling of the effective area and radial acceptance. This work presents the first application of this method to actual observational IACT data. This thesis develops new concepts dealing with the specifics of the data and the transient detection method. These are reflected in the developed data preparation pipeline and search strategies. After correction for trial factors, no candidate PBH evaporation is found in the data. Thus, new constraints of the local rate of PBH evaporations are derived. At the 99\% confidence limit it is below <1.07 * 10^5 pc^-3 yr^-1. This constraint with the new, independent analysis approach is in the range of existing limits for the evaporation rate. This thesis also investigates an alternative novel approach to searching for PBHs with IACTs. Above the sublunar window, the PBH abundance is constrained by optical microlensing studies. The sampling speed, which is of order of minutes to hours for traditional optical telescopes, is a limiting factor in expanding the limits to lower masses. IACTs are also powerful instruments for fast transient optical astronomy with up to O(ns) sampling. This thesis investigates whether IACTs might constrain the sublunar window with optical microlensing observations. This study confirms that, in principle, the fast sampling speed might allow extending microlensing searches into the sublunar mass window. However, the limiting factor for IACTs is the modest sensitivity to detect changes in optical fluxes. This thesis presents the expected rate of detectable events for VERITAS as well as prospects of possible future next-generation IACTs. For VERITAS, the rate of detectable microlensing events in the sublunar range is ~10^-6 per year of observation time. The future prospects for a 100 times more sensitive instrument are at ~0.05 events per year.}, language = {en} } @phdthesis{Ksianzou2010, author = {Ksianzou, Viachaslau}, title = {Second-order nonlinear optical interactions and cascading effects in thinorganic films}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-49186}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {The presented work describes new concepts of fast switching elements based on principles of photonics. The waveguides working in visible and infra-red ranges are put in a basis of these elements. And as materials for manufacturing of waveguides the transparent polymers, dopped by molecules of the dyes possessing second order nonlinear-optical properties are proposed. The work shows how nonlinear-optical processes in such structures can be implemented by electro-optical and opto-optical control circuit signals. In this paper we consider the complete cycle of fabrication of several types of integral photonic elements. The theoretical analysis of high-intensity beam propagation in media with second-order optical nonlinearity is performed. Quantitative estimations of necessary conditions of occurrence of the nonlinear-optical phenomena of the second order taking into account properties of used materials are made. The paper describes the various stages of manufacture of the basic structure of the integrated photonics: a planar waveguide. Using the finite element method the structure of the electromagnetic field inside the waveguide in different modes was analysed. A separate part of the work deals with the creation of composite organic materials with high optical nonlinearity. Using the methods of quantum chemistry, the dependence of nonlinear properties of dye molecules from its structure were investigated in details. In addition, the paper discusses various methods of inducing of an optical nonlinearity in dye-doping of polymer films. In the work, for the first time is proposed the use of spatial modulation of nonlinear properties of waveguide according Fibonacci law. This allows involving several different nonlinear optical processes simultaneously. The final part of the work describes various designs of integrated optical modulators and switches constructed of organic nonlinear optical waveguides. A practical design of the optical modulator based on Mach-Zehnder interferometer made by a photolithography on polymer film is presented.}, language = {en} } @phdthesis{Bittermann2015, author = {Bittermann, Klaus}, title = {Semi-empirical sea-level modelling}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-93881}, school = {Universit{\"a}t Potsdam}, pages = {v, 88}, year = {2015}, abstract = {Semi-empirical sea-level models (SEMs) exploit physically motivated empirical relationships between global sea level and certain drivers, in the following global mean temperature. This model class evolved as a supplement to process-based models (Rahmstorf (2007)) which were unable to fully represent all relevant processes. They thus failed to capture past sea-level change (Rahmstorf et al. (2012)) and were thought likely to underestimate future sea-level rise. Semi-empirical models were found to be a fast and useful tool for exploring the uncertainties in future sea-level rise, consistently giving significantly higher projections than process-based models. In the following different aspects of semi-empirical sea-level modelling have been studied. Models were first validated using various data sets of global sea level and temperature. SEMs were then used on the glacier contribution to sea level, and to infer past global temperature from sea-level data via inverse modelling. Periods studied encompass the instrumental period, covered by tide gauges (starting 1700 CE (Common Era) in Amsterdam) and satellites (first launched in 1992 CE), the era from 1000 BCE (before CE) to present, and the full length of the Holocene (using proxy data). Accordingly different data, model formulations and implementations have been used. It could be shown in Bittermann et al. (2013) that SEMs correctly predict 20th century sea-level when calibrated with data until 1900 CE. SEMs also turned out to give better predictions than the Intergovernmental Panel on Climate Change (IPCC) 4th assessment report (AR4, IPCC (2007)) models, for the period from 1961-2003 CE. With the first multi-proxy reconstruction of global sea-level as input, estimate of the human-induced component of modern sea-level change and projections of future sea-level rise were calculated (Kopp et al. (2016)). It turned out with 90\% confidence that more than 40 \% of the observed 20th century sea-level rise is indeed anthropogenic. With the new semi-empirical and IPCC (2013) 5th assessment report (AR5) projections the gap between SEM and process-based model projections closes, giving higher credibility to both. Combining all scenarios, from strong mitigation to business as usual, a global sea-level rise of 28-131 cm relative to 2000 CE, is projected with 90\% confidence. The decision for a low carbon pathway could halve the expected global sea-level rise by 2100 CE. Present day temperature and thus sea level are driven by the globally acting greenhouse-gas forcing. Unlike that, the Milankovich forcing, acting on Holocene timescales, results mainly in a northern-hemisphere temperature change. Therefore a semi-empirical model can be driven with northernhemisphere temperatures, which makes it possible to model the main subcomponent of sea-level change over this period. It showed that an additional positive constant rate of the order of the estimated Antarctic sea-level contribution is then required to explain the sea-level evolution over the Holocene. Thus the global sea level, following the climatic optimum, can be interpreted as the sum of a temperature induced sea-level drop and a positive long-term contribution, likely an ongoing response to deglaciation coming from Antarctica.}, language = {en} } @phdthesis{Soriano2016, author = {Soriano, Manuel Flores}, title = {Short-term evolution and coexistence of photospheric and chromospheric activity on LQ Hydrae}, school = {Universit{\"a}t Potsdam}, pages = {90}, year = {2016}, language = {en} } @phdthesis{Mari2012, author = {Mari, Andrea}, title = {Signatures of non-classicality in optomechanical systems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-59814}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {This thesis contains several theoretical studies on optomechanical systems, i.e. physical devices where mechanical degrees of freedom are coupled with optical cavity modes. This optomechanical interaction, mediated by radiation pressure, can be exploited for cooling and controlling mechanical resonators in a quantum regime. The goal of this thesis is to propose several new ideas for preparing meso- scopic mechanical systems (of the order of 10^15 atoms) into highly non-classical states. In particular we have shown new methods for preparing optomechani-cal pure states, squeezed states and entangled states. At the same time, proce-dures for experimentally detecting these quantum effects have been proposed. In particular, a quantitative measure of non classicality has been defined in terms of the negativity of phase space quasi-distributions. An operational al- gorithm for experimentally estimating the non-classicality of quantum states has been proposed and successfully applied in a quantum optics experiment. The research has been performed with relatively advanced mathematical tools related to differential equations with periodic coefficients, classical and quantum Bochner's theorems and semidefinite programming. Nevertheless the physics of the problems and the experimental feasibility of the results have been the main priorities.}, language = {en} } @phdthesis{Uyaver2004, author = {Uyaver, Sahin}, title = {Simulation of annealed polyelectrolytes in poor solvents}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001488}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {Polymere sind lange kettenartige Molek{\"u}le. Sie bestehen aus vielen elementaren chemischen Einheiten, den Monomeren, die durch kovalente Bindungen aneinander gekettet sind. Polyelektrolyte sind Polymere, die ionisierbare Monomeren enthalten. Aufgrund ihrer speziellen Eigenschaften sind Polyelektrolyte sowohl in der Molekular- und Zellbiologie von großen Bedeutung als auch in der Chemie großtechnisch relevant. Verglichen mit ungeladenen Polymeren sind Polyelektrolyte theoretisch noch wenig verstanden. Insbesondere gilt dies f{\"u}r Polyelektrolyte in sogenanntem schlechten L{\"o}sungsmittel. Ein schlechtes L{\"o}sungsmittel bewirkt eine effektive Anziehung zwischen den Monomeren. F{\"u}r Polyelektrolyte in schlechtem L{\"o}sungsmittel kommt es daher zu einer Konkurrenz zwischen dieser Anziehung und der elektrostatischen Abstoßung. Geladene Polymere werden im Rahmen der chemischen Klassifikation in starke und schwache Polyelektrolyte unterschieden. Erstere zeigen vollst{\"a}ndige Dissoziation unabh{\"a}ngig vom pH-Wert der L{\"o}sung. Die Position der Ladungen auf der Kette wird ausschließlich w{\"a}hrend der Polymersynthese festgelegt. In der Physik spricht man deshalb von Polyelektrolyten mit eingefrorener Ladungsverteilung (quenched polyelectrolytes). Im Falle von schwachen Polyelektrolyten ist die Ladungsdichte auf der Kette nicht konstant, sondern wird durch der pH-Wert der L{\"o}sung kontrolliert. Durch Rekombinations- und Dissoziationsprozesse sind die Ladungen auf der Kette beweglich. Im allgemeinen stellt sich eine inhomogene Gleichgewichtsverteilung ein, die mit der Struktur der Kette gekoppelt ist. Diese Polymere werden deshalb auch Polyelektrolyte mit Gleichgewichtsladungsverteilung (annealed polyelectrolytes) genannt. Wegen des zus{\"a}tzlichen Freiheitsgrades in der Ladungsverteilung werden eine Reihe ungew{\"o}hnlicher Eigenschaften theoretisch vorhergesagt. Mit Hilfe von Simulationen ist es zum ersten Mal gelungen, zu zeigen daß 'annealed' Polyelektrolyte in relativ schlechtem L{\"o}sungsmittel einen diskontinuierlichen Phasen{\"u}bergang durchlaufen, wenn ein kritischer pH-Werts der L{\"o}sung {\"u}berschritten wird. Bei diesem Phasen{\"u}bergang, gehen die Polyelektolyte von einer schwach geladenen kompakten globul{\"a}ren Struktur zu einer stark geladenen gestreckten Konfiguration {\"u}ber. Aufgrund theoretischer Vorhersagen wird erwartet, daß die globul{\"a}re Struktur in weniger schlechtem L{\"o}sungsmittel instabil wird und sich eine Perlenkettenkonfiguration ausbildet. Diese Vorhersage konnte f{\"u}r 'annealed' Polyelektrolyte mit den durchgef{\"u}hrten Simulationen zum ersten Mal best{\"a}tigt werden - inzwischen auch durch erste experimentelle Ergebnisse. Schließlich zeigen die Simulationen auch, daß annealed Polyelektrolyte bei einer kritischen Salzkonzentration in der L{\"o}sung einen scharfen {\"U}bergang zwischen einem stark geladenen gestreckten Zustand und einem schwach geladenen globul{\"a}ren Zustand aufweisen, wiederum in {\"U}bereinstimmung mit theoretischen Erwartungen.}, language = {en} } @phdthesis{Stoyanov2011, author = {Stoyanov, Hristiyan}, title = {Soft nanocomposites with enhanced electromechanical response for dielectric elastomer actuators}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-51194}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Electromechanical transducers based on elastomer capacitors are presently considered for many soft actuation applications, due to their large reversible deformation in response to electric field induced electrostatic pressure. The high operating voltage of such devices is currently a large drawback, hindering their use in applications such as biomedical devices and biomimetic robots, however, they could be improved with a careful design of their material properties. The main targets for improving their properties are increasing the relative permittivity of the active material, while maintaining high electric breakdown strength and low stiffness, which would lead to enhanced electrostatic storage ability and hence, reduced operating voltage. Improvement of the functional properties is possible through the use of nanocomposites. These exploit the high surface-to-volume ratio of the nanoscale filler, resulting in large effects on macroscale properties. This thesis explores several strategies for nanomaterials design. The resulting nanocomposites are fully characterized with respect to their electrical and mechanical properties, by use of dielectric spectroscopy, tensile mechanical analysis, and electric breakdown tests. First, nanocomposites consisting of high permittivity rutile TiO2 nanoparticles dispersed in thermoplastic block copolymer SEBS (poly-styrene-coethylene-co-butylene-co-styrene) are shown to exhibit permittivity increases of up to 3.7 times, leading to 5.6 times improvement in electrostatic energy density, but with a trade-off in mechanical properties (an 8-fold increase in stiffness). The variation in both electrical and mechanical properties still allows for electromechanical improvement, such that a 27 \% reduction of the electric field is found compared to the pure elastomer. Second, it is shown that the use of nanofiller conductive particles (carbon black (CB)) can lead to a strong increase of relative permittivity through percolation, however, with detrimental side effects. These are due to localized enhancement of the electric field within the composite, which leads to sharp reductions in electric field strength. Hence, the increase in permittivity does not make up for the reduction in breakdown strength in relation to stored electrical energy, which may prohibit their practical use. Third, a completely new approach for increasing the relative permittivity and electrostatic energy density of a polymer based on 'molecular composites' is presented, relying on chemically grafting soft π-conjugated macromolecules to a flexible elastomer backbone. Polarization caused by charge displacement along the conjugated backbone is found to induce a large and controlled permittivity enhancement (470 \% over the elastomer matrix), while chemical bonding, encapsulates the PANI chains manifesting in hardly any reduction in electric breakdown strength, and hence resulting in a large increase in stored electrostatic energy. This is shown to lead to an improvement in the sensitivity of the measured electromechanical response (83 \% reduction of the driving electric field) as well as in the maximum actuation strain (250 \%). These results represent a large step forward in the understanding of the strategies which can be employed to obtain high permittivity polymer materials with practical use for electro-elastomer actuation.}, language = {en} } @phdthesis{Maerten2015, author = {Maerten, Lena}, title = {Spectroscopic perspectives on ultrafast coupling phenomena in perovskite oxides}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-77623}, school = {Universit{\"a}t Potsdam}, year = {2015}, abstract = {In this thesis, I study ultrafast dynamics in perovskite oxides using time resolved broadband spectroscopy. I focus on the observation of coherent phonon propagation by time resolved Brillouin scattering: following the excition of metal transducer films with a femtosecond infrared pump pulse, coherent phonon dynamics in the GHz frequency range are triggered. Their propagation is monitored using a delayed white light probe pulse. The technique is illustrated on various thin films and multilayered samples. I apply the technique to investigate the linear and nonlinear acoustic response in bulk SrTiO_3, which displays a ferroelastic phase transition from a cubic to a tetragonal structural phase at T_a=105 K. In the linear regime, I observe a coupling of the observed acoustic phonon mode to the softening optic modes describing the phase transition. In the nonlinear regime, I find a giant slowing down of the sound velocity in the low temperature phase that is only observable for a strain amplitude exceeding the tetragonality of the material. It is attributed to a coupling of the high frequency phonons to ferroelastic domain walls in the material. I propose a new mechanism for the coupling of strain waves to the domain walls that is only effective for high amplitude strain. A detailed study of the phonon attenuation across a wide temperature range shows that the phonon attenuation at low temperatures is influenced by the domain configuration, which is determined by interface strain. Preliminary measurements on magnetic-ferroelectric multilayers reveal that the excitation fluence needs to be carefully controlled when dynamics at phase transitions are studied.}, language = {en} } @phdthesis{Scholz2012, author = {Scholz, Markus Reiner}, title = {Spin polarization, circular dichroism, and robustness of topological surface states}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-96686}, school = {Universit{\"a}t Potsdam}, pages = {153}, year = {2012}, abstract = {Dreidimensionale topologische Isolatoren sind ein neues Materialsystem, welches dadurch charakterisiert ist, dass es in seinem Inneren isolierend an der Ober {\"a}che jedoch leitend ist. Urs{\"a}chlich f{\"u}r die Leitf{\"a}higkeit an der Ober {\"a}che sind sogenannte topologische Ober- {\"a}chenzust{\"a}nde, welche das Valenzband des Inneren mit dem Leitungsband des Inneren verbinden. An der Ober {\"a}che ist also die Bandl{\"u}cke, welche die isolierende Eigenschaft verursacht, geschlossen. Die vorliegende Arbeit untersucht diese Ober {\"a}chenzust{\"a}nde mittels spin- und winkelauf- gel{\"o}ster Photoemissionsspektroskopie. Es wird gezeigt, dass in den Materialien Bi2Se3 und Bi2Te3, in {\"u}bereinstimmung mit der Literatur, die entscheidenden Charakteristika eines topologischen Ober {\"a}chenzustands vorzu nden sind: Die Ober {\"a}chenzust{\"a}nde dieser Sys- teme durchqueren die Bandl{\"u}cke in ungerader Anzahl, sie sind nicht entartet und weisen folgerichtig eine hohe Spinpolarisation auf. Weiterhin wird durch Aufdampfen diverser Adsorbate gezeigt, dass der Ober {\"a}chenzust{\"a}n- de von Bi2Se3 und Bi2Te3, wie erwartet, extrem robust ist. Ober {\"a}chenzust{\"a}nde topologisch trivialer Systeme erf{\"u}llen diese Eigenschaft nicht; bereits kleine Verunreinigungen k{\"o}n- nen diese Zust{\"a}nde zerst{\"o}ren, bzw. die Ober {\"a}che isolierend machen. Die topologischen Ober {\"a}chenzust{\"a}nde k{\"o}nnen in der vorliegenden Arbeit noch bis zur Detektionsgrenze der experimentellen Messmethode nachgewiesen werden und die Ober {\"a}che bleibt Leitf{\"a}hig. Unter den Adsorbaten be ndet sich auch Eisen, ein bekanntermaßen magnetisches Materi- al. Eine der Grundvoraussetzungen f{\"u}r topologische Isolatoren ist die Zeitumkehrsymme- trie, die Elektronen, welche den topologischen Ober {\"a}chenzustand besetzen, vorschreibt, dass sie eine bestimmte Spinrichtung haben m{\"u}ssen, wenn sie sich beispielsweise nach links bewegen und den entgegengesetzten Spin wenn sie sich nach rechts bewegen. In magnetischen Materialien ist die Zeitumkehrsymmetrie jedoch explizit gebrochen und die gezeigte Robustheit des Ober {\"a}chenzustands gegen magnetische Materialien daher uner- wartet. Die Zeitumkehrsymmetrie sorgt auch daf{\"u}r, dass eine Streuung der Elektronen um 180°, beispielsweise an einem Gitterdefekt oder an einem Phonon strikt verboten ist. Bei einem solchen Streuprozess bleibt die Spinrichtung erhalten, da aber in der Gegenrichtung nur Zust{\"a}nde mit entgegengesetztem Spin vorhanden sind kann das Elektron nicht in diese Richtung gestreut werden. Dieses Prinzip wird anhand der Lebensdauer der durch Pho- toemission angeregten Zust{\"a}nde untersucht. Hierbei wird gezeigt, dass die Kopplung der Elektronen des Ober {\"a}chenzustands von Bi2Te3 an Phononen unerwartet hoch ist und dass sich eine Anisotropie in der Bandstruktur des Selbigen auch in den Lebensdauern der ange- regten Zust{\"a}nde widerspiegelt. Weiterhin wird gezeigt, dass sich die Ein {\"u}sse von magne- tischen und nicht-magnetischen Verunreinigungen auf die Lebensdauern stark voneinander unterscheiden. Im letzten Teil der vorliegenden Arbeit wird untersucht, ob eine Asymmetrie in der Inten- sit{\"a}tsverteilung der winkelaufgel{\"o}sten Photoemissionsspektren, bei Anregung mit zirku- lar polarisiertem Licht, in Bi2Te3 R{\"u}ckschl{\"u}sse auf die Spinpolarisation der Elektronen erlaubt. Bei Variation der Energie des eingestrahlten Lichts wird ein Vorzeichenwechsel der Asymmetrie beobachtet. Daraus l{\"a}sst sich schlussfolgern, dass die Asymmetrie keine R{\"u}ckschl{\"u}sse auf die Spinpolarisation erlaubt.}, language = {en} } @phdthesis{Krivenkov2020, author = {Krivenkov, Maxim}, title = {Spin textures and electron scattering in nanopatterned monolayer graphene}, doi = {10.25932/publishup-48701}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-487017}, school = {Universit{\"a}t Potsdam}, pages = {x, 176}, year = {2020}, abstract = {The current thesis is focused on the properties of graphene supported by metallic substrates and specifically on the behaviour of electrons in such systems. Methods of scanning tunneling microscopy, electron diffraction and photoemission spectroscopy were applied to study the structural and electronic properties of graphene. The purpose of the first part of this work is to introduce the most relevant aspects of graphene physics and the methodical background of experimental techniques used in the current thesis. The scientific part of this work starts with the extensive study by means of scanning tunneling microscopy of the nanostructures that appear in Au intercalated graphene on Ni(111). This study was aimed to explore the possible structural explanations of the Rashba-type spin splitting of ~100 meV experimentally observed in this system — much larger than predicted by theory. It was demonstrated that gold can be intercalated under graphene not only as a dense monolayer, but also in the form of well-periodic arrays of nanoclusters, a structure previously not reported. Such nanocluster arrays are able to decouple graphene from the strongly interacting Ni substrate and render it quasi-free-standing, as demonstrated by our DFT study. At the same time calculations confirm strong enhancement of the proximity-induced SOI in graphene supported by such nanoclusters in comparison to monolayer gold. This effect, attributed to the reduced graphene-Au distance in the case of clusters, provides a large Rashba-type spin splitting of ~60 meV. The obtained results not only provide a possible mechanism of SOI enhancement in this particular system, but they can be also generalized for graphene on other strongly interacting substrates intercalated by nanostructures of heavy noble d metals. Even more intriguing is the proximity of graphene to heavy sp-metals that were predicted to induce an intrinsic SOI and realize a spin Hall effect in graphene. Bismuth is the heaviest stable sp-metal and its compounds demonstrate a plethora of exciting physical phenomena. This was the motivation behind the next part of the current thesis, where structural and electronic properties of a previously unreported phase of Bi-intercalated graphene on Ir(111) were studied by means of scanning tunneling microscopy, spin- and angle-resolved photoemission spectroscopy and electron diffraction. Photoemission experiments revealed a remarkable, nearly ideal graphene band structure with strongly suppressed signatures of interaction between graphene and the Ir(111) substrate, moreover, the characteristic moir{\´e} pattern observed in graphene on Ir(111) by electron diffraction and scanning tunneling microscopy was strongly suppressed after intercalation. The whole set of experimental data evidences that Bi forms a dense intercalated layer that efficiently decouples graphene from the substrate. The interaction manifests itself only in the n-type charge doping (~0.4 eV) and a relatively small band gap at the Dirac point (~190 meV). The origin of this minor band gap is quite intriguing and in this work it was possible to exclude a wide range of mechanisms that could be responsible for it, such as induced intrinsic spin-orbit interaction, hybridization with the substrate states and corrugation of the graphene lattice. The main origin of the band gap was attributed to the A-B symmetry breaking and this conclusion found support in the careful analysis of the interference effects in photoemission that provided the band gap estimate of ~140 meV. While the previous chapters were focused on adjusting the properties of graphene by proximity to heavy metals, graphene on its own is a great object to study various physical effects at crystal surfaces. The final part of this work is devoted to a study of surface scattering resonances by means of photoemission spectroscopy, where this effect manifests itself as a distinct modulation of photoemission intensity. Though scattering resonances were widely studied in the past by means of electron diffraction, studies about their observation in photoemission experiments started to appear only recently and they are very scarce. For a comprehensive study of scattering resonances graphene was selected as a versatile model system with adjustable properties. After the theoretical and historical introduction to the topic of scattering resonances follows a detailed description of the unusual features observed in the photoemission spectra obtained in this work and finally the equivalence between these features and scattering resonances is proven. The obtained photoemission results are in a good qualitative agreement with the existing theory, as verified by our calculations in the framework of the interference model. This simple model gives a suitable explanation for the general experimental observations. The possibilities of engineering the scattering resonances were also explored. A systematic study of graphene on a wide range of substrates revealed that the energy position of the resonances is in a direct relation to the magnitude of charge transfer between graphene and the substrate. Moreover, it was demonstrated that the scattering resonances in graphene on Ir(111) can be suppressed by nanopatterning either by a superlattice of Ir nanoclusters or by atomic hydrogen. These effects were attributed to strong local variations of tork function and/or destruction of long-range order of thephene lattice. The tunability of scattering resonances can be applied for optoelectronic devices based on graphene. Moreover, the results of this study expand the general understanding of the phenomenon of scattering resonances and are applicable to many other materials besides graphene.}, language = {en} } @phdthesis{Kuhlbrodt2002, author = {Kuhlbrodt, Till}, title = {Stability and variability of open-ocean deep convection in deterministic and stochastic simple models}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000622}, school = {Universit{\"a}t Potsdam}, year = {2002}, abstract = {Die Tiefenkonvektion ist ein wesentlicher Bestandteil der Zirkulation im Nordatlantik. Sie beeinflusst den nordw{\"a}rtigen W{\"a}rmetransport der thermohalinen Zirkulation. Ein Verst{\"a}ndnis ihrer Stabilit{\"a}t und Variabilit{\"a}t ist daher n{\"o}tig, um Klimaver{\"a}nderungen im Bereich des Nordatlantiks einsch{\"a}tzen zu k{\"o}nnen. Diese Arbeit hat zum Ziel, das konzeptionelle Verst{\"a}ndnis der Stabilit{\"a}t und der Variabilit{\"a}t der Tiefenkonvektion zu verbessern. Beobachtungsdaten aus der Labradorsee zeigen Phasen mit und ohne Tiefenkonvektion. Ein einfaches Modell mit zwei Boxen wird an diese Daten angepasst. Das Ergebnis legt nahe, dass die Labradorsee zwei koexistierende stabile Zust{\"a}nde hat, einen mit regelm{\"a}ßiger Tiefenkonvektion und einen ohne Tiefenkonvektion. Diese Bistabilit{\"a}t ergibt sich aus einer positiven Salzgehalts-R{\"u}ckkopplung, deren Ursache ein Netto-S{\"u}ßwassereintrag in die Deckschicht ist. Der konvektive Zustand kann schnell instabil werden, wenn der mittlere Antrieb sich hin zu w{\"a}rmeren oder weniger salzhaltigen Bedingungen {\"a}ndert. Die wetterbedingte Variabilit{\"a}t des externen Antriebs wird durch die Addition eines stochastischen Antriebsterms in das Modell eingebaut. Es zeigt sich, dass dann die Tiefenkonvektion h{\"a}ufig an- und wieder ausgeschaltet wird. Die mittlere Aufenthaltszeit in beiden Zust{\"a}nden ist ein Maß ihrer stochastischen Stabilit{\"a}t. Die stochastische Stabilit{\"a}t h{\"a}ngt in glatter Weise von den Parametern des Antriebs ab, im Gegensatz zu der deterministischen (nichtstochastischen) Stabilit{\"a}t, die sich abrupt {\"a}ndern kann. Sowohl das Mittel als auch die Varianz des stochastischen Antriebs beeinflussen die H{\"a}ufigkeit von Tiefenkonvektion. Eine Abnahme der Konvektionsh{\"a}ufigkeit, als Reaktion auf eine Abnahme des Salzgehalts an der Oberfl{\"a}che, kann zum Beispiel durch eine Zunahme der Variabilit{\"a}t in den W{\"a}rmefl{\"u}ssen kompensiert werden. Mit einem weiter vereinfachten Box-Modell werden einige Eigenschaften der stochastischen Stabilit{\"a}t analytisch untersucht. Es wird ein neuer Effekt beschrieben, die wandernde Monostabilit{\"a}t: Auch wenn die Tiefenkonvektion aufgrund ge{\"a}nderter Parameter des Antriebs kein stabiler Zustand mehr ist, kann der stochastische Antrieb immer noch h{\"a}ufig Konvektionsereignisse ausl{\"o}sen. Die analytischen Gleichungen zeigen explizit, wie die wandernde Monostabilit{\"a}t sowie andere Effekte von den Modellparametern abh{\"a}ngen. Diese Abh{\"a}ngigkeit ist f{\"u}r die mittleren Aufenthaltszeiten immer exponentiell, f{\"u}r die Wahrscheinlichkeit langer nichtkonvektiver Phasen dagegen nur dann, wenn diese Wahrscheinlichkeit gering ist. Es ist zu erwarten, dass wandernde Monostabilit{\"a}t auch in anderen Teilen des Klimasystems eine Rolle spielt. Insgesamt zeigen die Ergebnisse, dass die Stabilit{\"a}t der Tiefenkonvektion in der Labradorsee sehr empfindlich auf den Antrieb reagiert. Die Rolle der Variabilit{\"a}t ist entscheidend f{\"u}r ein Verst{\"a}ndnis dieser Empfindlichkeit. Kleine {\"A}nderungen im Antrieb k{\"o}nnen bereits die H{\"a}ufigkeit von Tiefenkonvektionsereignissen deutlich mindern, was sich vermutlich stark auf das regionale Klima auswirkt.}, subject = {Labradorsee ; Thermohaline Konvektion ; Stochastisches Modell}, language = {en} } @phdthesis{Kalbitz2011, author = {Kalbitz, Ren{\´e}}, title = {Stability of polarization in organic ferroelectric metal-insulator-semiconductor structures}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-57276}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Organic thin film transistors (TFT) are an attractive option for low cost electronic applications and may be used for active matrix displays and for RFID applications. To extend the range of applications there is a need to develop and optimise the performance of non-volatile memory devices that are compatible with the solution-processing fabrication procedures used in plastic electronics. A possible candidate is an organic TFT incorporating the ferroelectric co-polymer poly(vinylidenefluoride-trifluoroethylene)(P(VDF-TrFE)) as the gate insulator. Dielectric measurements have been carried out on all-organic metal-insulator-semiconductor structures with the ferroelectric polymer poly(vinylidenefluoride-trifluoroethylene) (P(VDF-TrFE)) as the gate insu-lator. The capacitance spectra of MIS devices, were measured under different biases, showing the effect of charge accumulation and depletion on the Maxwell-Wagner peak. The position and height of this peak clearly indicates the lack of stable depletion behavior and the decrease of mobility when increasing the depletion zone width, i.e. upon moving into the P3HT bulk. The lack of stable depletion was further investigated with capacitance-voltage (C-V) measurements. When the structure was driven into depletion, C-V plots showed a positive flat-band voltage shift, arising from the change in polarization state of the ferroelectric insulator. When biased into accumulation, the polarization was reversed. It is shown that the two polarization states are stable i.e. no depolarization occurs below the coercive field. However, negative charge trapped at the semiconductor-insulator interface during the depletion cycle masks the negative shift in flat-band voltage expected during the sweep to accumulation voltages. The measured output characteristics of the studied ferroelectric-field-effect transistors confirmed the results of the C-V plots. Furthermore, the results indicated a trapping of electrons at the positively charged surfaces of the ferroelectrically polarized P(VDF-TrFE) crystallites near the insulator/semiconductor in-terface during the first poling cycles. The study of the MIS structure by means of thermally stimulated current (TSC) revealed further evidence for the stability of the polarization under depletion voltages. It was shown, that the lack of stable depletion behavior is caused by the compensation of the orientational polarization by fixed electrons at the interface and not by the depolarization of the insulator, as proposed in several publications. The above results suggest a performance improvement of non-volatile memory devices by the optimization of the interface.}, language = {en} } @phdthesis{Koelsch2005, author = {K{\"o}lsch, Patrick}, title = {Static and dynamic properties of soluble surfactants at the air/water interface}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-5716}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {Amphiphilic molecules contain a hydrophilic headgroup and a hydrophobic tail. The headgroup is polar or ionic and likes water, the tail is typically an aliphatic chain that cannot be accommodated in a polar environment. The prevailing molecular asymmetry leads to a spontaneous adsorption of amphiphiles at the air/water or oil/water interfaces. As a result, the surface tension and the surface rheology is changed. Amphiphiles are important tools to deliberately modify the interfacial properties of liquid interfaces and enable new phenomena such as foams which cannot be formed in a pure liquid. In this thesis we investigate the static and dynamic properties of adsorption layers of soluble amphiphiles at the air/water interface, the so called Gibbs monolayers. The classical way for an investigation of these systems is based on a thermodynamic analysis of the equilibrium surface tension as a function of the bulk composition in the framework of Gibbs theory. However, thermodynamics does not provide any structural information and several recent publications challenge even fundamental text book concepts. The experimental investigation faces difficulties imposed by the low surface coverage and the presence of dissolved amphiphiles in the adjacent bulk phase. In this thesis we used a suite of techniques with the sensitivity to detect less than a monolayer of molecules at the air-water interface. Some of these techniques are extremely complex such as infrared visible sum frequency generation (IR-VIS SFG) spectroscopy or second harmonic generation (SHG). Others are traditional techniques, such as ellipsometry employed in new ways and pushed to new limits. Each technique probes selectively different parts of the interface and the combination provides a profound picture of the interfacial architecture. The first part of the thesis is dedicated to the distribution of ions at interfaces. Adsorption layers of ionic amphiphiles serve as model systems allowing to produce a defined surface charge. The charge of the monolayer is compensated by the counterions. As a result of a complex zoo of interactions there will be a defined distribution of ions at the interface, however, its experimental determination is a big scientific challenge. We could demonstrate that a combination of linear and nonlinear techniques gives direct insights in the prevailing ion distribution. Our investigations reveal specific ion effects which cannot be described by classical Poisson-Boltzmann mean field type theories. Adsorption layer and bulk phase are in thermodynamic equilibrium, however, it is important to stress that there is a constant molecular exchange between adsorbed and dissolved species. This exchange process is a key element for the understanding of some of the thermodynamic properties. An excellent way to study Gibbs monolayers is to follow the relaxation from a non-equilibrium to an equilibrium state. Upon compression amphiphiles must leave the adsorption layer and dissolve in the adjacent bulk phase. Upon expansion amphiphiles must adsorb at the interface to restore the equilibrium coverage. Obviously the frequency of the expansion and compression cycles must match the molecular exchange processes. At too low frequencies the equilibrium is maintained at all times. If the frequency is too fast the system behaves as a monolayer of insoluble surfactants. In this thesis we describe an unique variant of an oscillating bubble technique that measures precisely the real and imaginary part of the complex dilational modulus E in a frequency range up to 500 Hz. The extension of about two decades in the time domain in comparison to the conventional method of an oscillating drop is a tremendous achievement. The imaginary part of the complex dilational modulus E is a consequence of a dissipative process which is interpreted as an intrinsic surface dilational viscosity. The IR-VIS SFG spectra of the interfacial water provide a molecular interpretation of the underlying dissipative process.}, subject = {Nichtlineare Optik}, language = {en} }