@article{DoerriesChechkinSchumeretal.2022, author = {Doerries, Timo J. and Chechkin, Aleksei and Schumer, Rina and Metzler, Ralf}, title = {Rate equations, spatial moments, and concentration profiles for mobile-immobile models with power-law and mixed waiting time distributions}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {105}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {1}, publisher = {The American Institute of Physics}, address = {Woodbury, NY}, issn = {2470-0045}, doi = {10.1103/PhysRevE.105.014105}, pages = {24}, year = {2022}, abstract = {We present a framework for systems in which diffusion-advection transport of a tracer substance in a mobile zone is interrupted by trapping in an immobile zone. Our model unifies different model approaches based on distributed-order diffusion equations, exciton diffusion rate models, and random-walk models for multirate mobile-immobile mass transport. We study various forms for the trapping time dynamics and their effects on the tracer mass in the mobile zone. Moreover, we find the associated breakthrough curves, the tracer density at a fixed point in space as a function of time, and the mobile and immobile concentration profiles and the respective moments of the transport. Specifically, we derive explicit forms for the anomalous transport dynamics and an asymptotic power-law decay of the mobile mass for a Mittag-Leffler trapping time distribution. In our analysis we point out that even for exponential trapping time densities, transient anomalous transport is observed. Our results have direct applications in geophysical contexts, but also in biological, soft matter, and solid state systems.}, language = {en} } @article{KlugeSocolarSchoell2021, author = {Kluge, Lucas and Socolar, Joshua E. S. and Sch{\"o}ll, Eckehard}, title = {Random logic networks}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {104}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {6}, publisher = {American Physical Society}, address = {Woodbury, NY}, issn = {2470-0045}, doi = {10.1103/PhysRevE.104.064308}, pages = {10}, year = {2021}, abstract = {We investigate dynamical properties of a quantum generalization of classical reversible Boolean networks. The state of each node is encoded as a single qubit, and classical Boolean logic operations are supplemented by controlled bit-flip and Hadamard operations. We consider synchronous updating schemes in which each qubit is updated at each step based on stored values of the qubits from the previous step. We investigate the periodic or quasiperiodic behavior of quantum networks, and we analyze the propagation of single site perturbations through the quantum networks with input degree one. A nonclassical mechanism for perturbation propagation leads to substantially different evolution of the Hamming distance between the original and perturbed states.}, language = {en} } @article{ChigarevKazakovPikovsky2020, author = {Chigarev, Vladimir and Kazakov, Alexey and Pikovsky, Arkady}, title = {Kantorovich-Rubinstein-Wasserstein distance between overlapping attractor and repeller}, series = {Chaos : an interdisciplinary journal of nonlinear science}, volume = {30}, journal = {Chaos : an interdisciplinary journal of nonlinear science}, number = {7}, publisher = {American Institute of Physics}, address = {Melville}, issn = {1054-1500}, doi = {10.1063/5.0007230}, pages = {10}, year = {2020}, abstract = {We consider several examples of dynamical systems demonstrating overlapping attractor and repeller. These systems are constructed via introducing controllable dissipation to prototypic models with chaotic dynamics (Anosov cat map, Chirikov standard map, and incompressible three-dimensional flow of the ABC-type on a three-torus) and ergodic non-chaotic behavior (skew-shift map). We employ the Kantorovich-Rubinstein-Wasserstein distance to characterize the difference between the attractor and the repeller, in dependence on the dissipation level.}, language = {en} } @misc{CaesarRahmstorfFeulner2021, author = {Caesar, Levke and Rahmstorf, Stefan and Feulner, Georg}, title = {Reply to comment on 'On the relationship between Atlantic meridional overturning circulation slowdown and global surface warming'}, series = {Environmental research letters}, volume = {16}, journal = {Environmental research letters}, number = {3}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1748-9326}, doi = {10.1088/1748-9326/abc776}, pages = {5}, year = {2021}, abstract = {In their comment on our paper (Caesar et al 2020 Environ. Res. Lett. 15 024003), Chen and Tung (hereafter C\&T) argue that our analysis, showing that over the last decades Atlantic meridional overturning circulation (AMOC) strength and global mean surface temperature (GMST) were positively correlated, is incorrect. Their claim is mainly based on two arguments, neither of which is justified: first, C\&T claim that our analysis is based on 'established evidence' that was only true for preindustrial conditions-this is not the case. Using data from the modern period (1947-2012), we show that the established understanding (i.e. deep-water formation in the North Atlantic cools the deep ocean and warms the surface) is correct, but our analysis is not based on this fact. Secondly, C\&T claim that our results are based on a statistical analysis of only one cycle of data which was furthermore incorrectly detrended. This, too, is not true. Our conclusion that a weaker AMOC delays the current surface warming rather than enhances it, is based on several independent lines of evidence. The data we show to support this covers more than one cycle and the detrending (which was performed to avoid spurious correlations due to a common trend) does not affect our conclusion: the correlation between AMOC strength and GMST is positive. We do not claim that this is strong evidence that the two time series are in phase, but rather that this means that the two time series are not anti-correlated.}, language = {en} } @article{KupferBauervanRoesteletal.2022, author = {Kupfer, Thomas and Bauer, Evan B. and van Roestel, Jan and Bellm, Eric C. and Bildsten, Lars and Fuller, Jim and Prince, Thomas A. and Heber, Ulrich and Geier, Stephan and Green, Matthew J. and Kulkarni, Shrinivas R. and Bloemen, Steven and Laher, Russ R. and Rusholme, Ben and Schneider, David}, title = {Discovery of a Double-detonation Thermonuclear Supernova Progenitor}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, volume = {925}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {2041-8205}, doi = {10.3847/2041-8213/ac48f1}, pages = {10}, year = {2022}, abstract = {We present the discovery of a new double-detonation progenitor system consisting of a hot subdwarf B (sdB) binary with a white dwarf companion with a P (orb) = 76.34179(2) minutes orbital period. Spectroscopic observations are consistent with an sdB star during helium core burning residing on the extreme horizontal branch. Chimera light curves are dominated by ellipsoidal deformation of the sdB star and a weak eclipse of the companion white dwarf. Combining spectroscopic and light curve fits, we find a low-mass sdB star, M (sdB) = 0.383 +/- 0.028 M (circle dot) with a massive white dwarf companion, M (WD) = 0.725 +/- 0.026 M (circle dot). From the eclipses we find a blackbody temperature for the white dwarf of 26,800 K resulting in a cooling age of approximate to 25 Myr whereas our MESA model predicts an sdB age of approximate to 170 Myr. We conclude that the sdB formed first through stable mass transfer followed by a common envelope which led to the formation of the white dwarf companion approximate to 25 Myr ago. Using the MESA stellar evolutionary code we find that the sdB star will start mass transfer in approximate to 6 Myr and in approximate to 60 Myr the white dwarf will reach a total mass of 0.92 M (circle dot) with a thick helium layer of 0.17 M (circle dot). This will lead to a detonation that will likely destroy the white dwarf in a peculiar thermonuclear supernova. PTF1 J2238+7430 is only the second confirmed candidate for a double-detonation thermonuclear supernova. Using both systems we estimate that at least approximate to 1\% of white dwarf thermonuclear supernovae originate from sdB+WD binaries with thick helium layers, consistent with the small number of observed peculiar thermonuclear explosions.}, language = {en} } @article{SchaffenrothCasewellSchneideretal.2020, author = {Schaffenroth, Veronika and Casewell, Sarah L. and Schneider, D. and Kilkenny, David and Geier, Stephan and Heber, Ulrich and Irrgang, Andreas and Przybilla, Norbert and Marsh, Thomas R. and Littlefair, Stuart P. and Dhillon, Vik S.}, title = {A quantitative in-depth analysis of the prototype sdB plus BD system SDSS J08205+0008 revisited in the Gaia era}, series = {Monthly notices of the Royal Astronomical Society}, volume = {501}, journal = {Monthly notices of the Royal Astronomical Society}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/staa3661}, pages = {3847 -- 3870}, year = {2020}, abstract = {Subdwarf B stars are core-helium-burning stars located on the extreme horizontal branch (EHB). Extensive mass loss on the red giant branch is necessary to form them. It has been proposed that substellar companions could lead to the required mass loss when they are engulfed in the envelope of the red giant star. J08205+0008 was the first example of a hot subdwarf star with a close, substellar companion candidate to be found. Here, we perform an in-depth re-analysis of this important system with much higher quality data allowing additional analysis methods. From the higher resolution spectra obtained with ESO-VLT/XSHOOTER, we derive the chemical abundances of the hot subdwarf as well as its rotational velocity. Using the Gaia parallax and a fit to the spectral energy distribution in the secondary eclipse, tight constraints to the radius of the hot subdwarf are derived. From a long-term photometric campaign, we detected a significant period decrease of -3.2(8) x 10(-12) dd(-1). This can be explained by the non-synchronized hot subdwarf star being spun up by tidal interactions forcing it to become synchronized. From the rate of period decrease we could derive the synchronization time-scale to be 4 Myr, much smaller than the lifetime on EHB. By combining all different methods, we could constrain the hot subdwarf to a mass of 0.39-0.50 M-circle dot and a radius of R-sdB = 0.194 +/- 0.008 R-circle dot, and the companion to 0.061-0.071 M-circle dot with a radius of R-comp = 0.092 +/- 0.005 R-circle dot, below the hydrogen-burning limit. We therefore confirm that the companion is most likely a massive brown dwarf.}, language = {en} } @article{KoehlerHandorfJaiseretal.2021, author = {K{\"o}hler, Raphael H. and Handorf, D{\"o}rthe and Jaiser, Ralf and Dethloff, Klaus and Z{\"a}ngl, G{\"u}nther and Majewski, Detlev and Rex, Markus}, title = {Improved circulation in the Northern hemisphere by adjusting gravity wave drag parameterizations in seasonal experiments with ICON-NWP}, series = {Earth and Space Science : ESS}, volume = {8}, journal = {Earth and Space Science : ESS}, number = {3}, publisher = {American Geophysical Union}, address = {Malden, Mass.}, issn = {2333-5084}, doi = {10.1029/2021EA001676}, pages = {15}, year = {2021}, abstract = {The stratosphere is one of the main potential sources for subseasonal to seasonal predictability in midlatitudes in winter. The ability of an atmospheric model to realistically simulate the stratospheric dynamics is essential in order to move forward in the field of seasonal predictions in midlatitudes. Earlier studies with the ICOsahedral Nonhydrostatic atmospheric model (ICON) point out that stratospheric westerlies in ICON are underestimated. This is the first extensive study on the evaluation of Northern Hemisphere stratospheric winter circulation with ICON in numerical weather prediction (NWP) mode. Seasonal experiments with the default setup are able to reproduce the basic climatology of the stratospheric polar vortex. However, westerlies are too weak and major stratospheric warmings too frequent in ICON. Both a reduction of the nonorographic, and a reduction of the orographic gravity wave and wake drag lead to a strengthening of the stratospheric vortex and a bias reduction, in particular in January. However, the effect of the nonorographic gravity wave drag scheme on the stratosphere is stronger. Stratosphere-troposphere coupling is intensified and more realistic due to a reduced gravity wave drag. Furthermore, an adjustment of the subgrid-scale orographic drag parameterization leads to a significant error reduction in the mean sea level pressure. As a result of these findings, we present our current suggested improved setup for seasonal experiments with ICON-NWP.
Plain Language Summary Although seasonal forecasts for midlatitudes have the potential to be highly beneficial to the public sector, they are still characterized by a large amount of uncertainty. Exact simulations of the circulation in the stratosphere can help to improve tropospheric predictability on seasonal time scales. For this reason, we investigate how well the new German atmospheric model is able to simulate the stratospheric circulation. The model reproduces the basic behavior of the Northern Hemisphere stratospheric polar vortex, but the westerly circulation in winter is underestimated. The stratospheric circulation is influenced by gravity waves that exert drag on the flow. These processes are only partly physically represented in the model, but are very important and are hence parameterized. By adjusting the parameterizations for the gravity wave drag, the stratospheric polar vortex is strengthened, thereby yielding a more realistic stratospheric circulation. In addition, the altered parameterizations improve the simulated surface pressure pattern. Based upon this, we present our current suggested improved model setup for seasonal experiments.}, language = {en} } @article{PelisoliVosGeieretal.2020, author = {Pelisoli, Ingrid and Vos, Joris and Geier, Stephan and Schaffenroth, Veronika and Baran, Andrzej S.}, title = {Alone but not lonely}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {642}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/202038473}, pages = {14}, year = {2020}, abstract = {Context. Hot subdwarfs are core-helium burning stars that show lower masses and higher temperatures than canonical horizontal branch stars. They are believed to be formed when a red giant suffers an extreme mass-loss episode. Binary interaction is suggested to be the main formation channel, but the high fraction of apparently single hot subdwarfs (up to 30\%) has prompted single star formation scenarios to be proposed.Aims. We investigate the possibility that hot subdwarfs could form without interaction by studying wide binary systems. If single formation scenarios were possible, there should be hot subdwarfs in wide binaries that have undergone no interaction.Methods. Angular momentum accretion during interaction is predicted to cause the hot subdwarf companion to spin up to the critical velocity. The effect of this should still be observable given the timescales of the hot subdwarf phase. To study the rotation rates of companions, we have analysed light curves from the Transiting Exoplanet Survey Satellite for all known hot subdwarfs showing composite spectral energy distributions indicating the presence of a main sequence wide binary companion. If formation without interaction were possible, that would also imply the existence of hot subdwarfs in very wide binaries that are not predicted to interact. To identify such systems, we have searched for common proper motion companions with projected orbital distances of up to 0.1 pc to all known spectroscopically confirmed hot subdwarfs using Gaia DR2 astrometry.Results. We find that the companions in composite hot subdwarfs show short rotation periods when compared to field main sequence stars. They display a triangular-shaped distribution with a peak around 2.5 days, similar to what is observed for young open clusters. We also report a shortage of hot subdwarfs with candidate common proper motion companions. We identify only 16 candidates after probing 2938 hot subdwarfs with good astrometry. Out of those, at least six seem to be hierarchical triple systems, in which the hot subdwarf is part of an inner binary.Conclusions. The observed distribution of rotation rates for the companions in known wide hot subdwarf binaries provides evidence of previous interaction causing spin-up. Additionally, there is a shortage of hot subdwarfs in common proper motion pairs, considering the frequency of such systems among progenitors. These results suggest that binary interaction is always required for the formation of hot subdwarfs.}, language = {en} } @misc{MaierWolfKeiligetal.2018, author = {Maier, Philipp and Wolf, J{\"u}rgen and Keilig, Thomas and Krabbe, Alfred and Duffard, Rene and Ortiz, Jose-Luis and Klinkner, Sabine and Lengowski, Michael and M{\"u}ller, Thomas and Lockowandt, Christian and Krockstedt, Christian and Kappelmann, Norbert and Stelzer, Beate and Werner, Klaus and Geier, Stephan and Kalkuhl, Christoph and Rauch, Thomas and Schanz, Thomas and Barnstedt, J{\"u}rgen and Conti, Lauro and Hanke, Lars}, title = {Towards a European Stratospheric Balloon Observatory}, series = {Ground-based and Airborne Telescopes VII}, volume = {10700}, journal = {Ground-based and Airborne Telescopes VII}, publisher = {SPIE-INT Soc Optical Engineering}, address = {Bellingham}, isbn = {978-1-5106-1954-8}, issn = {0277-786X}, doi = {10.1117/12.2319248}, pages = {12}, year = {2018}, abstract = {This paper presents the concept of a community-accessible stratospheric balloon-based observatory that is currently under preparation by a consortium of European research institutes and industry. We present the technical motivation, science case, instrumentation, and a two-stage image stabilization approach of the 0.5-m UV/visible platform. In addition, we briefly describe the novel mid-sized stabilized balloon gondola under design to carry telescopes in the 0.5 to 0.6 m range as well as the currently considered flight option for this platform. Secondly, we outline the scientific and technical motivation for a large balloon-based FIR telescope and the ESBO DS approach towards such an infrastructure.}, language = {en} } @article{IrrgangGeierHeberetal.2019, author = {Irrgang, Andreas and Geier, Stephan and Heber, Ulrich and Kupfer, Thomas and F{\"u}rst, F.}, title = {PG 1610+062: a runaway B star challenging classical ejection mechanisms}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {628}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201935429}, pages = {17}, year = {2019}, abstract = {Hypervelocity stars are rare objects, mostly main-sequence (MS) B stars, traveling so fast that they will eventually escape from the Milky Way. Recently, it has been shown that the popular Hills mechanism, in which a binary system is disrupted via a close encounter with the supermassive black hole at the Galactic center, may not be their only ejection mechanism. The analyses of Gaia data ruled out a Galactic center origin for some of them, and instead indicated that they are extreme disk runaway stars ejected at velocities exceeding the predicted limits of classical scenarios (dynamical ejection from star clusters or binary supernova ejection). We present the discovery of a new extreme disk runaway star, PG 1610+062, which is a slowly pulsating B star bright enough to be studied in detail. A quantitative analysis of spectra taken with ESI at the Keck Observatory revealed that PG 1610+062 is a late B-type MS star of 4-5 M⊙ with low projected rotational velocity. Abundances (C, N, O, Ne, Mg, Al, Si, S, Ar, and Fe) were derived differentially with respect to the normal B star HD 137366 and indicate that PG 1610+062 is somewhat metal rich. A kinematic analysis, based on our spectrophotometric distance (17.3 kpc) and on proper motions from Gaia's second data release, shows that PG 1610+062 was probably ejected from the Carina-Sagittarius spiral arm at a velocity of 550 ± 40 km s-1, which is beyond the classical limits. Accordingly, the star is in the top five of the most extreme MS disk runaway stars and is only the second among the five for which the chemical composition is known.}, language = {en} } @article{RatzloffBarlowKupferetal.2019, author = {Ratzloff, Jeffrey K. and Barlow, Brad N. and Kupfer, Thomas and Corcoran, Kyle A. and Geier, Stephan and Bauer, Evan and Corbett, Henry T. and Howard, Ward S. and Glazier, Amy and Law, Nicholas M.}, title = {EVR-CB-001: An Evolving, Progenitor, White Dwarf Compact Binary Discovered with the Evryscope}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {883}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/ab3727}, pages = {12}, year = {2019}, abstract = {We present EVR-CB-001, the discovery of a compact binary with an extremely low-mass (0.21 +/- 0.05M(circle dot)) helium core white dwarf progenitor (pre-He WD) and an unseen low-mass (0.32 +/- 0.06M(circle dot)) helium white dwarf (He WD) companion. He WDs are thought to evolve from the remnant helium-rich core of a main-sequence star stripped during the giant phase by a close companion. Low-mass He WDs are exotic objects (only about 0.2\% of WDs are thought to be less than 0.3 M-circle dot), and are expected to be found in compact binaries. Pre-He WDs are even rarer, and occupy the intermediate phase after the core is stripped, but before the star becomes a fully degenerate WD and with a larger radius (approximate to 0.2R(circle dot)) than a typical WD. The primary component of EVR-CB-001 (the pre-He WD) was originally thought to be a hot subdwarf (sdB) star from its blue color and under-luminous magnitude, characteristic of sdBs. The mass, temperature (T-eff = 18,500 +/- 500 K), and surface gravity (log(g) = 4.96 +/- 0.04) solutions from this work are lower than values for typical hot subdwarfs. The primary is likely to be a post-red-giant branch, pre-He WD contracting into a He WD, and at a stage that places it nearest to sdBs on color-magnitude and T-eff-log(g) diagrams. EVR-CB-001 is expected to evolve into a fully double degenerate, compact system that should spin down and potentially evolve into a single hot subdwarf star. Single hot subdwarfs are observed, but progenitor systems have been elusive.}, language = {en} } @article{RomanowskyHandorfJaiseretal.2019, author = {Romanowsky, Erik and Handorf, D{\"o}rthe and Jaiser, Ralf and Wohltmann, Ingo and Dorn, Wolfgang and Ukita, Jinro and Cohen, Judah and Dethloff, Klaus and Rex, Markus}, title = {The role of stratospheric ozone for Arctic-midlatitude linkages}, series = {Scientific reports}, volume = {9}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-019-43823-1}, pages = {7}, year = {2019}, abstract = {Arctic warming was more pronounced than warming in midlatitudes in the last decades making this region a hotspot of climate change. Associated with this, a rapid decline of sea-ice extent and a decrease of its thickness has been observed. Sea-ice retreat allows for an increased transport of heat and momentum from the ocean up to the tropo- and stratosphere by enhanced upward propagation of planetary-scale atmospheric waves. In the upper atmosphere, these waves deposit the momentum transported, disturbing the stratospheric polar vortex, which can lead to a breakdown of this circulation with the potential to also significantly impact the troposphere in mid- to late-winter and early spring. Therefore, an accurate representation of stratospheric processes in climate models is necessary to improve the understanding of the impact of retreating sea ice on the atmospheric circulation. By modeling the atmospheric response to a prescribed decline in Arctic sea ice, we show that including interactive stratospheric ozone chemistry in atmospheric model calculations leads to an improvement in tropo-stratospheric interactions compared to simulations without interactive chemistry. This suggests that stratospheric ozone chemistry is important for the understanding of sea ice related impacts on atmospheric dynamics.}, language = {en} } @article{GeierRaddiFusilloetal.2019, author = {Geier, Stephan and Raddi, Roberto and Fusillo, Nicola Pietro Gentile and Marsh, T. R.}, title = {The population of hot subdwarf stars studied with Gaia}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {621}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201834236}, pages = {13}, year = {2019}, abstract = {Based on data from the ESA Gaia Data Release 2 (DR2) and several ground-based, multi-band photometry surveys we have compiled an all-sky catalogue of 39 800 hot subluminous star candidates selected in Gaia DR2 by means of colour, absolute magnitude, and reduced proper motion cuts. We expect the majority of the candidates to be hot subdwarf stars of spectral type B and O, followed by blue horizontal branch stars of late B-type (HBB), hot post-AGB stars, and central stars of planetary nebulae. The contamination by cooler stars should be about 10\%. The catalogue is magnitude limited to Gaia G < 19 mag and covers the whole sky. Except within the Galactic plane and LMC/SMC regions, we expect the catalogue to be almost complete up to about 1.5 kpc. The main purpose of this catalogue is to serve as input target list for the large-scale photometric and spectroscopic surveys which are ongoing or scheduled to start in the coming years. In the long run, securing a statistically significant sample of spectroscopically confirmed hot subluminous stars is key to advance towards a more detailed understanding of the latest stages of stellar evolution for single and binary stars.}, language = {en} } @misc{FinchBrakerReindletal.2019, author = {Finch, Nicolle L. and Braker, I. P. and Reindl, Nicole and Barstow, Martin A. and Casewell, Sarah L. and Burleigh, M. and Kupfer, Thomas and Kilkenny, D. and Geier, Stephan and Schaffenroth, Veronika and Bertolami Miller, Marcelo Miguel and Taubenberger, Stefan and Freudenthal, Joseph}, title = {Spectral Analysis of Binary Pre-white Dwarf Systems}, series = {Radiative signatures from the cosmos}, volume = {519}, journal = {Radiative signatures from the cosmos}, publisher = {Astronomical soc pacific}, address = {San Fransisco}, isbn = {978-1-58381-925-8}, issn = {1050-3390}, pages = {231 -- 238}, year = {2019}, abstract = {Short period double degenerate white dwarf (WD) binaries with periods of less than similar to 1 day are considered to be one of the likely progenitors of type Ia supernovae. These binaries have undergone a period of common envelope evolution. If the core ignites helium before the envelope is ejected, then a hot subdwarf remains prior to contracting into a WD. Here we present a comparison of two very rare systems that contain two hot subdwarfs in short period orbits. We provide a quantitative spectroscopic analysis of the systems using synthetic spectra from state-of-the-art non-LTE models to constrain the atmospheric parameters of the stars. We also use these models to determine the radial velocities, and thus calculate dynamical masses for the stars in each system.}, language = {en} } @phdthesis{Bojahr2016, author = {Bojahr, Andre}, title = {Hypersound interaction studied by time-resolved inelastic light and x-ray scattering}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-93860}, school = {Universit{\"a}t Potsdam}, pages = {xxiii, 201}, year = {2016}, abstract = {This publications-based thesis summarizes my contribution to the scientific field of ultrafast structural dynamics. It consists of 16 publications, about the generation, detection and coupling of coherent gigahertz longitudinal acoustic phonons, also called hypersonic waves. To generate such high frequency phonons, femtosecond near infrared laser pulses were used to heat nanostructures composed of perovskite oxides on an ultrashort timescale. As a consequence the heated regions of such a nanostructure expand and a high frequency acoustic phonon pulse is generated. To detect such coherent acoustic sound pulses I use ultrafast variants of optical Brillouin and x-ray scattering. Here an incident optical or x-ray photon is scattered by the excited sound wave in the sample. The scattered light intensity measures the occupation of the phonon modes. The central part of this work is the investigation of coherent high amplitude phonon wave packets which can behave nonlinearly, quite similar to shallow water waves which show a steepening of wave fronts or solitons well known as tsunamis. Due to the high amplitude of the acoustic wave packets in the solid, the acoustic properties can change significantly in the vicinity of the sound pulse. This may lead to a shape change of the pulse. I have observed by time-resolved Brillouin scattering, that a single cycle hypersound pulse shows a wavefront steepening. I excited hypersound pulses with strain amplitudes until 1\% which I have calibrated by ultrafast x-ray diffraction (UXRD). On the basis of this first experiment we developed the idea of the nonlinear mixing of narrowband phonon wave packets which we call "nonlinear phononics" in analogy with the nonlinear optics, which summarizes a kaleidoscope of surprising optical phenomena showing up at very high electric fields. Such phenomena are for instance Second Harmonic Generation, four-wave-mixing or solitons. But in case of excited coherent phonons the wave packets have usually very broad spectra which make it nearly impossible to look at elementary scattering processes between phonons with certain momentum and energy. For that purpose I tested different techniques to excite narrowband phonon wave packets which mainly consist of phonons with a certain momentum and frequency. To this end epitaxially grown metal films on a dielectric substrate were excited with a train of laser pulses. These excitation pulses drive the metal film to oscillate with the frequency given by their inverse temporal displacement and send a hypersonic wave of this frequency into the substrate. The monochromaticity of these wave packets was proven by ultrafast optical Brillouin and x-ray scattering. Using the excitation of such narrowband phonon wave packets I was able to observe the Second Harmonic Generation (SHG) of coherent phonons as a first example of nonlinear wave mixing of nanometric phonon wave packets.}, language = {en} } @phdthesis{Maerten2015, author = {Maerten, Lena}, title = {Spectroscopic perspectives on ultrafast coupling phenomena in perovskite oxides}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-77623}, school = {Universit{\"a}t Potsdam}, year = {2015}, abstract = {In this thesis, I study ultrafast dynamics in perovskite oxides using time resolved broadband spectroscopy. I focus on the observation of coherent phonon propagation by time resolved Brillouin scattering: following the excition of metal transducer films with a femtosecond infrared pump pulse, coherent phonon dynamics in the GHz frequency range are triggered. Their propagation is monitored using a delayed white light probe pulse. The technique is illustrated on various thin films and multilayered samples. I apply the technique to investigate the linear and nonlinear acoustic response in bulk SrTiO_3, which displays a ferroelastic phase transition from a cubic to a tetragonal structural phase at T_a=105 K. In the linear regime, I observe a coupling of the observed acoustic phonon mode to the softening optic modes describing the phase transition. In the nonlinear regime, I find a giant slowing down of the sound velocity in the low temperature phase that is only observable for a strain amplitude exceeding the tetragonality of the material. It is attributed to a coupling of the high frequency phonons to ferroelastic domain walls in the material. I propose a new mechanism for the coupling of strain waves to the domain walls that is only effective for high amplitude strain. A detailed study of the phonon attenuation across a wide temperature range shows that the phonon attenuation at low temperatures is influenced by the domain configuration, which is determined by interface strain. Preliminary measurements on magnetic-ferroelectric multilayers reveal that the excitation fluence needs to be carefully controlled when dynamics at phase transitions are studied.}, language = {en} } @article{ShaydukHallmannRodriguezFernandezetal.2022, author = {Shayduk, Roman and Hallmann, J{\"o}rg and Rodriguez-Fernandez, Angel and Scholz, Markus and Lu, Wei and B{\"o}senberg, Ulrike and M{\"o}ller, Johannes and Zozulya, Alexey and Jiang, Man and Wegner, Ulrike and Secareanu, Radu-Costin and Palmer, Guido and Emons, Moritz and Lederer, Max and Volkov, Sergey and Lindfors-Vrejoiu, Ionela and Schick, Daniel and Herzog, Marc and Bargheer, Matias and Madsen, Anders}, title = {Femtosecond x-ray diffraction study of multi-THz coherent phonons in SrTiO3}, series = {Applied physics letters}, volume = {120}, journal = {Applied physics letters}, number = {20}, publisher = {AIP Publishing}, address = {Melville}, issn = {0003-6951}, doi = {10.1063/5.0083256}, pages = {5}, year = {2022}, abstract = {We report generation of ultra-broadband longitudinal acoustic coherent phonon wavepackets in SrTiO3 (STO) with frequency components extending throughout the first Brillouin zone. The wavepackets are efficiently generated in STO using femtosecond infrared laser excitation of an atomically flat 1.6 nm-thick epitaxial SrRuO3 film. We use femtosecond x-ray diffraction at the European X-Ray Free Electron Laser Facility to study the dispersion and damping of phonon wavepackets. The experimentally determined damping constants for multi-THz frequency phonons compare favorably to the extrapolation of a simple ultrasound damping model over several orders of magnitude.}, language = {en} } @article{DebPopovaJaffresetal.2022, author = {Deb, Marwan and Popova, Elena and Jaffr{\`e}s, Henri-Yves and Keller, Niels and Bargheer, Matias}, title = {Polarization-dependent subpicosecond demagnetization in iron garnets}, series = {Physical review : B, covering condensed matter and materials physics}, volume = {106}, journal = {Physical review : B, covering condensed matter and materials physics}, number = {18}, publisher = {American Institute of Physics, American Physical Society}, address = {Woodbury, NY}, issn = {2469-9950}, doi = {10.1103/PhysRevB.106.184416}, pages = {7}, year = {2022}, abstract = {Controlling the magnetization dynamics at the fastest speed is a major issue of fundamental condensed matter physics and its applications for data storage and processing technologies. It requires a deep understanding of the interactions between the degrees of freedom in solids, such as spin, electron, and lattice as well as their responses to external stimuli. In this paper, we systematically investigate the fluence dependence of ultrafast magnetization dynamics induced by below-bandgap ultrashort laser pulses in the ferrimagnetic insulators BixY3-xFe5O12 with 1 xBi 3. We demonstrate subpicosecond demagnetization dynamics in this material followed by a very slow remagnetization process. We prove that this demagnetization results from an ultrafast heating of iron garnets by two-photon absorption (TPA), suggesting a phonon-magnon thermalization time of 0.6 ps. We explain the slow remagnetization timescale by the low phonon heat conductivity in garnets. Additionally, we show that the amplitudes of the demagnetization, optical change, and lattice strain can be manipulated by changing the ellipticity of the pump pulses. We explain this phenomenon considering the TPA circular dichroism. These findings open exciting prospects for ultrafast manipulation of spin, charge, and lattice dynamics in magnetic insulators by ultrafast nonlinear optics.}, language = {en} } @article{DebPopovaJaffresetal.2022, author = {Deb, Marwan and Popova, Elena and Jaffr{\`e}s, Henri-Yves and Keller, Niels and Bargheer, Matias}, title = {Controlling high-frequency spin-wave dynamics using double-pulse laser excitation}, series = {Physical review applied}, volume = {18}, journal = {Physical review applied}, number = {4}, publisher = {American Physical Society}, address = {College Park}, issn = {2331-7019}, doi = {10.1103/PhysRevApplied.18.044001}, pages = {7}, year = {2022}, abstract = {Manipulating spin waves is highly required for the development of innovative data transport and processing technologies. Recently, the possibility of triggering high-frequency standing spin waves in magnetic insulators using femtosecond laser pulses was discovered, raising the question about how one can manipulate their dynamics. Here we explore this question by investigating the ultrafast magnetiza-tion and spin-wave dynamics induced by double-pulse laser excitation. We demonstrate a suppression or enhancement of the amplitudes of the standing spin waves by precisely tuning the time delay between the two pulses. The results can be understood as the constructive or destructive interference of the spin waves induced by the first and second laser pulses. Our findings open exciting perspectives towards generating single-mode standing spin waves that combine high frequency with large amplitude and low magnetic damping.}, language = {en} } @misc{SteteKoopmanBargheer2018, author = {Stete, Felix and Koopman, Wouter-Willem Adriaan and Bargheer, Matias}, title = {Signatures of strong coupling on nanoparticles}, series = {Quantum Nano-Photonics}, journal = {Quantum Nano-Photonics}, publisher = {Springer}, address = {Dordrecht}, isbn = {978-94-024-1546-9}, issn = {1871-465X}, doi = {10.1007/978-94-024-1544-5_53}, pages = {445 -- 447}, year = {2018}, abstract = {The electromagnetic coupling of molecular excitations to plasmonic nanoparticles offers a promising method to manipulate the light-matter interaction at the nanoscale. Plasmonic nanoparticles foster exceptionally high coupling strengths, due to their capacity to strongly concentrate the light-field to sub-wavelength mode volumes. A particularly interesting coupling regime occurs, if the coupling increases to a level such that the coupling strength surpasses all damping rates in the system. In this so-called strong-coupling regime hybrid light-matter states emerge, which can no more be divided into separate light and matter components. These hybrids unite the features of the original components and possess new resonances whose positions are separated by the Rabi splitting energy h Omega. Detuning the resonance of one of the components leads to an anticrossing of the two arising branches of the new resonances omega(+) and omega(-) with a minimal separation of Omega = omega(+) - omega(-).}, language = {en} }