@article{ReeseAlbrechtMengeletal.2018, author = {Reese, Ronja and Albrecht, Torsten and Mengel, Matthias and Asay-Davis, Xylar and Winkelmann, Ricarda}, title = {Antarctic sub-shelf melt rates via PICO}, series = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, volume = {12}, journal = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, number = {6}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1994-0416}, doi = {10.5194/tc-12-1969-2018}, pages = {1969 -- 1985}, year = {2018}, abstract = {Ocean-induced melting below ice shelves is one of the dominant drivers for mass loss from the Antarctic Ice Sheet at present. An appropriate representation of sub-shelf melt rates is therefore essential for model simulations of marine-based ice sheet evolution. Continental-scale ice sheet models often rely on simple melt-parameterizations, in particular for long-term simulations, when fully coupled ice-ocean interaction becomes computationally too expensive. Such parameterizations can account for the influence of the local depth of the ice-shelf draft or its slope on melting. However, they do not capture the effect of ocean circulation underneath the ice shelf. Here we present the Potsdam Ice-shelf Cavity mOdel (PICO), which simulates the vertical overturning circulation in ice-shelf cavities and thus enables the computation of sub-shelf melt rates consistent with this circulation. PICO is based on an ocean box model that coarsely resolves ice shelf cavities and uses a boundary layer melt formulation. We implement it as a module of the Parallel Ice Sheet Model (PISM) and evaluate its performance under present-day conditions of the Southern Ocean. We identify a set of parameters that yield two-dimensional melt rate fields that qualitatively reproduce the typical pattern of comparably high melting near the grounding line and lower melting or refreezing towards the calving front. PICO captures the wide range of melt rates observed for Antarctic ice shelves, with an average of about 0.1 ma(-1) for cold sub-shelf cavities, for example, underneath Ross or Ronne ice shelves, to 16 ma(-1) for warm cavities such as in the Amundsen Sea region. This makes PICO a computationally feasible and more physical alternative to melt parameterizations purely based on ice draft geometry.}, language = {en} } @phdthesis{Doerries2024, author = {D{\"o}rries, Timo Julian}, title = {Anomalous transport and non-Gaussian dynamics in mobile-immobile models}, doi = {10.25932/publishup-63495}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-634959}, school = {Universit{\"a}t Potsdam}, pages = {ii, 177}, year = {2024}, abstract = {The mobile-immobile model (MIM) has been established in geoscience in the context of contaminant transport in groundwater. Here the tracer particles effectively immobilise, e.g., due to diffusion into dead-end pores or sorption. The main idea of the MIM is to split the total particle density into a mobile and an immobile density. Individual tracers switch between the mobile and immobile state following a two-state telegraph process, i.e., the residence times in each state are distributed exponentially. In geoscience the focus lies on the breakthrough curve (BTC), which is the concentration at a fixed location over time. We apply the MIM to biological experiments with a special focus on anomalous scaling regimes of the mean squared displacement (MSD) and non-Gaussian displacement distributions. As an exemplary system, we have analysed the motion of tau proteins, that diffuse freely inside axons of neurons. Their free diffusion thereby corresponds to the mobile state of the MIM. Tau proteins stochastically bind to microtubules, which effectively immobilises the tau proteins until they unbind and continue diffusing. Long immobilisation durations compared to the mobile durations give rise to distinct non-Gaussian Laplace shaped distributions. It is accompanied by a plateau in the MSD for initially mobile tracer particles at relevant intermediate timescales. An equilibrium fraction of initially mobile tracers gives rise to non-Gaussian displacements at intermediate timescales, while the MSD remains linear at all times. In another setting bio molecules diffuse in a biosensor and transiently bind to specific receptors, where advection becomes relevant in the mobile state. The plateau in the MSD observed for the advection-free setting and long immobilisation durations persists also for the case with advection. We find a new clear regime of anomalous diffusion with non-Gaussian distributions and a cubic scaling of the MSD. This regime emerges for initially mobile and for initially immobile tracers. For an equilibrium fraction of initially mobile tracers we observe an intermittent ballistic scaling of the MSD. The long-time effective diffusion coefficient is enhanced by advection, which we physically explain with the variance of mobile durations. Finally, we generalize the MIM to incorporate arbitrary immobilisation time distributions and focus on a Mittag-Leffler immobilisation time distribution with power-law tail ~ t^(-1-mu) with 0 and TAMSD <<(delta(2)(Delta))over bar>> quantifiers-of FBM featuring < x(2) (Delta >> = <<(delta(2)(Delta >)over bar>> proportional to Delta(2H) (where H is the Hurst exponent and Delta is the [lag] time) changes in the presence of a power-law deterministically varying diffusivity D-proportional to(t) proportional to t(alpha-1) -germane to the process of scaled Brownian motion (SBM)-determining the strength of fractional Gaussian noise. The resulting compound "scaled-fractional" Brownian motion or FBM-SBM is found to be nonergodic, with < x(2)(Delta >> proportional to Delta(alpha+)(2H)(-1) and <(delta 2(Delta >) over bar > proportional to Delta(2H). We also detect a stalling behavior of the MSDs for very subdiffusive SBM and FBM, when alpha + 2H - 1 < 0. The distribution of particle displacements for FBM-SBM remains Gaussian, as that for the parent processes of FBM and SBM, in the entire region of scaling exponents (0 < alpha < 2 and 0 < H < 1). The FBM-SBM process is aging in a manner similar to SBM. The velocity autocorrelation function (ACF) of particle increments of FBM-SBM exhibits a dip when the parent FBM process is subdiffusive. Both for sub- and superdiffusive FBM contributions to the FBM-SBM process, the SBM exponent affects the long-time decay exponent of the ACF. Applications of the FBM-SBM-amalgamated process to the analysis of SPT data are discussed. A comparative tabulated overview of recent experimental (mainly SPT) and computational datasets amenable for interpretation in terms of FBM-, SBM-, and FBM-SBM-like models of diffusion culminates the presentation. The statistical aspects of the dynamics of a wide range of biological systems is compared in the table, from nanosized beads in living cells, to chromosomal loci, to water diffusion in the brain, and, finally, to patterns of animal movements.}, language = {en} } @misc{Metzler2017, author = {Metzler, Ralf}, title = {Anomalous Diffusion in Membranes and the Cytoplasm of Biological Cells}, series = {Biophysical journal}, volume = {112}, journal = {Biophysical journal}, number = {3}, publisher = {Cell Press}, address = {Cambridge}, issn = {0006-3495}, doi = {10.1016/j.bpj.2016.11.2577}, pages = {476A -- 476A}, year = {2017}, language = {en} } @article{DieterichLindemannMoskoppetal.2022, author = {Dieterich, Peter and Lindemann, Otto and Moskopp, Mats Leif and Tauzin, Sebastien and Huttenlocher, Anna and Klages, Rainer and Chechkin, Aleksei V. and Schwab, Albrecht}, title = {Anomalous diffusion and asymmetric tempering memory in neutrophil chemotaxis}, series = {PLoS Computational Biology : a new community journal}, volume = {18}, journal = {PLoS Computational Biology : a new community journal}, number = {5}, publisher = {PLoS}, address = {San Fransisco}, issn = {1553-734X}, doi = {10.1371/journal.pcbi.1010089}, pages = {26}, year = {2022}, abstract = {Neutrophil granulocytes are essential for the first host defense. After leaving the blood circulation they migrate efficiently towards sites of inflammation. They are guided by chemoattractants released from cells within the inflammatory foci. On a cellular level, directional migration is a consequence of cellular front-rear asymmetry which is induced by the concentration gradient of the chemoattractants. The generation and maintenance of this asymmetry, however, is not yet fully understood. Here we analyzed the paths of chemotacting neutrophils with different stochastic models to gain further insight into the underlying mechanisms. Wildtype chemotacting neutrophils show an anomalous superdiffusive behavior. CXCR2 blockade and TRPC6-knockout cause the tempering of temporal correlations and a reduction of chemotaxis. Importantly, such tempering is found both in vitro and in vivo. These findings indicate that the maintenance of anomalous dynamics is crucial for chemotactic behavior and the search efficiency of neutrophils. The motility of neutrophils and their ability to sense and to react to chemoattractants in their environment are of central importance for the innate immunity. Neutrophils are guided towards sites of inflammation following the activation of G-protein coupled chemoattractant receptors such as CXCR2 whose signaling strongly depends on the activity of Ca2+ permeable TRPC6 channels. It is the aim of this study to analyze data sets obtained in vitro (murine neutrophils) and in vivo (zebrafish neutrophils) with a stochastic mathematical model to gain deeper insight into the underlying mechanisms. The model is based on the analysis of trajectories of individual neutrophils. Bayesian data analysis, including the covariances of positions for fractional Brownian motion as well as for exponentially and power-law tempered model variants, allows the estimation of parameters and model selection. Our model-based analysis reveals that wildtype neutrophils show pure superdiffusive fractional Brownian motion. This so-called anomalous dynamics is characterized by temporal long-range correlations for the movement into the direction of the chemotactic CXCL1 gradient. Pure superdiffusion is absent vertically to this gradient. This points to an asymmetric 'memory' of the migratory machinery, which is found both in vitro and in vivo. CXCR2 blockade and TRPC6-knockout cause tempering of temporal correlations in the chemotactic gradient. This can be interpreted as a progressive loss of memory, which leads to a marked reduction of chemotaxis and search efficiency of neutrophils. In summary, our findings indicate that spatially differential regulation of anomalous dynamics appears to play a central role in guiding efficient chemotactic behavior.}, language = {en} } @phdthesis{Buschhueter2017, author = {Buschh{\"u}ter, David}, title = {Anforderungsrelevante mathematik- und physikbezogene Leistungsdispositionen von Physikanf{\"a}ngerinnen und - anf{\"a}ngern}, school = {Universit{\"a}t Potsdam}, year = {2017}, language = {de} } @article{StangeHintscheSachseetal.2017, author = {Stange, Maike and Hintsche, Marius and Sachse, Kirsten and Gerhardt, Matthias and Valleriani, Angelo and Beta, Carsten}, title = {Analyzing the spatial positioning of nuclei in polynuclear giant cells}, series = {Journal of Physics D: Applied Physics}, volume = {50}, journal = {Journal of Physics D: Applied Physics}, number = {46}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0022-3727}, doi = {10.1088/1361-6463/aa8da0}, pages = {8}, year = {2017}, abstract = {How cells establish and maintain a well-defined size is a fundamental question of cell biology. Here we investigated to what extent the microtubule cytoskeleton can set a predefined cell size, independent of an enclosing cell membrane. We used electropulse-induced cell fusion to form giant multinuclear cells of the social amoeba Dictyostelium discoideum. Based on dual-color confocal imaging of cells that expressed fluorescent markers for the cell nucleus and the microtubules, we determined the subcellular distributions of nuclei and centrosomes in the giant cells. Our two- and three-dimensional imaging results showed that the positions of nuclei in giant cells do not fall onto a regular lattice. However, a comparison with model predictions for random positioning showed that the subcellular arrangement of nuclei maintains a low but still detectable degree of ordering. This can be explained by the steric requirements of the microtubule cytoskeleton, as confirmed by the effect of a microtubule degrading drug.}, language = {en} } @article{WangShpritsZhelayskayaetal.2019, author = {Wang, Dedong and Shprits, Yuri Y. and Zhelayskaya, Irina S. and Agapitov, Oleksiy and Drozdov, Alexander and Aseev, Nikita}, title = {Analytical chorus wave model derived from van Allen Probe Observations}, series = {Journal of geophysical research : Space physics}, volume = {124}, journal = {Journal of geophysical research : Space physics}, number = {2}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9380}, doi = {10.1029/2018JA026183}, pages = {1063 -- 1084}, year = {2019}, abstract = {Chorus waves play an important role in the dynamic evolution of energetic electrons in the Earth's radiation belts and ring current. Using more than 5 years of Van Allen Probe data, we developed a new analytical model for upper-band chorus (UBC; 0.5fce < f < fce) and lower-band chorus (LBC; 0.05fce < f < 0.5fce) waves, where fce is the equatorial electron gyrofrequency. By applying polynomial fits to chorus wave root mean square amplitudes, we developed regression models for LBC and UBC as a function of geomagnetic activity (Kp), L, magnetic latitude (λ), and magnetic local time (MLT). Dependence on Kp is separated from the dependence on λ, L, and MLT as Kp-scaling law to simplify the calculation of diffusion coefficients and inclusion into particle tracing codes. Frequency models for UBC and LBC are also developed, which depends on MLT and magnetic latitude. This empirical model is valid in all MLTs, magnetic latitude up to 20°, Kp ≤ 6, L-shell range from 3.5 to 6 for LBC and from 4 to 6 for UBC. The dependence of root mean square amplitudes on L are different for different bands, which implies different energy sources for different wave bands. This analytical chorus wave model is convenient for inclusion in quasi-linear diffusion calculations of electron scattering rates and particle simulations in the inner magnetosphere, especially for the newly developed four-dimensional codes, which require significantly improved wave parameterizations.}, language = {en} } @misc{MunyaevSmirnovKostinetal.2020, author = {Munyaev, Vyacheslav and Smirnov, Lev A. and Kostin, Vasily and Osipov, Grigory V. and Pikovskij, Arkadij}, title = {Analytical approach to synchronous states of globally coupled noisy rotators}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {2}, issn = {1866-8372}, doi = {10.25932/publishup-52426}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-524261}, pages = {17}, year = {2020}, abstract = {We study populations of globally coupled noisy rotators (oscillators with inertia) allowing a nonequilibrium transition from a desynchronized state to a synchronous one (with the nonvanishing order parameter). The newly developed analytical approaches resulted in solutions describing the synchronous state with constant order parameter for weakly inertial rotators, including the case of zero inertia, when the model is reduced to the Kuramoto model of coupled noise oscillators. These approaches provide also analytical criteria distinguishing supercritical and subcritical transitions to the desynchronized state and indicate the universality of such transitions in rotator ensembles. All the obtained analytical results are confirmed by the numerical ones, both by direct simulations of the large ensembles and by solution of the associated Fokker-Planck equation. We also propose generalizations of the developed approaches for setups where different rotators parameters (natural frequencies, masses, noise intensities, strengths and phase shifts in coupling) are dispersed.}, language = {en} } @article{MunyaevSmirnovKostinetal.2020, author = {Munyaev, Vyacheslav O. and Smirnov, Lev A. and Kostin, Vasily A. and Osipov, Grigory V. and Pikovskij, Arkadij}, title = {Analytical approach to synchronous states of globally coupled noisy rotators}, series = {New journal of physics : the open-access journal for physics}, volume = {22}, journal = {New journal of physics : the open-access journal for physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/ab6f93}, pages = {14}, year = {2020}, abstract = {We study populations of globally coupled noisy rotators (oscillators with inertia) allowing a nonequilibrium transition from a desynchronized state to a synchronous one (with the nonvanishing order parameter). The newly developed analytical approaches resulted in solutions describing the synchronous state with constant order parameter for weakly inertial rotators, including the case of zero inertia, when the model is reduced to the Kuramoto model of coupled noise oscillators. These approaches provide also analytical criteria distinguishing supercritical and subcritical transitions to the desynchronized state and indicate the universality of such transitions in rotator ensembles. All the obtained analytical results are confirmed by the numerical ones, both by direct simulations of the large ensembles and by solution of the associated Fokker-Planck equation. We also propose generalizations of the developed approaches for setups where different rotators parameters (natural frequencies, masses, noise intensities, strengths and phase shifts in coupling) are dispersed.}, language = {en} } @article{MunyaevSmirnovKostinetal.2020, author = {Munyaev, Vyacheslav and Smirnov, Lev A. and Kostin, Vasily and Osipov, Grigory V. and Pikovskij, Arkadij}, title = {Analytical approach to synchronous states of globally coupled noisy rotators}, series = {New Journal of Physics}, volume = {22}, journal = {New Journal of Physics}, number = {2}, publisher = {Springer Science}, address = {New York}, pages = {15}, year = {2020}, abstract = {We study populations of globally coupled noisy rotators (oscillators with inertia) allowing a nonequilibrium transition from a desynchronized state to a synchronous one (with the nonvanishing order parameter). The newly developed analytical approaches resulted in solutions describing the synchronous state with constant order parameter for weakly inertial rotators, including the case of zero inertia, when the model is reduced to the Kuramoto model of coupled noise oscillators. These approaches provide also analytical criteria distinguishing supercritical and subcritical transitions to the desynchronized state and indicate the universality of such transitions in rotator ensembles. All the obtained analytical results are confirmed by the numerical ones, both by direct simulations of the large ensembles and by solution of the associated Fokker-Planck equation. We also propose generalizations of the developed approaches for setups where different rotators parameters (natural frequencies, masses, noise intensities, strengths and phase shifts in coupling) are dispersed.}, language = {en} } @article{CecchiniSchelter2018, author = {Cecchini, Gloria and Schelter, Bj{\"o}rn}, title = {Analytical approach to network inference}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {98}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {2}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.98.022311}, pages = {10}, year = {2018}, abstract = {When the network is reconstructed, two types of errors can occur: false positive and false negative errors about the presence or absence of links. In this paper, the influence of these two errors on the vertex degree distribution is analytically analyzed. Moreover, an analytic formula of the density of the biased vertex degree distribution is found. In the inverse problem, we find a reliable procedure to reconstruct analytically the density of the vertex degree distribution of any network based on the inferred network and estimates for the false positive and false negative errors based on, e.g., simulation studies.}, language = {en} } @article{MatternPudellLaskinetal.2021, author = {Mattern, Maximilian and Pudell, Jan-Etienne and Laskin, Gennadii and Reppert, Alexander von and Bargheer, Matias}, title = {Analysis of the temperature- and fluence-dependent magnetic stress in laser-excited SrRuO3}, series = {Structural dynamics}, volume = {8}, journal = {Structural dynamics}, number = {2}, publisher = {AIP Publishing LLC}, address = {Melville, NY}, issn = {2329-7778}, doi = {10.1063/4.0000072}, pages = {9}, year = {2021}, abstract = {We use ultrafast x-ray diffraction to investigate the effect of expansive phononic and contractive magnetic stress driving the picosecond strain response of a metallic perovskite SrRuO3 thin film upon femtosecond laser excitation. We exemplify how the anisotropic bulk equilibrium thermal expansion can be used to predict the response of the thin film to ultrafast deposition of energy. It is key to consider that the laterally homogeneous laser excitation changes the strain response compared to the near-equilibrium thermal expansion because the balanced in-plane stresses suppress the Poisson stress on the picosecond timescale. We find a very large negative Gr{\"u}neisen constant describing the large contractive stress imposed by a small amount of energy in the spin system. The temperature and fluence dependence of the strain response for a double-pulse excitation scheme demonstrates the saturation of the magnetic stress in the high-fluence regime.}, language = {en} } @misc{MatternPudellLaskinetal.2021, author = {Mattern, Maximilian and Pudell, Jan-Etienne and Laskin, G. and Reppert, Alexander von and Bargheer, Matias}, title = {Analysis of the temperature- and fluence-dependent magnetic stress in laser-excited SrRuO3}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, issn = {1866-8372}, doi = {10.25932/publishup-51571}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-515718}, pages = {11}, year = {2021}, abstract = {We use ultrafast x-ray diffraction to investigate the effect of expansive phononic and contractive magnetic stress driving the picosecond strain response of a metallic perovskite SrRuO3 thin film upon femtosecond laser excitation. We exemplify how the anisotropic bulk equilibrium thermal expansion can be used to predict the response of the thin film to ultrafast deposition of energy. It is key to consider that the laterally homogeneous laser excitation changes the strain response compared to the near-equilibrium thermal expansion because the balanced in-plane stresses suppress the Poisson stress on the picosecond timescale. We find a very large negative Gr{\"u}neisen constant describing the large contractive stress imposed by a small amount of energy in the spin system. The temperature and fluence dependence of the strain response for a double-pulse excitation scheme demonstrates the saturation of the magnetic stress in the high-fluence regime.}, language = {en} } @phdthesis{Ma2018, author = {Ma, Siyuan}, title = {Analysis of Teukolsky equations on slowly rotating Kerr spacetimes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-414781}, school = {Universit{\"a}t Potsdam}, pages = {vi, 89}, year = {2018}, abstract = {In this thesis, we treat the extreme Newman-Penrose components of both the Maxwell field (s=±1) and the linearized gravitational perturbations (or "linearized gravity" for short) (s=±2) in the exterior of a slowly rotating Kerr black hole. Upon different rescalings, we can obtain spin s components which satisfy the separable Teukolsky master equation (TME). For each of these spin s components defined in Kinnersley tetrad, the resulting equations by performing some first-order differential operator on it once and twice (twice only for s=±2), together with the TME, are in the form of an "inhomogeneous spin-weighted wave equation" (ISWWE) with different potentials and constitute a linear spin-weighted wave system. We then prove energy and integrated local energy decay (Morawetz) estimates for this type of ISWWE, and utilize them to achieve both a uniform bound of a positive definite energy and a Morawetz estimate for the regular extreme Newman-Penrose components defined in the regular Hawking-Hartle tetrad. We also present some brief discussions on mode stability for TME for the case of real frequencies. This says that in a fixed subextremal Kerr spacetime, there is no nontrivial separated mode solutions to TME which are purely ingoing at horizon and purely outgoing at infinity. This yields a representation formula for solutions to inhomogeneous Teukolsky equations, and will play a crucial role in generalizing the above energy and Morawetz estimates results to the full subextremal Kerr case.}, language = {en} } @article{RinaldiFormisanoKappeletal.2019, author = {Rinaldi, G. and Formisano, M. and Kappel, David and Capaccioni, F. and Bockelee-Morvan, D. and Cheng, Y-C and Vincent, J-B and Deshapriya, P. and Arnold, G. and Capria, M. T. and Ciarniello, M. and De Sanctis, M. C. and Doose, L. and Erard, S. and Federico, C. and Filacchione, G. and Fink, U. and Leyrat, C. and Longobardo, A. and Magni, G. and Mighorini, A. and Mottola, S. and Naletto, G. and Raponi, A. and Taylor, F. and Tosi, F. and Tozzi, G. P. and Salatti, M.}, title = {Analysis of night-side dust activity on comet 67P observed by VIRTIS-M}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {630}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201834907}, pages = {16}, year = {2019}, abstract = {On 2015 July 18, near perihelion at a heliocentric distance of 1.28 au, the Visible InfraRed Thermal Imaging Spectrometer (VIRTIS-M) on board the Rosetta spacecraft had the opportunity of observing dust activity in the inner coma with a view of the night side (shadowed side) of comet 67P/Churyumov-Gerasimenko. At the time of the measurements we present here, we observe a dust plume that originates on the far side of the nucleus. We are able to identify the approximate location of its source at the boundary between the Hapi and Anuket regions, and we find that it has been in darkness for some hours before the observation. Assuming that this time span is equal to the conductive time scale, we obtain a thermal inertia in the range 25-36 W K-1 m(-2) s(-1/2). These thermal inertia values can be used to verify with a 3D finite-element method (REM) numerical code whether the surface and subsurface temperatures agree with the values found in the literature. We explored three different configurations: (1) a layer of water ice mixed with dust beneath a dust mantle of 5 mm with thermal inertia of 36 J m(-2) K-1 S-0.5 ; (2) the same structure, but with thermal inertia of 100 J m(-2) K-1 S-0.5; (3) an ice-dust mixture that is directly exposed. Of these three configurations, the first seems to be the most reasonable, both for the low thermal inertia and for the agreement with the surface and subsurface temperatures that have been found for the comet 67P/Churyumov-Gerasimenko. The spectral properties of the plume show that the visible dust color ranged from 16 +/- 4.8\%/100 nm to 13 +/- 2.6\%/100 nm, indicating that this plume has no detectable color gradient. The morphology of the plume can be classified as a narrow jet that has an estimated total ejected mass of between 6 and 19 tons when we assume size distribution indices between -2.5 and -3.}, language = {en} } @phdthesis{Zoeller1999, author = {Z{\"o}ller, Gert}, title = {Analyse raumzeitlicher Muster in Erdbebendaten}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000122}, school = {Universit{\"a}t Potsdam}, year = {1999}, abstract = {Die vorliegende Arbeit besch{\"a}ftigt sich mit der Charakterisierung von Seismizit{\"a}t anhand von Erdbebenkatalogen. Es werden neue Verfahren der Datenanalyse entwickelt, die Aufschluss dar{\"u}ber geben sollen, ob der seismischen Dynamik ein stochastischer oder ein deterministischer Prozess zugrunde liegt und was daraus f{\"u}r die Vorhersagbarkeit starker Erdbeben folgt. Es wird gezeigt, dass seismisch aktive Regionen h{\"a}ufig durch nichtlinearen Determinismus gekennzeichent sind. Dies schließt zumindest die M{\"o}glichkeit einer Kurzzeitvorhersage ein. Das Auftreten seismischer Ruhe wird h{\"a}ufig als Vorl{\"a}uferphaenomen f{\"u}r starke Erdbeben gedeutet. Es wird eine neue Methode pr{\"a}sentiert, die eine systematische raumzeitliche Kartierung seismischer Ruhephasen erm{\"o}glicht. Die statistische Signifikanz wird mit Hilfe des Konzeptes der Ersatzdaten bestimmt. Als Resultat erh{\"a}lt man deutliche Korrelationen zwischen seismischen Ruheperioden und starken Erdbeben. Gleichwohl ist die Signifikanz daf{\"u}r nicht hoch genug, um eine Vorhersage im Sinne einer Aussage {\"u}ber den Ort, die Zeit und die St{\"a}rke eines zu erwartenden Hauptbebens zu erm{\"o}glichen.}, language = {en} } @article{HeWangHeetal.2022, author = {He, Yushuang and Wang, Feipeng and He, Li and Wang, Qiang and Li, Jian and Qian, Yihua and Gerhard, Reimund and Plath, Ronald}, title = {An insight Into the role of Nano-Alumina on DC Flashover-Resistance and surface charge variation of Epoxy Nanocomposites}, series = {IEEE transactions on dielectrics and electrical insulation}, volume = {29}, journal = {IEEE transactions on dielectrics and electrical insulation}, number = {3}, publisher = {Inst. of Electr. and Electronics Engineers}, address = {Piscataway}, issn = {1070-9878}, doi = {10.1109/TDEI.2022.3173510}, pages = {1022 -- 1029}, year = {2022}, abstract = {The addition of nano-Al2O3 has been shown to enhance the breakdown voltage of epoxy resin, but its flashover results appeared with disputation. This work concentrates on the surface charge variation and dc flashover performance of epoxy resin with nano-Al2O3 doping. The dispersion of nano-Al2O3 in epoxy is characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The dc flashover voltages of samples under either positive or negative polarity are measured with a finger-electrode system, and the surface charge variations before and after flashovers were identified from the surface potential mapping. The results evidence that nano-Al2O3 would lead to a 16.9\% voltage drop for the negative flashovers and a 6.8\% drop for positive cases. It is found that one-time flashover clears most of the accumulated surface charges, regardless of positive or negative. As a result, the ground electrode is neighbored by an equipotential zone enclosed with low-density heterocharges. The equipotential zone tends to be broadened after 20 flashovers. The nano-Al2O3 is noticed as beneficial to downsize the equipotential zone due to its capability on charge migration, which is reasonable to maintain flashover voltage at a high level after multiple flashovers. Hence, nano-Al2O3 plays a significant role in improving epoxy with high resistance to multiple flashovers.}, language = {en} } @article{AbdallaAdamAharonianetal.2020, author = {Abdalla, H. and Adam, R. and Aharonian, Felix A. and Benkhali, F. Ait and Ang{\"u}ner, Ekrem Oǧuzhan and Arcaro, C. and Armand, C. and Armstrong, T. and Ashkar, H. and Backes, M. and Baghmanyan, V. and Martins, V. Barbosa and Barnacka, A. and Barnard, M. and Becherini, Y. and Berge, D. and Bernlohr, K. and Bi, B. and Bottcher, M. and Boisson, C. and Bolmont, J. and de Lavergne, M. de Bony and Bordas, Pol and Breuhaus, M. and Brun, F. and Brun, P. and Bryan, M. and Buchele, M. and Bulik, T. and Bylund, T. and Caroff, S. and Carosi, A. and Casanova, Sabrina and Chand, T. and Chandra, S. and Chen, A. and Cotter, G. and Curylo, M. and Mbarubucyeye, J. Damascene and Davids, I. D. and Davies, J. and Deil, C. and Devin, J. and deWilt, P. and Dirson, L. and Djannati-Atai, A. and Dmytriiev, A. and Donath, A. and Doroshenko, V. and Duffy, C. and Dyks, J. and Egberts, Kathrin and Eichhorn, F. and Einecke, S. and Emery, G. and Ernenwein, J. -P. and Feijen, K. and Fegan, S. and Fiasson, A. and de Clairfontaine, G. Fichet and Fontaine, G. and Funk, S. and Fussling, Matthias and Gabici, S. and Gallant, Y. A. and Giavitto, G. and Giunti, L. and Glawion, D. and Glicenstein, J. F. and Gottschall, D. and Grondin, M. -H. and Hahn, J. and Haupt, M. and Hermann, G. and Hinton, J. A. and Hofmann, W. and Hoischen, Clemens and Holch, T. L. and Holler, M. and Horbe, M. and Horns, D. and Huber, D. and Jamrozy, M. and Jankowsky, D. and Jankowsky, F. and Jardin-Blicq, A. and Joshi, V. and Jung-Richardt, I. and Kasai, E. and Kastendieck, M. A. and Katarzynski, K. and Katz, U. and Khangulyan, D. and Khelifi, B. and Klepser, S. and Kluzniak, W. and Komin, Nu. and Konno, R. and Kosack, K. and Kostunin, D. and Kreter, M. and Lamanna, G. and Lemiere, A. and Lemoine-Goumard, M. and Lenain, J. -P. and Levy, C. and Lohse, T. and Lypova, I. and Mackey, J. and Majumdar, J. and Malyshev, D. and Malyshev, D. and Marandon, V. and Marchegiani, P. and Marcowith, Alexandre and Mares, A. and Marti-Devesa, G. and Marx, R. and Maurin, G. and Meintjes, P. J. and Meyer, M. and Mitchell, A. and Moderski, R. and Mohamed, M. and Mohrmann, L. and Montanari, A. and Moore, C. and Morris, P. and Moulin, Emmanuel and Muller, J. and Murach, T. and Nakashima, K. and Nayerhoda, A. and de Naurois, M. and Ndiyavala, H. and Niederwanger, F. and Niemiec, J. and Oakes, L. and O'Brien, Patrick and Odaka, H. and Ohm, S. and Olivera-Nieto, L. and Wilhelmi, E. de Ona and Ostrowski, M. and Oya, I. and Panter, M. and Panny, S. and Parsons, R. D. and Peron, G. and Peyaud, B. and Piel, Q. and Pita, S. and Poireau, V. and Noel, A. Priyana and Prokhorov, D. A. and Prokoph, H. and Puhlhofer, G. and Punch, M. and Quirrenbach, A. and Raab, S. and Rauth, R. and Reichherzer, P. and Reimer, A. and Reimer, O. and Remy, Q. and Renaud, M. and Rieger, F. and Rinchiuso, L. and Romoli, C. and Rowell, G. and Rudak, B. and Ruiz-Velasco, E. and Sahakian, V. and Sailer, S. and Sanchez, D. A. and Santangelo, Andrea and Sasaki, M. and Scalici, M. and Schussler, F. and Schutte, H. M. and Schwanke, U. and Schwemmer, S. and Seglar-Arroyo, M. and Senniappan, M. and Seyffert, A. S. and Shafi, N. and Shiningayamwe, K. and Simoni, R. and Sinha, A. and Sol, H. and Specovius, A. and Spencer, S. and Spir-Jacob, M. and Stawarz, L. and Sun, L. and Steenkamp, R. and Stegmann, C. and Steinmassl, S. and Steppa, C. and Takahashi, T. and Tavernier, T. and Taylor, A. M. and Terrier, R. and Tiziani, D. and Tluczykont, M. and Tomankova, L. and Trichard, C. and Tsirou, M. and Tuffs, R. and Uchiyama, Y. and van der Walt, D. J. and van Eldik, C. and van Rensburg, C. and van Soelen, B. and Vasileiadis, G. and Veh, J. and Venter, C. and Vincent, P. and Vink, J. and Volk, H. J. and Vuillaume, T. and Wadiasingh, Z. and Wagner, S. J. and Watson, J. and Werner, F. and White, R. and Wierzcholska, A. and Wong, Yu Wun and Yusafzai, A. and Zacharias, M. and Zanin, R. and Zargaryan, D. and Zdziarski, A. A. and Zech, Alraune and Zhu, S. J. and Ziegler, A. and Zorn, J. and Zouari, S. and Zywucka, N.}, title = {An extreme particle accelerator in the Galactic plane}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {644}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {HESS Collaboration}, issn = {0004-6361}, doi = {10.1051/0004-6361/202038851}, pages = {8}, year = {2020}, abstract = {The unidentified very-high-energy (VHE; E > 0.1 TeV) gamma -ray source, HESS J1826-130, was discovered with the High Energy Stereoscopic System (HESS) in the Galactic plane. The analysis of 215 h of HESS data has revealed a steady gamma -ray flux from HESS J1826-130, which appears extended with a half-width of 0.21 degrees +/- 0.02
(stat)degrees
stat degrees +/- 0.05
(sys)degrees sys degrees . The source spectrum is best fit with either a power-law function with a spectral index Gamma = 1.78 +/- 0.10(stat) +/- 0.20(sys) and an exponential cut-off at 15.2
(+5.5)(-3.2) -3.2+5.5 TeV, or a broken power-law with Gamma (1) = 1.96 +/- 0.06(stat) +/- 0.20(sys), Gamma (2) = 3.59 +/- 0.69(stat) +/- 0.20(sys) for energies below and above E-br = 11.2 +/- 2.7 TeV, respectively. The VHE flux from HESS J1826-130 is contaminated by the extended emission of the bright, nearby pulsar wind nebula, HESS J1825-137, particularly at the low end of the energy spectrum. Leptonic scenarios for the origin of HESS J1826-130 VHE emission related to PSR J1826-1256 are confronted by our spectral and morphological analysis. In a hadronic framework, taking into account the properties of dense gas regions surrounding HESS J1826-130, the source spectrum would imply an astrophysical object capable of accelerating the parent particle population up to greater than or similar to 200 TeV. Our results are also discussed in a multiwavelength context, accounting for both the presence of nearby supernova remnants, molecular clouds, and counterparts detected in radio, X-rays, and TeV energies.}, language = {en} } @article{NakoudiStachlewskaRitter2021, author = {Nakoudi, Konstantina and Stachlewska, Iwona S. and Ritter, Christoph}, title = {An extended lidar-based cirrus cloud retrieval scheme}, series = {Optics express : the international electronic journal of optics / Optica}, volume = {29}, journal = {Optics express : the international electronic journal of optics / Optica}, number = {6}, publisher = {Optical Society of America}, address = {Washington}, issn = {1094-4087}, doi = {10.1364/OE.414770}, pages = {8553 -- 8580}, year = {2021}, abstract = {Accurate and precise characterization of cirrus cloud geometrical and optical properties is essential for better constraining their radiative footprint. A lidar-based retrieval scheme is proposed here, with its performance assessed on fine spatio-temporal observations over the Arctic site of Ny-Alesund, Svalbard. Two contributions related to cirrus geometrical (dynamic Wavelet Covariance Transform (WCT)) and optical properties (constrained Klett) are reported. The dynamic WCT rendered cirrus detection more robust, especially for thin cirrus layers that frequently remained undetected by the classical WCT method. Regarding optical characterization, we developed an iterative scheme for determining the cirrus lidar ratio (LRci) that is a crucial parameter for aerosol - cloud discrimination. Building upon the Klett-Fernald method, the LRci was constrained by an additional reference value. In established methods, such as the double-ended Klett, an aerosol-free reference value is applied. In the proposed constrained Klett, however, the reference value was approximated from cloud-free or low cloud optical depth (COD up to 0.2) profiles and proved to agree with independent Raman estimates. For optically thin cirrus, the constrained Klett inherent uncertainties reached 50\% (60-74\%) in terms of COD (LRci). However, for opaque cirrus COD (LRci) uncertainties were lower than 10\% (15\%). The detection method discrepancies (dynamic versus static WCT) had a higher impact on the optical properties of low COD layers (up to 90\%) compared to optically thicker ones (less than 10\%). The constrained Klett presented high agreement with two established retrievals. For an exemplary cirrus cloud, the constrained Klett estimated the COD355 (LRci355) at 0.28 +/- 0.17 (29 +/- 4 sr), the double-ended Klett at 0.27 +/- 0.15 (32 +/- 4 sr) and the Raman retrievals at 0.22 +/- 0.12 (26 +/- 11 sr). Our approach to determine the necessary reference value can also be applied in established methods and increase their accuracy. In contrast, the classical aerosol-free assumption led to 44 sr LRci overestimation in optically thin layers and 2-8 sr in thicker ones. The multiple scattering effect was corrected using Eloranta (1998) and accounted for 50-60\% extinction underestimation near the cloud base and 20-30\% within the cirrus layers.}, language = {en} } @article{Grebenkov2022, author = {Grebenkov, Denis S.}, title = {An encounter-based approach for restricted diffusion with a gradient drift}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {55}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {4}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8121/ac411a}, pages = {34}, year = {2022}, abstract = {We develop an encounter-based approach for describing restricted diffusion with a gradient drift toward a partially reactive boundary. For this purpose, we introduce an extension of the Dirichlet-to-Neumann operator and use its eigenbasis to derive a spectral decomposition for the full propagator, i.e. the joint probability density function for the particle position and its boundary local time. This is the central quantity that determines various characteristics of diffusion-influenced reactions such as conventional propagators, survival probability, first-passage time distribution, boundary local time distribution, and reaction rate. As an illustration, we investigate the impact of a constant drift onto the boundary local time for restricted diffusion on an interval. More generally, this approach accesses how external forces may influence the statistics of encounters of a diffusing particle with the reactive boundary.}, language = {en} } @article{SmirnovShpritsAllisonetal.2022, author = {Smirnov, Artem and Shprits, Yuri Y. and Allison, Hayley and Aseev, Nikita and Drozdov, Alexander and Kollmann, Peter and Wang, Dedong and Saikin, Anthony}, title = {An empirical model of the equatorial electron pitch angle distributions in earth's outer radiation belt}, series = {Space Weather: the International Journal of Research and Applications}, volume = {20}, journal = {Space Weather: the International Journal of Research and Applications}, number = {9}, publisher = {American Geophysical Union}, address = {Washington, DC}, issn = {1542-7390}, doi = {10.1029/2022SW003053}, pages = {17}, year = {2022}, abstract = {In this study, we present an empirical model of the equatorial electron pitch angle distributions (PADs) in the outer radiation belt based on the full data set collected by the Magnetic Electron Ion Spectrometer (MagEIS) instrument onboard the Van Allen Probes in 2012-2019. The PADs are fitted with a combination of the first, third and fifth sine harmonics. The resulting equation resolves all PAD types found in the outer radiation belt (pancake, flat-top, butterfly and cap PADs) and can be analytically integrated to derive omnidirectional flux. We introduce a two-step modeling procedure that for the first time ensures a continuous dependence on L, magnetic local time and activity, parametrized by the solar wind dynamic pressure. We propose two methods to reconstruct equatorial electron flux using the model. The first approach requires two uni-directional flux observations and is applicable to low-PA data. The second method can be used to reconstruct the full equatorial PADs from a single uni- or omnidirectional measurement at off-equatorial latitudes. The model can be used for converting the long-term data sets of electron fluxes to phase space density in terms of adiabatic invariants, for physics-based modeling in the form of boundary conditions, and for data assimilation purposes.}, language = {en} } @phdthesis{Bastian2023, author = {Bastian, Martin}, title = {An emergent machine learning approach for seasonal cyclone activity forecasts}, school = {Universit{\"a}t Potsdam}, pages = {135}, year = {2023}, abstract = {Seasonal forecasts are of great interest in many areas. Knowing the amount of precipitation for the upcoming season in regions of water scarcity would facilitate a better water management. If farmers knew the weather conditions of the upcoming summer at sowing time, they could select those cereal species that are best adapted to these conditions. This would allow farmers to improve the harvest and potentially even reduce the amount of pesticides used. However, the undoubted advantages of seasonal forecasts are often opposed by their high degree of uncertainty. The great challenge of generating seasonal forecasts with lead times of several months mainly originates from the chaotic nature of the earth system. In a chaotic system, even tiny differences in the initial conditions can lead to strong deviations in the system's state in the long run. In this dissertation we propose an emergent machine learning approach for seasonal forecasting, called the AnlgModel. The AnlgModel combines the analogue method with myopic feature selection and bootstrapping. To benchmark the abilities of the AnlgModel we apply it to seasonal cyclone activity forecasts in the North Atlantic and Northwest Pacific. The AnlgModel demonstrates competitive hindcast skills with two operational forecasts and even outperforms these for long lead times. In the second chapter we comprehend the forecasting strategy of the Anlg-Model. We thereby analyse the analogue selection process for the 2017 North Atlantic and the 2018 Northwest Pacific seasonal cyclone activity. The analysis shows that those climate indices which are known to influence the seasonal cyclone activity, such as the Ni{\~n}o 3.4 SST, are correctly represented among the selected analogues. Furthermore the selected analogues reflect large-scale climate patterns that were identified by expert reports as being determinative for these particular seasons. In the third chapter we analyse the features that are used by the AnlgModel for its predictions. We therefore inspect the feature relevance (FR). The FR patterns learned by the AnlgModel show a high congruence with the predictor regions used by the operational forecasts. However, the AnlgModel also discovered new features, such as the SST anomaly in the Gulf of Guinea during November. This SST pattern exhibits a remarkably high predictive potential for the upcoming Atlantic hurricane activity. In the final chapter we investigate potential mechanisms, that link two of these regions with high feature relevance to the Atlantic hurricane activity. We mainly focus on ocean surface transport. The ocean surface flow paths are calculated using Lagrangian particle analysis. We demonstrate that the FR patterns in the region of the Canary islands do not correspond with ocean surface transport. It is instead likely that these FR patterns fingerprint a wind transport of latent heat. The second region to be studied is situated in the Gulf of Guinea. Our analysis shows that the FR patterns seen there do fingerprint ocean surface transport. However, our simulations also show that at least one other mechanism is involved in linking the Gulf of Guinea SST anomaly in November to the hurricane activity of the upcoming season. In this work the AnlgModel does not only demonstrate its outstanding forecast skills but also shows its capabilities as research tool for detecting oceanic and atmospheric mechanisms.}, language = {en} } @article{CiemerRehmKurthsetal.2020, author = {Ciemer, Catrin and Rehm, Lars and Kurths, J{\"u}rgen and Donner, Reik Volker and Winkelmann, Ricarda and Boers, Niklas}, title = {An early-warning indicator for Amazon droughts exclusively based on tropical Atlantic sea surface temperatures}, series = {Environmental Research Letters}, volume = {15}, journal = {Environmental Research Letters}, number = {9}, publisher = {IOP - Institute of Physics Publishing}, address = {Bristol}, pages = {10}, year = {2020}, abstract = {Droughts in tropical South America have an imminent and severe impact on the Amazon rainforest and affect the livelihoods of millions of people. Extremely dry conditions in Amazonia have been previously linked to sea surface temperature (SST) anomalies in the adjacent tropical oceans. Although the sources and impacts of such droughts have been widely studied, establishing reliable multi-year lead statistical forecasts of their occurrence is still an ongoing challenge. Here, we further investigate the relationship between SST and rainfall anomalies using a complex network approach. We identify four ocean regions which exhibit the strongest overall SST correlations with central Amazon rainfall, including two particularly prominent regions in the northern and southern tropical Atlantic. Based on the time-dependent correlation between SST anomalies in these two regions alone, we establish a new early-warning method for droughts in the central Amazon basin and demonstrate its robustness in hindcasting past major drought events with lead-times up to 18 months.}, language = {en} } @misc{CiemerRehmKurthsetal.2020, author = {Ciemer, Catrin and Rehm, Lars and Kurths, J{\"u}rgen and Donner, Reik Volker and Winkelmann, Ricarda and Boers, Niklas}, title = {An early-warning indicator for Amazon droughts exclusively based on tropical Atlantic sea surface temperatures}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {9}, issn = {1866-8372}, doi = {10.25932/publishup-52586}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-525863}, pages = {12}, year = {2020}, abstract = {Droughts in tropical South America have an imminent and severe impact on the Amazon rainforest and affect the livelihoods of millions of people. Extremely dry conditions in Amazonia have been previously linked to sea surface temperature (SST) anomalies in the adjacent tropical oceans. Although the sources and impacts of such droughts have been widely studied, establishing reliable multi-year lead statistical forecasts of their occurrence is still an ongoing challenge. Here, we further investigate the relationship between SST and rainfall anomalies using a complex network approach. We identify four ocean regions which exhibit the strongest overall SST correlations with central Amazon rainfall, including two particularly prominent regions in the northern and southern tropical Atlantic. Based on the time-dependent correlation between SST anomalies in these two regions alone, we establish a new early-warning method for droughts in the central Amazon basin and demonstrate its robustness in hindcasting past major drought events with lead-times up to 18 months.}, language = {en} } @misc{AllefeldKurths2004, author = {Allefeld, Carsten and Kurths, J{\"u}rgen}, title = {An approach to multivariate phase synchronization analysis and its application to event-related potentials}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-20106}, year = {2004}, abstract = {A method for the multivariate analysis of statistical phase synchronization phenomena in empirical data is presented. A first statistical approach is complemented by a stochastic dynamic model, to result in a data analysis algorithm which can in a specific sense be shown to be a generic multivariate statistical phase synchronization analysis. The method is applied to EEG data from a psychological experiment, obtaining results which indicate the relevance of this method in the context of cognitive science as well as in other fields.}, language = {en} } @article{DavidzonIlbertFaisstetal.2018, author = {Davidzon, Iary and Ilbert, Olivier and Faisst, Andreas L. and Sparre, Martin and Capak, Peter L.}, title = {An Alternate Approach to Measure Specific Star Formation Rates at 2 < z < 7}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {852}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aaa19e}, pages = {11}, year = {2018}, abstract = {We trace the specific star formation rate (sSFR) of massive star-forming galaxies (greater than or similar to 10(10)M(circle dot)) from z similar to 2 to 7. Our method is substantially different from previous analyses, as it does not rely on direct estimates of star formation rate, but on the differential evolution of the galaxy stellar mass function (SMF). We show the reliability of this approach by means of semianalytical and hydrodynamical cosmological simulations. We then apply it to real data, using the SMFs derived in the COSMOS and CANDELS fields. We find that the sSFR is proportional to (1 + z)(1.1) (+/-) (0.2) at z > 2, in agreement with other observations but in tension with the steeper evolution predicted by simulations from z similar to 4 to 2. We investigate the impact of several sources of observational bias, which, however, cannot account for this discrepancy. Although the SMF of high-redshift galaxies is still affected by significant errors, we show that future large-area surveys will substantially reduce them, making our method an effective tool to probe the massive end of the main sequence of star-forming galaxies.}, language = {en} } @unpublished{MaassPereverzevRamlauetal.1998, author = {Maaß, Peter and Pereverzev, Sergei V. and Ramlau, Ronny and Solodky, Sergei G.}, title = {An adaptive discretization for Tikhonov-Phillips regularization with a posteriori parameter selection}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-14739}, year = {1998}, abstract = {The aim of this paper is to describe an efficient strategy for descritizing ill-posed linear operator equations of the first kind: we consider Tikhonov-Phillips-regularization χ^δ α = (a * a + α I)^-1 A * y ^δ with a finite dimensional approximation A n instead of A. We propose a sparse matrix structure which still leads to optimal convergences rates but requires substantially less scalar products for computing A n compared with standard methods.}, language = {en} } @phdthesis{Nagel2019, author = {Nagel, Oliver}, title = {Amoeboid cells as a transport system for micro-objects}, doi = {10.25932/publishup-44219}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-442192}, school = {Universit{\"a}t Potsdam}, pages = {x, 84}, year = {2019}, abstract = {Due to advances in science and technology towards smaller and more powerful processing units, the fabrication of micrometer sized machines for different tasks becomes more and more possible. Such micro-robots could revolutionize medical treatment of diseases and shall support to work on other small machines. Nevertheless, scaling down robots and other devices is a challenging task and will probably remain limited in near future. Over the past decade the concept of bio-hybrid systems has proved to be a promising approach in order to advance the further development of micro-robots. Bio-hybrid systems combine biological cells with artificial components, thereby benefiting from the functionality of living biological cells. Cell-driven micro-transport is one of the most prominent applications in the emerging field of these systems. So far, micrometer sized cargo has been successfully transported by means of swimming bacterial cells. The potential of motile adherent cells as transport systems has largely remained unexplored. This thesis concentrates on the social amoeba Dictyostelium discoideum as a potential candidate for an amoeboid bio-hybrid transport system. The use of this model organism comes with several advantages. Due to the unspecific properties of Dictyostelium adhesion, a wide range of different cargo materials can be used for transport. As amoeboid cells exceed bacterial cells in size by one order of magnitude, also the size of an object carried by a single cell can also be much larger for an amoeba. Finally it is possible to guide the cell-driven transport based on the chemotactic behavior of the amoeba. Since cells undergo a developmentally induced chemotactic aggregation, cargo could be assembled in a self-organized manner into a cluster. It is also possible to impose an external chemical gradient to guide the amoeboid transport system to a desired location. To establish Dictyostelium discoideum as a possible candidate for bio-hybrid transport systems, this thesis will first investigate the movement of single cells. Secondly, the interaction of cargo and cells will be studied. Eventually, a conceptional proof will be conducted, that the cheomtactic behavior can be exploited either to transport a cargo self-organized or through an external chemical source.}, language = {en} } @article{PelisoliVosGeieretal.2020, author = {Pelisoli, Ingrid and Vos, Joris and Geier, Stephan and Schaffenroth, Veronika and Baran, Andrzej S.}, title = {Alone but not lonely}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {642}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/202038473}, pages = {14}, year = {2020}, abstract = {Context. Hot subdwarfs are core-helium burning stars that show lower masses and higher temperatures than canonical horizontal branch stars. They are believed to be formed when a red giant suffers an extreme mass-loss episode. Binary interaction is suggested to be the main formation channel, but the high fraction of apparently single hot subdwarfs (up to 30\%) has prompted single star formation scenarios to be proposed.Aims. We investigate the possibility that hot subdwarfs could form without interaction by studying wide binary systems. If single formation scenarios were possible, there should be hot subdwarfs in wide binaries that have undergone no interaction.Methods. Angular momentum accretion during interaction is predicted to cause the hot subdwarf companion to spin up to the critical velocity. The effect of this should still be observable given the timescales of the hot subdwarf phase. To study the rotation rates of companions, we have analysed light curves from the Transiting Exoplanet Survey Satellite for all known hot subdwarfs showing composite spectral energy distributions indicating the presence of a main sequence wide binary companion. If formation without interaction were possible, that would also imply the existence of hot subdwarfs in very wide binaries that are not predicted to interact. To identify such systems, we have searched for common proper motion companions with projected orbital distances of up to 0.1 pc to all known spectroscopically confirmed hot subdwarfs using Gaia DR2 astrometry.Results. We find that the companions in composite hot subdwarfs show short rotation periods when compared to field main sequence stars. They display a triangular-shaped distribution with a peak around 2.5 days, similar to what is observed for young open clusters. We also report a shortage of hot subdwarfs with candidate common proper motion companions. We identify only 16 candidates after probing 2938 hot subdwarfs with good astrometry. Out of those, at least six seem to be hierarchical triple systems, in which the hot subdwarf is part of an inner binary.Conclusions. The observed distribution of rotation rates for the companions in known wide hot subdwarf binaries provides evidence of previous interaction causing spin-up. Additionally, there is a shortage of hot subdwarfs in common proper motion pairs, considering the frequency of such systems among progenitors. These results suggest that binary interaction is always required for the formation of hot subdwarfs.}, language = {en} } @article{StolterfohtLang2022, author = {Stolterfoht, Martin and Lang, Felix}, title = {All-perovskite tandems get flexible}, series = {Nature energy}, volume = {7}, journal = {Nature energy}, number = {8}, publisher = {Nature Publishing Group}, address = {London}, issn = {2058-7546}, doi = {10.1038/s41560-022-01087-6}, pages = {688 -- 689}, year = {2022}, abstract = {Flexible all-perovskite tandem photovoltaics open up new opportunities for application compared to rigid devices, yet their performance lags behind. Now, researchers show that molecule-bridged interfaces mitigate charge recombination and crack formation, improving the efficiency and mechanical reliability of flexible devices.}, language = {en} } @article{ShivhareErdmannHoermannetal.2018, author = {Shivhare, Rishi and Erdmann, Tim and Hoermann, Ulrich and Collado-Fregoso, Elisa and Zeiske, Stefan and Benduhn, Johannes and Ullbrich, Sascha and Huebner, Rene and Hambsch, Mike and Kiriy, Anton and Voit, Brigitte and Neher, Dieter and Vandewal, Koen and Mannsfeld, Stefan C. B.}, title = {Alkyl Branching Position in Diketopyrrolopyrrole Polymers}, series = {Chemistry of materials : a publication of the American Chemical Society}, volume = {30}, journal = {Chemistry of materials : a publication of the American Chemical Society}, number = {19}, publisher = {American Chemical Society}, address = {Washington}, issn = {0897-4756}, doi = {10.1021/acs.chemmater.8b02739}, pages = {6801 -- 6809}, year = {2018}, abstract = {Diketopyrrolopyrrole (DPP)-based donor acceptor copolymers have gained a significant amount of research interest in the organic electronics community because of their high charge carrier mobilities in organic field-effect transistors (OFETs) and their ability to harvest near-infrared (NIR) photons in solar cells. In this study, we have synthesized four DPP based donor-acceptor copolymers with variations in the donor unit and the branching point of the solubilizing alkyl chains (at the second or sixth carbon position). Grazing incidence wide-angle X-ray scattering (GIWAXS) results suggest that moving the branching point further away from the polymer backbone increases the tendency for aggregation and yields polymer phases with a higher degree of crystallinity (DoC). The polymers were blended with PC70BM and used as active layers in solar cells. A careful analysis of the energetics of the neat polymer and blend films reveals that the charge-transfer state energy (E-CT) of the blend films lies exceptionally close to the singlet energy of the donor (E-D*), indicating near zero electron transfer losses. The difference between the optical gap and open-circuit voltage (V-OC) is therefore determined to be due to rather high nonradiative 418 +/- 13 mV) and unavoidable radiative voltage losses (approximate to 255 +/- 8 mV). Even though the four materials have similar optical gaps, the short-circuit current density (J(SC)) covers a vast span from 7 to 18 mA cm(-2) for the best performing system. Using photoluminescence (PL) quenching and transient charge extraction techniques, we quantify geminate and nongeminate losses and find that fewer excitons reach the donor-acceptor interface in polymers with further away branching points due to larger aggregate sizes. In these material systems, the photogeneration is therefore mainly limited by exciton harvesting efficiency.}, language = {en} } @phdthesis{Kegeles2018, author = {Kegeles, Alexander}, title = {Algebraic foundation of Group Field Theory}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-421014}, school = {Universit{\"a}t Potsdam}, pages = {124}, year = {2018}, abstract = {In this thesis we provide a construction of the operator framework starting from the functional formulation of group field theory (GFT). We define operator algebras on Hilbert spaces whose expectation values in specific states provide correlation functions of the functional formulation. Our construction allows us to give a direct relation between the ingredients of the functional GFT and its operator formulation in a perturbative regime. Using this construction we provide an example of GFT states that can not be formulated as states in a Fock space and lead to math- ematically inequivalent representations of the operator algebra. We show that such inequivalent representations can be grouped together by their symmetry properties and sometimes break the left translation symmetry of the GFT action. We interpret these groups of inequivalent representations as phases of GFT, similar to the classification of phases that we use in QFT's on space-time.}, language = {en} } @phdthesis{Gidion2018, author = {Gidion, Gunnar}, title = {Akustische Resonatoren zur Analyse und Kontrolle von schwingungsf{\"a}higen Systemen am Beispiel von Streichinstrumenten und Dielektrischen Elastomeraktoren}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-411772}, school = {Universit{\"a}t Potsdam}, pages = {190}, year = {2018}, abstract = {Die Klangeigenschaften von Musikinstrumenten werden durch das Zusammenwirken der auf ihnen anregbaren akustischen Schwingungsmoden bestimmt, welche sich wiederum aus der geometrischen Struktur des Resonators in Kombination mit den verwendeten Materialien ergeben. In dieser Arbeit wurde das Schwingungsverhalten von Streichinstrumenten durch den Einsatz minimal-invasiver piezoelektrischer Polymerfilmsensoren untersucht. Die studierten Kopplungsph{\"a}nomene umfassen den sogenannten Wolfton und Schwingungstilger, die zu dessen Abschw{\"a}chung verwendet werden, sowie die gegenseitige Beeinflussung von Bogen und Instrument beim Spielvorgang. An Dielektrischen Elastomeraktormembranen wurde dagegen der Einfluss der elastischen Eigenschaften des Membranmaterials auf das akustische und elektromechanische Schwingungsverhalten gezeigt. Die Dissertation gliedert sich in drei Teile, deren wesentliche Ergebnisse im Folgenden zusammengefasst werden. In Teil I wurde die Funktionsweise eines abstimmbaren Schwingungstilgers zur D{\"a}mpfung von Wolft{\"o}nen auf Streichinstrumenten untersucht. Durch Abstimmung der Resonanzfrequenz des Schwingungstilgers auf die Wolftonfrequenz kann ein Teil der Saitenschwingungen absorbiert werden, so dass die zu starke Anregung der Korpusresonanz vermieden wird, die den Wolfton verursacht. Der Schwingungstilger besteht aus einem „Wolft{\"o}ter", einem Massest{\"u}ck, welches auf der Nachl{\"a}nge der betroffenen Saite (zwischen Steg und Saitenhalter) installiert wird. Hier wurde gezeigt, wie die Resonanzen dieses Schwingungstilgers von der Masse des Wolft{\"o}ters und von dessen Position auf der Nachl{\"a}nge abh{\"a}ngen. Aber auch die Geometrie des Wolft{\"o}ters stellte sich als ausschlaggebend heraus, insbesondere bei einem nicht-rotationssymmetrischen Wolft{\"o}ter: In diesem Fall entsteht - basierend auf den zu erwartenden nicht-harmonischen Moden einer massebelasteten Saite - eine zus{\"a}tzliche Mode, die von der Polarisationsrichtung der Saitenschwingung abh{\"a}ngt. Teil II der Dissertation befasst sich mit Elastomermembranen, die als Basis von Dielektrischen Elastomeraktoren dienen, und die wegen der Membranspannung auch akustische Resonanzen aufweisen. Die Ansprache von Elastomeraktoren h{\"a}ngt unter anderem von der Geschwindigkeit der elektrischen Anregung ab. Die damit zusammenh{\"a}ngenden viskoelastischen Eigenschaften der hier verwendeten Elastomere, Silikon und Acrylat, wurden einerseits in einer frequenzabh{\"a}ngigen dynamisch-mechanischen Analyse des Elastomers erfasst, andererseits auch optisch an vollst{\"a}ndigen Aktoren selbst gemessen. Die h{\"o}here Viskosit{\"a}t des Acrylats, das bei tieferen Frequenzen h{\"o}here Aktuationsdehnungen als das Silikon zeigt, f{\"u}hrt zu einer Verminderung der Dehnungen bei h{\"o}heren Frequenzen, so dass {\"u}ber etwa 40 Hertz mit Silikon gr{\"o}ßere Aktuationsdehnungen erreicht werden. Mit den untersuchten Aktoren konnte die Gitterkonstante weicher optischer Beugungsgitter kontrolliert werden, die als zus{\"a}tzlicher Film auf der Membran installiert wurden. {\"U}ber eine Messung der akustischen Resonanzfrequenz von Elastomermebranen aus Acrylat in 1Abh{\"a}ngigkeit von ihrer Vorstreckung konnte in Verbindung mit einer Modellierung des hyperelastischen Verhaltens des Elastomers (Ogden-Modell) der Schermodul bestimmt werden. Schließlich wird in Teil III die Untersuchung von Geigen und ihrer Streichanregung mit Hilfe minimal-invasiver piezoelektrischer Polymerfilme geschildert. Es konnten am Bogen und am Steg von Geigen - unter den beiden F{\"u}ßen des Stegs - jeweils zwei Filmsensoren installiert werden. Mit den beiden Sensoren am Steg wurden Frequenzg{\"a}nge von Geigen gemessen, welche eine Bestimmung der frequenzabh{\"a}ngigen Stegbewegung erlaubten. Diese Methode erm{\"o}glicht damit auch eine umfassende Charakterisierung der Signaturmoden in Bezug auf die Stegdynamik. Die Ergebnisse der komplement{\"a}ren Methoden von Impulsanregung und nat{\"u}rlichem Spielen der Geigen konnten dank der Sensoren verglichen werden. F{\"u}r die Nutzung der Sensoren am Bogen - insbesondere f{\"u}r eine Messung des Bogendrucks - wurde eine Kalibrierung des Bogen-Sensor-Systems mit Hilfe einer Materialpr{\"u}fmaschine durchgef{\"u}hrt. Bei einer Messung w{\"a}hrend des nat{\"u}rlichen Spielens wurde mit den Sensoren am Bogen einerseits die {\"U}bertragung der Saitenschwingung auf den Bogen festgestellt. Dabei konnten außerdem longitudinale Bogenhaarresonanzen identifiziert werden, die von der Position der Saite auf dem Bogen abh{\"a}ngen. Aus der Analyse dieses Ph{\"a}nomens konnte die longitudinale Wellengeschwindigkeit der Bogenhaare bestimmt werden, die eine wichtige Gr{\"o}ße f{\"u}r die Kopplung zwischen Saite und Bogen ist. Mit Hilfe des Systems aus Sensoren an Bogen und Steg werden auf Grundlage der vorliegenden Arbeit Studien an Streichinstrumenten vorgeschlagen, in denen die Bespielbarkeit der Instrumente zu den jeweils angeregten Steg- und Bogenschwingungen in Beziehung gesetzt werden kann. Damit k{\"o}nnte nicht zuletzt auch die bisher nicht vollst{\"a}ndig gekl{\"a}rte Rolle des Bogens f{\"u}r Klang und Bespielbarkeit besser beurteilt werden}, language = {de} } @phdthesis{Lampert2009, author = {Lampert, Astrid}, title = {Airborne lidar observations of tropospheric arctic clouds}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-41211}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {Due to the unique environmental conditions and different feedback mechanisms, the Arctic region is especially sensitive to climate changes. The influence of clouds on the radiation budget is substantial, but difficult to quantify and parameterize in models. In the framework of the PhD, elastic backscatter and depolarization lidar observations of Arctic clouds were performed during the international Arctic Study of Tropospheric Aerosol, Clouds and Radiation (ASTAR) from Svalbard in March and April 2007. Clouds were probed above the inaccessible Arctic Ocean with a combination of airborne instruments: The Airborne Mobile Aerosol Lidar (AMALi) of the Alfred Wegener Institute for Polar and Marine Research provided information on the vertical and horizontal extent of clouds along the flight track, optical properties (backscatter coefficient), and cloud thermodynamic phase. From the data obtained by the spectral albedometer (University of Mainz), the cloud phase and cloud optical thickness was deduced. Furthermore, in situ observations with the Polar Nephelometer, Cloud Particle Imager and Forward Scattering Spectrometer Probe (Laboratoire de M{\´e}t{\´e}orologie Physique, France) provided information on the microphysical properties, cloud particle size and shape, concentration, extinction, liquid and ice water content. In the thesis, a data set of four flights is analyzed and interpreted. The lidar observations served to detect atmospheric structures of interest, which were then probed by in situ technique. With this method, an optically subvisible ice cloud was characterized by the ensemble of instruments (10 April 2007). Radiative transfer simulations based on the lidar, radiation and in situ measurements allowed the calculation of the cloud forcing, amounting to -0.4 W m-2. This slight surface cooling is negligible on a local scale. However, thin Arctic clouds have been reported more frequently in winter time, when the clouds' effect on longwave radiation (a surface warming of 2.8 W m-2) is not balanced by the reduced shortwave radiation (surface cooling). Boundary layer mixed-phase clouds were analyzed for two days (8 and 9 April 2007). The typical structure consisting of a predominantly liquid water layer on cloud top and ice crystals below were confirmed by all instruments. The lidar observations were compared to European Centre for Medium-Range Weather Forecasts (ECMWF) meteorological analyses. A change of air masses along the flight track was evidenced in the airborne data by a small completely glaciated cloud part within the mixed-phase cloud system. This indicates that the updraft necessary for the formation of new cloud droplets at cloud top is disturbed by the mixing processes. The measurements served to quantify the shortcomings of the ECMWF model to describe mixed-phase clouds. As the partitioning of cloud condensate into liquid and ice water is done by a diagnostic equation based on temperature, the cloud structures consisting of a liquid cloud top layer and ice below could not be reproduced correctly. A small amount of liquid water was calculated for the lowest (and warmest) part of the cloud only. Further, the liquid water content was underestimated by an order of magnitude compared to in situ observations. The airborne lidar observations of 9 April 2007 were compared to space borne lidar data on board of the satellite Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). The systems agreed about the increase of cloud top height along the same flight track. However, during the time delay of 1 h between the lidar measurements, advection and cloud processing took place, and a detailed comparison of small-scale cloud structures was not possible. A double layer cloud at an altitude of 4 km was observed with lidar at the West coast in the direct vicinity of Svalbard (14 April 2007). The cloud system consisted of two geometrically thin liquid cloud layers (each 150 m thick) with ice below each layer. While the upper one was possibly formed by orographic lifting under the influence of westerly winds, or by the vertical wind shear shown by ECMWF analyses, the lower one might be the result of evaporating precipitation out of the upper layer. The existence of ice precipitation between the two layers supports the hypothesis that humidity released from evaporating precipitation was cooled and consequently condensed as it experienced the radiative cooling from the upper layer. In summary, a unique data set characterizing tropospheric Arctic clouds was collected with lidar, in situ and radiation instruments. The joint evaluation with meteorological analyses allowed a detailed insight in cloud properties, cloud evolution processes and radiative effects.}, language = {en} } @article{SafdariCherstvyChechkinetal.2017, author = {Safdari, Hadiseh and Cherstvy, Andrey G. and Chechkin, Aleksei V. and Bodrova, Anna and Metzler, Ralf}, title = {Aging underdamped scaled Brownian motion}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {95}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.95.012120}, pages = {15}, year = {2017}, abstract = {We investigate both analytically and by computer simulations the ensemble- and time-averaged, nonergodic, and aging properties of massive particles diffusing in a medium with a time dependent diffusivity. We call this stochastic diffusion process the (aging) underdamped scaled Brownian motion (UDSBM). We demonstrate how the mean squared displacement (MSD) and the time-averaged MSD of UDSBM are affected by the inertial term in the Langevin equation, both at short, intermediate, and even long diffusion times. In particular, we quantify the ballistic regime for the MSD and the time-averaged MSD as well as the spread of individual time-averaged MSD trajectories. One of the main effects we observe is that, both for the MSD and the time-averaged MSD, for superdiffusive UDSBM the ballistic regime is much shorter than for ordinary Brownian motion. In contrast, for subdiffusive UDSBM, the ballistic region extends to much longer diffusion times. Therefore, particular care needs to be taken under what conditions the overdamped limit indeed provides a correct description, even in the long time limit. We also analyze to what extent ergodicity in the Boltzmann-Khinchin sense in this nonstationary system is broken, both for subdiffusive and superdiffusive UDSBM. Finally, the limiting case of ultraslow UDSBM is considered, with a mixed logarithmic and power-law dependence of the ensemble-and time-averaged MSDs of the particles. In the limit of strong aging, remarkably, the ordinary UDSBM and the ultraslow UDSBM behave similarly in the short time ballistic limit. The approaches developed here open ways for considering other stochastic processes under physically important conditions when a finite particle mass and aging in the system cannot be neglected.}, language = {en} } @phdthesis{Schmidt2014, author = {Schmidt, Lukas}, title = {Aerosols and boundary layer structure over Arctic sea ice based on airborne lidar and dropsonde measurements}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-75076}, school = {Universit{\"a}t Potsdam}, pages = {vii, 98, xiii}, year = {2014}, abstract = {The atmosphere over the Arctic Ocean is strongly influenced by the distribution of sea ice and open water. Leads in the sea ice produce strong convective fluxes of sensible and latent heat and release aerosol particles into the atmosphere. They increase the occurrence of clouds and modify the structure and characteristics of the atmospheric boundary layer (ABL) and thereby influence the Arctic climate. In the course of this study aircraft measurements were performed over the western Arctic Ocean as part of the campaign PAMARCMIP 2012 of the Alfred Wegener Institute for Polar and Marine Research (AWI). Backscatter from aerosols and clouds within the lower troposphere and the ABL were measured with the nadir pointing Airborne Mobile Aerosol Lidar (AMALi) and dropsondes were launched to obtain profiles of meteorological variables. Furthermore, in situ measurements of aerosol properties, meteorological variables and turbulence were part of the campaign. The measurements covered a broad range of atmospheric and sea ice conditions. In this thesis, properties of the ABL over Arctic sea ice with a focus on the influence of open leads are studied based on the data from the PAMARCMIP campaign. The height of the ABL is determined by different methods that are applied to dropsonde and AMALi backscatter profiles. ABL heights are compared for different flights representing different conditions of the atmosphere and of sea ice and open water influence. The different criteria for ABL height that are applied show large variation in terms of agreement among each other, depending on the characteristics of the ABL and its history. It is shown that ABL height determination from lidar backscatter by methods commonly used under mid-latitude conditions is applicable to the Arctic ABL only under certain conditions. Aerosol or clouds within the ABL are needed as a tracer for ABL height detection from backscatter. Hence an aerosol source close to the surface is necessary, that is typically found under the present influence of open water and therefore convective conditions. However it is not always possible to distinguish residual layers from the actual ABL. Stable boundary layers are generally difficult to detect. To illustrate the complexity of the Arctic ABL and processes therein, four case studies are analyzed each of which represents a snapshot of the interplay between atmosphere and underlying sea ice or water surface. Influences of leads and open water on the aerosol and clouds within the ABL are identified and discussed. Leads are observed to cause the formation of fog and cloud layers within the ABL by humidity emission. Furthermore they decrease the stability and increase the height of the ABL and consequently facilitate entrainment of air and aerosol layers from the free troposphere.}, language = {en} } @phdthesis{Kegelmann2019, author = {Kegelmann, Lukas}, title = {Advancing charge selective contacts for efficient monolithic perovskite-silicon tandem solar cells}, doi = {10.25932/publishup-42642}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-426428}, school = {Universit{\"a}t Potsdam}, pages = {v, 155}, year = {2019}, abstract = {Hybrid organic-inorganic perovskites are one of the most promising material classes for photovoltaic energy conversion. In solar cells, the perovskite absorber is sandwiched between n- and p-type contact layers which selectively transport electrons and holes to the cell's cathode and anode, respectively. This thesis aims to advance contact layers in perovskite solar cells and unravel the impact of interface and contact properties on the device performance. Further, the contact materials are applied in monolithic perovskite-silicon heterojunction (SHJ) tandem solar cells, which can overcome the single junction efficiency limits and attract increasing attention. Therefore, all contact layers must be highly transparent to foster light harvesting in the tandem solar cell design. Besides, the SHJ device restricts processing temperatures for the selective contacts to below 200°C. A comparative study of various electron selective contact materials, all processed below 180°C, in n-i-p type perovskite solar cells highlights that selective contacts and their interfaces to the absorber govern the overall device performance. Combining fullerenes and metal-oxides in a TiO2/PC60BM (phenyl-C60-butyric acid methyl ester) double-layer contact allows to merge good charge extraction with minimized interface recombination. The layer sequence thereby achieved high stabilized solar cell performances up to 18.0\% and negligible current-voltage hysteresis, an otherwise pronounced phenomenon in this device design. Double-layer structures are therefore emphasized as a general concept to establish efficient and highly selective contacts. Based on this success, the concept to combine desired properties of different materials is transferred to the p-type contact. Here, a mixture of the small molecule Spiro-OMeTAD [2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluoren] and the doped polymer PEDOT [poly(3,4-ethylenedioxythiophene)] is presented as a novel hole selective contact. PEDOT thereby remarkably suppresses charge recombination at the perovskite surface, allowing an increase of quasi-Fermi level splitting in the absorber. Further, the addition of Spiro-OMeTAD into the PEDOT layer is shown to enhance charge extraction at the interface and allow high efficiencies up to 16.8\%. Finally, the knowledge on contact properties is applied to monolithic perovskite-SHJ tandem solar cells. The main goal is to optimize the top contact stack of doped Spiro-OMeTAD/molybdenum oxide(MoOx)/ITO towards higher transparency by two different routes. First, fine-tuning of the ITO deposition to mitigate chemical reduction of MoOx and increase the transmittance of MoOx/ITO stacks by 25\%. Second, replacing Spiro-OMeTAD with the alternative hole transport materials PEDOT/Spiro-OMeTAD mixtures, CuSCN or PTAA [poly(triaryl amine)]. Experimental results determine layer thickness constrains and validate optical simulations, which subsequently allow to realistically estimate the respective tandem device performances. As a result, PTAA represents the most promising replacement for Spiro-OMeTAD, with a projected increase of the optimum tandem device efficiency for the herein used architecture by 2.9\% relative to 26.5\% absolute. The results also reveal general guidelines for further performance gains of the technology.}, language = {en} } @phdthesis{Yadavalli2014, author = {Yadavalli, Nataraja Sekhar}, title = {Advances in experimental methods to probe surface relief grating formation mechanism in photosensitive materials}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-71213}, school = {Universit{\"a}t Potsdam}, year = {2014}, abstract = {When azobenzene-modified photosensitive polymer films are irradiated with light interference patterns, topographic variations in the film develop that follow the electric field vector distribution resulting in the formation of surface relief grating (SRG). The exact correspondence of the electric field vector orientation in interference pattern in relation to the presence of local topographic minima or maxima of SRG is in general difficult to determine. In my thesis, we have established a systematic procedure to accomplish the correlation between different interference patterns and the topography of SRG. For this, we devise a new setup combining an atomic force microscope and a two-beam interferometer (IIAFM). With this set-up, it is possible to track the topography change in-situ, while at the same time changing polarization and phase of the impinging interference pattern. To validate our results, we have compared two photosensitive materials named in short as PAZO and trimer. This is the first time that an absolute correspondence between the local distribution of electric field vectors of interference pattern and the local topography of the relief grating could be established exhaustively. In addition, using our IIAFM we found that for a certain polarization combination of two orthogonally polarized interfering beams namely SP (↕, ↔) interference pattern, the topography forms SRG with only half the period of the interference patterns. Exploiting this phenomenon we are able to fabricate surface relief structures below diffraction limit with characteristic features measuring only 140 nm, by using far field optics with a wavelength of 491 nm. We have also probed for the stresses induced during the polymer mass transport by placing an ultra-thin gold film on top (5-30 nm). During irradiation, the metal film not only deforms along with the SRG formation, but ruptures in regular and complex manner. The morphology of the cracks differs strongly depending on the electric field distribution in the interference pattern even when the magnitude and the kinetic of the strain are kept constant. This implies a complex local distribution of the opto-mechanical stress along the topography grating. The neutron reflectivity measurements of the metal/polymer interface indicate the penetration of metal layer within the polymer resulting in the formation of bonding layer that confirms the transduction of light induced stresses in the polymer layer to a metal film.}, language = {en} } @phdthesis{Stoll2022, author = {Stoll, Andreas}, title = {Advanced spectroscopic instruments enabled by integrated optics}, school = {Universit{\"a}t Potsdam}, pages = {97, XV}, year = {2022}, abstract = {The aim of this work is the study of silica Arrayed Waveguide Gratings (AWGs) in the context of applications in astronomy. The specific focus lies on the investigation of the feasibility and technology limits of customized silica AWG devices for high resolution near-infrared spectroscopy. In a series of theoretical and experimental studies, AWG devices of varying geometry, foot-print and spectral resolution are constructed, simulated using a combination of a numerical beam propagation method and Fraunhofer diffraction and fabricated devices are characterized with respect to transmission efficiency, spectral resolution and polarization sensitivity. The impact of effective index non-uniformities on the performance of high-resolution AWG devices is studied numerically. Characterization results of fabricated devices are used to extrapolate the technology limits of the silica platform. The important issues of waveguide birefringence and defocus aberration are discussed theoretically and addressed experimentally by selection of an appropriate aberration-minimizing anastigmatic AWG layout structure. The drawbacks of the anastigmatic AWG geometry are discussed theoretically. From the results of the experimental studies, it is concluded that fabrication-related phase errors and waveguide birefringence are the primary limiting factors for the growth of AWG spectral resolution. It is shown that, without post-processing, the spectral resolving power is phase-error-limited to R < 40, 000 and, in the case of unpolarized light, birefringence-limited to R < 30, 000 in the AWG devices presented in this work. Necessary measures, such as special waveguide geometries and post-fabrication phase error correction are proposed for future designs. The elimination of defocus aberration using an anastigmatic AWG geometry is successfully demonstrated in experiment. Finally, a novel, non-planar dispersive in-fibre waveguide structure is proposed, discussed and studied theoretically.}, language = {en} } @phdthesis{Donner2006, author = {Donner, Reik Volker}, title = {Advanced methods for analysing and modelling multivariate palaeoclimatic time series}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-12560}, school = {Universit{\"a}t Potsdam}, year = {2006}, abstract = {The separation of natural and anthropogenically caused climatic changes is an important task of contemporary climate research. For this purpose, a detailed knowledge of the natural variability of the climate during warm stages is a necessary prerequisite. Beside model simulations and historical documents, this knowledge is mostly derived from analyses of so-called climatic proxy data like tree rings or sediment as well as ice cores. In order to be able to appropriately interpret such sources of palaeoclimatic information, suitable approaches of statistical modelling as well as methods of time series analysis are necessary, which are applicable to short, noisy, and non-stationary uni- and multivariate data sets. Correlations between different climatic proxy data within one or more climatological archives contain significant information about the climatic change on longer time scales. Based on an appropriate statistical decomposition of such multivariate time series, one may estimate dimensions in terms of the number of significant, linear independent components of the considered data set. In the presented work, a corresponding approach is introduced, critically discussed, and extended with respect to the analysis of palaeoclimatic time series. Temporal variations of the resulting measures allow to derive information about climatic changes. For an example of trace element abundances and grain-size distributions obtained near the Cape Roberts (Eastern Antarctica), it is shown that the variability of the dimensions of the investigated data sets clearly correlates with the Oligocene/Miocene transition about 24 million years before present as well as regional deglaciation events. Grain-size distributions in sediments give information about the predominance of different transportation as well as deposition mechanisms. Finite mixture models may be used to approximate the corresponding distribution functions appropriately. In order to give a complete description of the statistical uncertainty of the parameter estimates in such models, the concept of asymptotic uncertainty distributions is introduced. The relationship with the mutual component overlap as well as with the information missing due to grouping and truncation of the measured data is discussed for a particular geological example. An analysis of a sequence of grain-size distributions obtained in Lake Baikal reveals that there are certain problems accompanying the application of finite mixture models, which cause an extended climatological interpretation of the results to fail. As an appropriate alternative, a linear principal component analysis is used to decompose the data set into suitable fractions whose temporal variability correlates well with the variations of the average solar insolation on millenial to multi-millenial time scales. The abundance of coarse-grained material is obviously related to the annual snow cover, whereas a significant fraction of fine-grained sediments is likely transported from the Taklamakan desert via dust storms in the spring season.}, language = {en} } @article{EvsevleevPaciornikBruno2020, author = {Evsevleev, Sergei and Paciornik, Sidnei and Bruno, Giovanni}, title = {Advanced deep learning-based 3D microstructural characterization of multiphase metal matrix composites}, series = {Advanced engineering materials}, volume = {22}, journal = {Advanced engineering materials}, number = {4}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1438-1656}, doi = {10.1002/adem.201901197}, pages = {6}, year = {2020}, abstract = {The quantitative analysis of microstructural features is a key to understanding the micromechanical behavior of metal matrix composites (MMCs), which is a premise for their use in practice. Herein, a 3D microstructural characterization of a five-phase MMC is performed by synchrotron X-ray computed tomography (SXCT). A workflow for advanced deep learning-based segmentation of all individual phases in SXCT data is shown using a fully convolutional neural network with U-net architecture. High segmentation accuracy is achieved with a small amount of training data. This enables extracting unprecedently precise microstructural parameters (e.g., volume fractions and particle shapes) to be input, e.g., in micromechanical models.}, language = {en} } @phdthesis{Teppner2000, author = {Teppner, Randolf}, title = {Adsorptionsschichten an fluiden Grenzfl{\"a}chen : Skalengesetze und Ionenverteilungen}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000117}, school = {Universit{\"a}t Potsdam}, year = {2000}, abstract = {In dieser Arbeit wurden zwei Themenbereiche bearbeitet: 1. Ellipsometrie an Adsorpionsschichten niedermolekularer Tenside an der Wasser/Luft-Grenzfl{\"a}che (Ellipsometrie ist geeignet, adsorbierte Mengen von nicht- und zwitterionischen Tensiden zu messen, bei ionischen werden zus{\"a}tzlich die Gegenionen mit erfaßt; Ellipsometrie mißt sich {\"a}ndernde Gegenionenverteilung). 2. Ellipsometrische Untersuchung von endadsorbierten Polymerb{\"u}rsten an der Wasser/{\"O}l-Grenzfl{\"a}che (Ellipsometrie ist nicht in der Lage, verschiedene Segmentkonzentrationsprofile innerhalb der B{\"u}rste aufzul{\"o}sen, ist aber sehr wohl geeignet, Skalengesetze f{\"u}r Dicken und Dr{\"u}cke in Abh{\"a}ngigkeit von Ankerdichte und Kettenl{\"a}nge der Polymere zu {\"u}berpr{\"u}fen; f{\"u}r in Heptan gequollene Poly-isobuten-B{\"u}rsten konnte gezeigt werden, daß sie sich entsprechend den theoretischen Vorhersagen f{\"u}r B{\"u}rsten in einem theta-L{\"o}sungsmittel verhalten)}, language = {de} } @article{UmlandtFeldmannSchnecketal.2020, author = {Umlandt, Maren and Feldmann, David and Schneck, Emanuel and Santer, Svetlana and Bekir, Marek}, title = {Adsorption of photoresponsive surfactants at solid-liquid interfaces}, series = {Langmuir}, volume = {36}, journal = {Langmuir}, number = {46}, publisher = {American Chemical Society}, address = {Washington}, issn = {0743-7463}, doi = {10.1021/acs.langmuir.0c02545}, pages = {14009 -- 14018}, year = {2020}, abstract = {We report on the adsorption kinetics of azoben-zene-containing surfactants on solid surfaces of different hydrophobicity. The understanding of this processes is of great importance for many interfacial phenomena that can be actuated and triggered by light, since the surfactant molecules contain a photoresponsive azobenzene group in their hydrophobic tail. Three surfactant types are studied, differing in the spacer connecting the headgroup and the azobenzene unit by between 6 and 10 CH2 groups. Under irradiation with light of a suitable wavelength, the azobenzene undergoes reversible photoisomerization between two states, a nonpolar trans-state and a highly polar cis-state. Consequently, the surfactant molecule changes its hydrophobicity and thus affinity to a surface depending on the photoisomerization state of the azobenzene. The adsorption behavior on hydrophilic (glass) and hydrophobic (TeflonAF) surfaces is analyzed using quartz crystal microbalance with dissipation (QCM-D) and zeta-potential measurements. At equilibrium, the adsorbed surfactant amount is almost twice as large on glass compared to TeflonAF for both isomers. The adsorption rate for the trans-isomers on both surfaces is similar, but the desorption rate of the trans-isomers is faster at the glass-water interface than at the Teflon-water interface. This result demonstrates that the trans-isomers have higher affinity for the glass surface, so the trans-to-cis ratios on glass and TeflonAF are 80/1 and 2/1, respectively, with similar trends for all three surfactant types.}, language = {en} } @article{AnielskiBarbosaPfannesBeta2017, author = {Anielski, Alexander and Barbosa Pfannes, Eva Katharina and Beta, Carsten}, title = {Adaptive microfluidic gradient generator for quantitative chemotaxis experiments}, series = {Review of scientific instruments : a monthly journal devoted to scientific instruments, apparatus, and techniques}, volume = {88}, journal = {Review of scientific instruments : a monthly journal devoted to scientific instruments, apparatus, and techniques}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0034-6748}, doi = {10.1063/1.4978535}, pages = {10}, year = {2017}, abstract = {Chemotactic motion in a chemical gradient is an essential cellular function that controls many processes in the living world. For a better understanding and more detailed modelling of the underlying mechanisms of chemotaxis, quantitative investigations in controlled environments are needed. We developed a setup that allows us to separately address the dependencies of the chemotactic motion on the average background concentration and on the gradient steepness of the chemoattractant. In particular, both the background concentration and the gradient steepness can be kept constant at the position of the cell while it moves along in the gradient direction. This is achieved by generating a well-defined chemoattractant gradient using flow photolysis. In this approach, the chemoattractant is released by a light-induced reaction from a caged precursor in a microfluidic flow chamber upstream of the cell. The flow photolysis approach is combined with an automated real-time cell tracker that determines changes in the cell position and triggers movement of the microscope stage such that the cell motion is compensated and the cell remains at the same position in the gradient profile. The gradient profile can be either determined experimentally using a caged fluorescent dye or may be alternatively determined by numerical solutions of the corresponding physical model. To demonstrate the function of this adaptive microfluidic gradient generator, we compare the chemotactic motion of Dictyostelium discoideum cells in a static gradient and in a gradient that adapts to the position of the moving cell. Published by AIP Publishing.}, language = {en} } @article{WillnerLevermannZhaoetal.2018, author = {Willner, Sven N. and Levermann, Anders and Zhao, Fang and Frieler, Katja}, title = {Adaptation required to preserve future high-end river flood risk at present levels}, series = {Science Advances}, volume = {4}, journal = {Science Advances}, number = {1}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {2375-2548}, doi = {10.1126/sciadv.aao1914}, pages = {8}, year = {2018}, abstract = {Earth's surface temperature will continue to rise for another 20 to 30 years even with the strongest carbon emission reduction currently considered. The associated changes in rainfall patterns can result in an increased flood risk worldwide. We compute the required increase in flood protection to keep high-end fluvial flood risk at present levels. The analysis is carried out worldwide for subnational administrative units. Most of the United States, Central Europe, and Northeast and West Africa, as well as large parts of India and Indonesia, require the strongest adaptation effort. More than half of the United States needs to at least double their protection within the next two decades. Thus, the need for adaptation to increased river flood is a global problem affecting industrialized regions as much as developing countries.}, language = {en} } @phdthesis{Antonelli2021, author = {Antonelli, Andrea}, title = {Accurate waveform models for gravitational-wave astrophysics: synergetic approaches from analytical relativity}, doi = {10.25932/publishup-57667}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-576671}, school = {Universit{\"a}t Potsdam}, pages = {XII, 259, LXXV}, year = {2021}, abstract = {Gravitational-wave (GW) astrophysics is a field in full blossom. Since the landmark detection of GWs from a binary black hole on September 14th 2015, fifty-two compact-object binaries have been reported by the LIGO-Virgo collaboration. Such events carry astrophysical and cosmological information ranging from an understanding of how black holes and neutron stars are formed, what neutron stars are composed of, how the Universe expands, and allow testing general relativity in the highly-dynamical strong-field regime. It is the goal of GW astrophysics to extract such information as accurately as possible. Yet, this is only possible if the tools and technology used to detect and analyze GWs are advanced enough. A key aspect of GW searches are waveform models, which encapsulate our best predictions for the gravitational radiation under a certain set of parameters, and that need to be cross-correlated with data to extract GW signals. Waveforms must be very accurate to avoid missing important physics in the data, which might be the key to answer the fundamental questions of GW astrophysics. The continuous improvements of the current LIGO-Virgo detectors, the development of next-generation ground-based detectors such as the Einstein Telescope or the Cosmic Explorer, as well as the development of the Laser Interferometer Space Antenna (LISA), demand accurate waveform models. While available models are enough to capture the low spins, comparable-mass binaries routinely detected in LIGO-Virgo searches, those for sources from both current and next-generation ground-based and spaceborne detectors must be accurate enough to detect binaries with large spins and asymmetry in the masses. Moreover, the thousands of sources that we expect to detect with future detectors demand accurate waveforms to mitigate biases in the estimation of signals' parameters due to the presence of a foreground of many sources that overlap in the frequency band. This is recognized as one of the biggest challenges for the analysis of future-detectors' data, since biases might hinder the extraction of important astrophysical and cosmological information from future detectors' data. In the first part of this thesis, we discuss how to improve waveform models for binaries with high spins and asymmetry in the masses. In the second, we present the first generic metrics that have been proposed to predict biases in the presence of a foreground of many overlapping signals in GW data. For the first task, we will focus on several classes of analytical techniques. Current models for LIGO and Virgo studies are based on the post-Newtonian (PN, weak-field, small velocities) approximation that is most natural for the bound orbits that are routinely detected in GW searches. However, two other approximations have risen in prominence, the post-Minkowskian (PM, weak- field only) approximation natural for unbound (scattering) orbits and the small-mass-ratio (SMR) approximation typical of binaries in which the mass of one body is much bigger than the other. These are most appropriate to binaries with high asymmetry in the masses that challenge current waveform models. Moreover, they allow one to "cover" regions of the parameter space of coalescing binaries, thereby improving the interpolation (and faithfulness) of waveform models. The analytical approximations to the relativistic two-body problem can synergically be included within the effective-one-body (EOB) formalism, in which the two-body information from each approximation can be recast into an effective problem of a mass orbiting a deformed Schwarzschild (or Kerr) black hole. The hope is that the resultant models can cover both the low-spin comparable-mass binaries that are routinely detected, and the ones that challenge current models. The first part of this thesis is dedicated to a study about how to best incorporate information from the PN, PM, SMR and EOB approaches in a synergistic way. We also discuss how accurate the resulting waveforms are, as compared against numerical-relativity (NR) simulations. We begin by comparing PM models, whether alone or recast in the EOB framework, against PN models and NR simulations. We will show that PM information has the potential to improve currently-employed models for LIGO and Virgo, especially if recast within the EOB formalism. This is very important, as the PM approximation comes with a host of new computational techniques from particle physics to exploit. Then, we show how a combination of PM and SMR approximations can be employed to access previously-unknown PN orders, deriving the third subleading PN dynamics for spin-orbit and (aligned) spin1-spin2 couplings. Such new results can then be included in the EOB models currently used in GW searches and parameter estimation studies, thereby improving them when the binaries have high spins. Finally, we build an EOB model for quasi-circular nonspinning binaries based on the SMR approximation (rather than the PN one as usually done). We show how this is done in detail without incurring in the divergences that had affected previous attempts, and compare the resultant model against NR simulations. We find that the SMR approximation is an excellent approximation for all (quasi-circular nonspinning) binaries, including both the equal-mass binaries that are routinely detected in GW searches and the ones with highly asymmetric masses. In particular, the SMR-based models compare much better than the PN models, suggesting that SMR-informed EOB models might be the key to model binaries in the future. In the second task of this thesis, we work within the linear-signal ap- proximation and describe generic metrics to predict inference biases on the parameters of a GW source of interest in the presence of confusion noise from unfitted foregrounds and from residuals of other signals that have been incorrectly fitted out. We illustrate the formalism with simple (yet realistic) LISA sources, and demonstrate its validity against Monte-Carlo simulations. The metrics we describe pave the way for more realistic studies to quantify the biases with future ground-based and spaceborne detectors.}, language = {en} } @phdthesis{Kellermann2011, author = {Kellermann, Thorsten}, title = {Accurate numerical relativity simulations of non-vacuumspace-times in two dimensions and applications to critical collapse}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-59578}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {This Thesis puts its focus on the physics of neutron stars and its description with methods of numerical relativity. In the first step, a new numerical framework the Whisky2D code will be developed, which solves the relativistic equations of hydrodynamics in axisymmetry. Therefore we consider an improved formulation of the conserved form of these equations. The second part will use the new code to investigate the critical behaviour of two colliding neutron stars. Considering the analogy to phase transitions in statistical physics, we will investigate the evolution of the entropy of the neutron stars during the whole process. A better understanding of the evolution of thermodynamical quantities, like the entropy in critical process, should provide deeper understanding of thermodynamics in relativity. More specifically, we have written the Whisky2D code, which solves the general-relativistic hydrodynamics equations in a flux-conservative form and in cylindrical coordinates. This of course brings in 1/r singular terms, where r is the radial cylindrical coordinate, which must be dealt with appropriately. In the above-referenced works, the flux operator is expanded and the 1/r terms, not containing derivatives, are moved to the right-hand-side of the equation (the source term), so that the left hand side assumes a form identical to the one of the three-dimensional (3D) Cartesian formulation. We call this the standard formulation. Another possibility is not to split the flux operator and to redefine the conserved variables, via a multiplication by r. We call this the new formulation. The new equations are solved with the same methods as in the Cartesian case. From a mathematical point of view, one would not expect differences between the two ways of writing the differential operator, but, of course, a difference is present at the numerical level. Our tests show that the new formulation yields results with a global truncation error which is one or more orders of magnitude smaller than those of alternative and commonly used formulations. The second part of the Thesis uses the new code for investigations of critical phenomena in general relativity. In particular, we consider the head-on-collision of two neutron stars in a region of the parameter space where two final states a new stable neutron star or a black hole, lay close to each other. In 1993, Choptuik considered one-parameter families of solutions, S[P], of the Einstein-Klein-Gordon equations for a massless scalar field in spherical symmetry, such that for every P > P⋆, S[P] contains a black hole and for every P < P⋆, S[P] is a solution not containing singularities. He studied numerically the behavior of S[P] as P → P⋆ and found that the critical solution, S[P⋆], is universal, in the sense that it is approached by all nearly-critical solutions regardless of the particular family of initial data considered. All these phenomena have the common property that, as P approaches P⋆, S[P] approaches a universal solution S[P⋆] and that all the physical quantities of S[P] depend only on |P - P⋆|. The first study of critical phenomena concerning the head-on collision of NSs was carried out by Jin and Suen in 2007. In particular, they considered a series of families of equal-mass NSs, modeled with an ideal-gas EOS, boosted towards each other and varied the mass of the stars, their separation, velocity and the polytropic index in the EOS. In this way they could observe a critical phenomenon of type I near the threshold of black-hole formation, with the putative solution being a nonlinearly oscillating star. In a successive work, they performed similar simulations but considering the head-on collision of Gaussian distributions of matter. Also in this case they found the appearance of type-I critical behaviour, but also performed a perturbative analysis of the initial distributions of matter and of the merged object. Because of the considerable difference found in the eigenfrequencies in the two cases, they concluded that the critical solution does not represent a system near equilibrium and in particular not a perturbed Tolmann-Oppenheimer-Volkoff (TOV) solution. In this Thesis we study the dynamics of the head-on collision of two equal-mass NSs using a setup which is as similar as possible to the one considered above. While we confirm that the merged object exhibits a type-I critical behaviour, we also argue against the conclusion that the critical solution cannot be described in terms of equilibrium solution. Indeed, we show that, in analogy with what is found in, the critical solution is effectively a perturbed unstable solution of the TOV equations. Our analysis also considers fine-structure of the scaling relation of type-I critical phenomena and we show that it exhibits oscillations in a similar way to the one studied in the context of scalar-field critical collapse.}, language = {en} } @phdthesis{Eckert2019, author = {Eckert, Sebastian}, title = {Accessing active sites of molecular proton dynamics}, doi = {10.25932/publishup-42587}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-425870}, school = {Universit{\"a}t Potsdam}, pages = {xviii, 193}, year = {2019}, abstract = {The unceasing impact of intense sunlight on earth constitutes a continuous source of energy fueling countless natural processes. On a molecular level, the energy contained in the electromagnetic radiation is transferred through photochemical processes into chemical or thermal energy. In the course of such processes, photo-excitations promote molecules into thermally inaccessible excited states. This induces adaptations of their molecular geometry according to the properties of the excited state. Decay processes towards energetically lower lying states in transient molecular geometries result in the formation of excited state relaxation pathways. The photo-chemical relaxation mechanisms depend on the studied system itself, the interactions with its chemical environment and the character of the involved states. This thesis focuses on systems in which photo-induced deprotonation processes occur at specific atomic sites. To detect these excited-state proton dynamics at the affected atoms, a local probe of molecular electronic structure is required. Therefore, site-selective and orbital-specific K-edge soft X-ray spectroscopy techniques are used here to detect photo-induced proton dynamics in gaseous and liquid sample environments. The protonation of nitrogen (N) sites in organic molecules and the oxygen (O) atom in the water molecule are probed locally through transitions between 1s orbitals and the p-derived molecular valence electronic structure. The used techniques are X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS). Both yield access to the unoccupied local valence electronic structure, whereas the latter additionally probes occupied states. We apply these probes in optical pump X-ray probe experiments to investigate valence excited-state proton transfer capabilities of aqueous 2-thiopyridone. A characteristic shift of N K-edge X-ray absorption resonances as well as a distinct X-ray emission line are established by us as spectral fingerprints of N deprotonation in the system. We utilize them to identify photo-induced N deprotonation of 2-thiopyridone on femtosecond timescales, in optical pump N K-edge RIXS probe measurements. We further establish excited state proton transfer mechanisms on picosecond and nanosecond timescales along the dominant relaxation pathways of 2-thiopyridone using transient N K-edge XAS. Despite being an excellent probe mechanism for valence excited-state proton dynamics, the K-edge core-excitation itself also disturbs the electronic structure at specific sites of a molecule. The rapid reaction of protons to 1s photo-excitations can yield directional structural distortions within the femtosecond core-excited state lifetime. These directional proton dynamics can change the energetic separation of eigenstates of the system and alter probabilities for radiative decay between them. Both effects yield spectral signatures of the dynamics in RIXS spectra. Using these signatures of RIXS transitions into electronically excited states, we investigate proton dynamics induced by N K-edge excitation in the amino-acid histidine. The minor core-excited state dynamics of histidine in basic and neutral chemical environments allow us to establish XAS and RIXS spectral signatures of different N protonation states at its imidazole N sites. Based on these signatures, we identify an excitation-site-independent N-H dissociation for N K-edge excitation under acidic conditions. Such directional structural deformations, induced by core-excitations, also make proton dynamics in electronic ground states accessible through RIXS transitions into vibrationally excited states. In that context, we interpret high resolution RIXS spectra of the water molecule for three O K-edge resonances based on quantum-chemical wave packet propagation simulations. We show that highly oriented ground state vibrational modes of coupled nuclear motion can be populated through RIXS processes by preparation of core-excited state nuclear wave packets with the same directionality. Based on that, we analytically derive the possibility to extract one-dimensional directional cuts through potential energy surfaces of molecular systems from the corresponding RIXS spectra. We further verify this concept through the extraction of the gas-phase water ground state potential along three coordinates from experimental data in comparison to quantum-chemical simulations of the potential energy surface. This thesis also contains contributions to instrumentation development for investigations of photo-induced molecular dynamics at high brilliance X-ray light sources. We characterize the setup used for the transient valence-excited state XAS measurements of 2-thiopyridone. Therein, a sub-micrometer thin liquid sample environment is established employing in-vacuum flat-jet technology, which enables a transmission experimental geometry. In combination with a MHz-laser system, we achieve a high detection sensitivity for photo-induced X-ray absorption changes. Additionally, we present conceptual improvements for temporal X-ray optical cross-correlation techniques based on transient changes of multilayer optical properties, which are crucial for the realization of femtosecond time-resolved studies at synchrotrons and free-electron lasers.}, language = {en} }