@misc{HenkelCourtoisAspect1994, author = {Henkel, Carsten and Courtois, Jean-Yves and Aspect, Alain}, title = {Atomic diffraction by a thin phase grating}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-42269}, year = {1994}, abstract = {We present a semiclassical perturbation method for the description of atomic diffraction by a weakly modulated potential. It proceeds in a way similar to the treatment of light diffraction by a thin phase grating, and consists in calculating the atomic wavefunction by means of action integrals along the classical trajectories of the atoms in the absence of the modulated part of the potential. The capabilities and the validity condition of the method are illustrated on the well-known case of atomic diffraction by a Gaussian standing wave. We prove that in this situation the perturbation method is equivalent to the Raman-Nath approximation, and we point out that the usually-considered Raman-Nath validity condition can lead to inaccuracies in the evaluation of the phases of the diffraction amplitudes. The method is also applied to the case of an evanescent wave reflection grating, and an analytical expression for the diffraction pattern at any incidence angle is obtained for the first time. Finally, the application of the method to other situations is briefly discussed.}, language = {en} } @phdthesis{Keles2021, author = {Keles, Engin}, title = {Atmospheric properties and dynamics of gaseous exoplanets inferred from high-resolution alkali line transmission spectroscopy}, school = {Universit{\"a}t Potsdam}, year = {2021}, abstract = {The characterization of exoplanets applying high-resolution transmission spectroscopy ini- tiated a new era making it possible to trace atmospheric signature at high altitudes in exoplanet atmospheres and to determine atmospheric properties which enrich our under- standing of the formation and evolution of the solar system. In contrast to what is observed in our solar system, where gaseous planets orbit at wide orbits, Jupiter type exoplanets were detected in foreign stellar systems surrounding their host stars within few days, in close orbits, the so called hot- and ultra-hot Jupiters. The most well studied ones are HD209458b and HD189733b, which are the first exoplanets where absorption is detected in their atmospheres, namely from the alkali line sodium. For hot Jupiters, the resonant alkali lines are the atmospheric species with one of the strongest absorption signatures, due to their large absorption cross-section. However, al- though the alkali lines sodium and potassium were detected in low-resolution observations for various giant exoplanets, potassium was absent in different high-resolution investiga- tions in contrast to sodium. The reason for this is quite puzzling, since both alkalis have very similar physical and chemical properties (e.g. condensation and ionization proper- ties). Obtaining high-resolution transit observations of HD189733b and HD209458b, we were able to detect potassium on HD189733b (Manuscript 1), which was the first high-resolution detection of potassium on an exoplanet. The absence of potassium on HD209458b could be reasoned by depletion processes, such as condensation or photo-ionization or high-altitude clouds. In a further study (Manuscript II), we resolved the potassium line and compared this to a previously detected sodium absorption on this planet. The comparison showed, that the potassium lines are either tracing different altitudes and temperatures compared to the sodium lines, or are depleted so that the planetary Na/K- ratio is way larger than the stellar one. A comparison of the alkali lines with synthetic line profiles showed that the sodium lines were much broader than the potassium lines, probably being induced by winds. To investigate this, the effect of zonal streaming winds on the sodium lines on Jupiter-type planets is investigated in a further study (Manuscript III), showing that such winds can significantly broaden the Na- lines and that high-resolution observations can trace such winds with different properties. Furthermore, investigating the Na-line observations for different exoplanets, I showed that the Na-line broadening follows a trend with cooler planets showing stronger line broadening and so hinting on stronger winds, matching well into theoretical predictions. Each presented manuscript depends on the re- sults published within the previous manuscript, yielding a unitary study of the exoplanet HD189733b. The investigation of the potassium absorption required to account for different effects: The telluric lines removal and the effect of center-to-limb variation (see Manuscript I), the residual Rossiter-Mc-Laughlin effect (see Manuscript II) and the broadening of spectral lines on a translucent atmospheric ring by zonal jet streams (see Manuscript III). This thesis shows that high-resolution transmission spectroscopy is a powerful tool to probe sharp alkali line absorption on giant exoplanet atmospheres and to investigate on the properties and dynamics of hot Jupiter type atmospheres.}, language = {en} } @phdthesis{Zhou2014, author = {Zhou, Xu}, title = {Atmospheric interactions with land surface in the arctic based on regional climate model solutions}, pages = {143}, year = {2014}, language = {en} } @phdthesis{Glushak2007, author = {Glushak, Ksenia}, title = {Atmospheric circulation and the surface mass balance in a regional climate model of Antarctica}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17296}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {Understanding the Earth's climate system and particularly climate variability presents one of the most difficult and urgent challenges in science. The Antarctic plays a crucial role in the global climate system, since it is the principal region of radiative energy deficit and atmospheric cooling. An assessment of regional climate model HIRHAM is presented. The simulations are generated with the HIRHAM model, which is modified for Antarctic applications. With a horizontal resolution of 55km, the model has been run for the period 1958-1998 creating long-term simulations from initial and boundary conditions provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA40 re-analysis. The model output is compared with observations from observation stations, upper air data, global atmospheric analyses and satellite data. In comparison with the observations, the evaluation shows that the simulations with the HIRHAM model capture both the large and regional scale circulation features with generally small bias in the modeled variables. On the annual time scale the largest errors in the model simulations are the overestimation total cloud cover and the colder near-surface temperature over the interior of the Antarctic plateau. The low-level temperature inversion as well as low-level wind jet is well captured by the model. The decadal scale processes were studied based on trend calculations. The long-term run was divided into two 20 years parts. The 2m temperature, 500 hPa temperature, MSLP, precipitation and net mass balance trends were calculated for both periods and over 1958 - 1998. During the last two decades the strong surface cooling was observed over the Eastern Antarctica, this result is in good agreement with the result of Chapman and Walsh (2005) who calculated the temperature trend based on the observational data. The MSLP trend reveals a big disparity between the first and second parts of the 40 year run. The overall trend shows the strengthening of the circumpolar vortex and continental anticyclone. The net mass balance as well as precipitation show a positive trend over the Antarctic Peninsula region, along Wilkes Land and in Dronning Maud Land. The Antarctic ice sheet grows over the Eastern part of Antarctica with small exceptions in Dronning Maud Land and Wilkes Land and sinks in the Antarctic Peninsula; this result is in good agreement with the satellite-measured altitude presented in Davis (2005) . To better understand the horizontal structure of MSLP, temperature and net mass balance trends the influence of the Southern Annual Mode (SAM) on the Antarctic climate was investigated. The main meteorological parameters during the positive and negative Antarctic Oscillation (AAO) phases were compared to each other. A positive/negative AAO index means strengthening/weakening of the circumpolar vortex, poleward/northward storm tracks and prevailing/weakening westerly winds. For detailed investigation of global teleconnection, two positive and one negative periods of AAO phase were chosen. The differences in MSLP and 2m temperature between positive and negative AAO years during the winter months partly explain the surface cooling during the last decades.}, language = {en} } @phdthesis{Avila2011, author = {Avila, Gast{\´o}n}, title = {Asymptotic staticity and tensor decompositions with fast decay conditions}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-54046}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Corvino, Corvino and Schoen, Chruściel and Delay have shown the existence of a large class of asymptotically flat vacuum initial data for Einstein's field equations which are static or stationary in a neighborhood of space-like infinity, yet quite general in the interior. The proof relies on some abstract, non-constructive arguments which makes it difficult to calculate such data numerically by using similar arguments. A quasilinear elliptic system of equations is presented of which we expect that it can be used to construct vacuum initial data which are asymptotically flat, time-reflection symmetric, and asymptotic to static data up to a prescribed order at space-like infinity. A perturbation argument is used to show the existence of solutions. It is valid when the order at which the solutions approach staticity is restricted to a certain range. Difficulties appear when trying to improve this result to show the existence of solutions that are asymptotically static at higher order. The problems arise from the lack of surjectivity of a certain operator. Some tensor decompositions in asymptotically flat manifolds exhibit some of the difficulties encountered above. The Helmholtz decomposition, which plays a role in the preparation of initial data for the Maxwell equations, is discussed as a model problem. A method to circumvent the difficulties that arise when fast decay rates are required is discussed. This is done in a way that opens the possibility to perform numerical computations. The insights from the analysis of the Helmholtz decomposition are applied to the York decomposition, which is related to that part of the quasilinear system which gives rise to the difficulties. For this decomposition analogous results are obtained. It turns out, however, that in this case the presence of symmetries of the underlying metric leads to certain complications. The question, whether the results obtained so far can be used again to show by a perturbation argument the existence of vacuum initial data which approach static solutions at infinity at any given order, thus remains open. The answer requires further analysis and perhaps new methods.}, language = {en} } @article{Omel'chenkoOcampoEspindolaKiss2021, author = {Omel'chenko, Oleh and Ocampo-Espindola, Jorge Luis and Kiss, Istv{\´a}n Z.}, title = {Asymmetry-induced isolated fully synchronized state in coupled oscillator populations}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {104}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {2}, publisher = {American Physical Society}, address = {Melville, NY}, issn = {2470-0045}, doi = {10.1103/PhysRevE.104.L022202}, pages = {6}, year = {2021}, abstract = {A symmetry-breaking mechanism is investigated that creates bistability between fully and partially synchronized states in oscillator networks. Two populations of oscillators with unimodal frequency distribution and different amplitudes, in the presence of weak global coupling, are shown to simplify to a modular network with asymmetrical coupling. With increasing the coupling strength, a synchronization transition is observed with an isolated fully synchronized state. The results are interpreted theoretically in the thermodynamic limit and confirmed in experiments with chemical oscillators.}, language = {en} } @article{PadashSandevKantzetal.2022, author = {Padash, Amin and Sandev, Trifce and Kantz, Holger and Metzler, Ralf and Chechkin, Aleksei}, title = {Asymmetric Levy flights are more efficient in random search}, series = {Fractal and fractional}, volume = {6}, journal = {Fractal and fractional}, number = {5}, publisher = {MDPI}, address = {Basel}, issn = {2504-3110}, doi = {10.3390/fractalfract6050260}, pages = {23}, year = {2022}, abstract = {We study the first-arrival (first-hitting) dynamics and efficiency of a one-dimensional random search model performing asymmetric Levy flights by leveraging the Fokker-Planck equation with a delta-sink and an asymmetric space-fractional derivative operator with stable index alpha and asymmetry (skewness) parameter beta. We find exact analytical results for the probability density of first-arrival times and the search efficiency, and we analyse their behaviour within the limits of short and long times. We find that when the starting point of the searcher is to the right of the target, random search by Brownian motion is more efficient than Levy flights with beta <= 0 (with a rightward bias) for short initial distances, while for beta>0 (with a leftward bias) Levy flights with alpha -> 1 are more efficient. When increasing the initial distance of the searcher to the target, Levy flight search (except for alpha=1 with beta=0) is more efficient than the Brownian search. Moreover, the asymmetry in jumps leads to essentially higher efficiency of the Levy search compared to symmetric Levy flights at both short and long distances, and the effect is more pronounced for stable indices alpha close to unity.}, language = {en} } @phdthesis{Foerste2022, author = {F{\"o}rste, Stefanie}, title = {Assemblierung von Proteinkomplexen in vitro und in vivo}, doi = {10.25932/publishup-55074}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-550742}, school = {Universit{\"a}t Potsdam}, pages = {x, 143, xxxviii}, year = {2022}, abstract = {Proteine sind an praktisch allen Prozessen in lebenden Zellen maßgeblich beteiligt. Auch in der Biotechnologie werden Proteine in vielf{\"a}ltiger Weise eingesetzt. Ein Protein besteht aus einer Kette von Aminos{\"a}uren. H{\"a}ufig lagern sich mehrere dieser Ketten zu gr{\"o}ßeren Strukturen und Funktionseinheiten, sogenannten Proteinkomplexen, zusammen. K{\"u}rzlich wurde gezeigt, dass eine Proteinkomplexbildung bereits w{\"a}hrend der Biosynthese der Proteine (co-translational) stattfinden kann und nicht stets erst danach (post-translational) erfolgt. Da Fehlassemblierungen von Proteinen zu Funktionsverlusten und adversen Effekten f{\"u}hren, ist eine pr{\"a}zise und verl{\"a}ssliche Proteinkomplexbildung sowohl f{\"u}r zellul{\"a}re Prozesse als auch f{\"u}r biotechnologische Anwendungen essenziell. Mit experimentellen Methoden lassen sich zwar u.a. die St{\"o}chiometrie und die Struktur von Proteinkomplexen bestimmen, jedoch bisher nicht die Dynamik der Komplexbildung auf unterschiedlichen Zeitskalen. Daher sind grundlegende Mechanismen der Proteinkomplexbildung noch nicht vollst{\"a}ndig verstanden. Die hier vorgestellte, auf experimentellen Erkenntnissen aufbauende, computergest{\"u}tzte Modellierung der Proteinkomplexbildung erlaubt eine umfassende Analyse des Einflusses physikalisch-chemischer Parameter auf den Assemblierungsprozess. Die Modelle bilden m{\"o}glichst realistisch die experimentellen Systeme der Kooperationspartner (Bar-Ziv, Weizmann-Institut, Israel; Bukau und Kramer, Universit{\"a}t Heidelberg) ab, um damit die Assemblierung von Proteinkomplexen einerseits in einem quasi-zweidimensionalen synthetischen Expressionssystem (in vitro) und andererseits im Bakterium Escherichia coli (in vivo) untersuchen zu k{\"o}nnen. Mit Hilfe eines vereinfachten Expressionssystems, in dem die Proteine nur an die Chip-Oberfl{\"a}che, aber nicht aneinander binden k{\"o}nnen, wird das theoretische Modell parametrisiert. In diesem vereinfachten in-vitro-System durchl{\"a}uft die Effizienz der Komplexbildung drei Regime - ein bindedominiertes Regime, ein Mischregime und ein produktionsdominiertes Regime. Ihr Maximum erreicht die Effizienz dabei kurz nach dem {\"U}bergang vom bindedominierten ins Mischregime und f{\"a}llt anschließend monoton ab. Sowohl im nicht-vereinfachten in-vitro- als auch im in-vivo-System koexistieren je zwei konkurrierende Assemblierungspfade: Im in-vitro-System erfolgt die Komplexbildung entweder spontan in w{\"a}ssriger L{\"o}sung (L{\"o}sungsassemblierung) oder aber in einer definierten Schrittfolge an der Chip-Oberfl{\"a}che (Oberfl{\"a}chenassemblierung); Im in-vivo-System konkurrieren hingegen die co- und die post-translationale Komplexbildung. Es zeigt sich, dass die Dominanz der Assemblierungspfade im in-vitro-System zeitabh{\"a}ngig ist und u.a. durch die Limitierung und St{\"a}rke der Bindestellen auf der Chip-Oberfl{\"a}che beeinflusst werden kann. Im in-vivo-System hat der r{\"a}umliche Abstand zwischen den Syntheseorten der beiden Proteinkomponenten nur dann einen Einfluss auf die Komplexbildung, wenn die Untereinheiten schnell degradieren. In diesem Fall dominiert die co-translationale Assemblierung auch auf kurzen Zeitskalen deutlich, wohingegen es bei stabilen Untereinheiten zu einem Wechsel von der Dominanz der post- hin zu einer geringen Dominanz der co-translationalen Assemblierung kommt. Mit den in-silico-Modellen l{\"a}sst sich neben der Dynamik u.a. auch die Lokalisierung der Komplexbildung und -bindung darstellen, was einen Vergleich der theoretischen Vorhersagen mit experimentellen Daten und somit eine Validierung der Modelle erm{\"o}glicht. Der hier pr{\"a}sentierte in-silico Ansatz erg{\"a}nzt die experimentellen Methoden, und erlaubt so, deren Ergebnisse zu interpretieren und neue Erkenntnisse davon abzuleiten.}, language = {de} } @article{VoloskovMishurovaEvlashinetal.2022, author = {Voloskov, Boris and Mishurova, Tatiana and Evlashin, Stanislav and Akhatov, Iskander and Bruno, Giovanni and Sergeichev, Ivan}, title = {Artificial defects in 316L stainless steel produced by laser powder bed fusion: printability, microstructure, and effects on the very-high-cycle fatigue behavior}, series = {Advanced engineering materials}, volume = {25}, journal = {Advanced engineering materials}, number = {1}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1438-1656}, doi = {10.1002/adem.202200831}, pages = {13}, year = {2022}, abstract = {The printability of artificial defects inside the additively manufactured laser powder bed fusion (LPBF) 316L stainless steel is investigated. The printing parameters of the LPBF process are optimized to produce artificial defects with reproducible sizes at desired positions while minimizing redundant porosity. The smallest obtained artificial defect is 90 mu m in diameter. The accuracy of the geometry of the printed defect depends on both the height and the diameter in the input model. The effect of artificial defects on the very-high-cycle fatigue (VHCF) behavior of LPBF 316L stainless steel is also studied. The specimens printed with artificial defects in the center are tested under VHCF using an ultrasonic machine. Crack initiation is accompanied by the formation of a fine granular area (FGA), typical of VHCF. Despite the presence of relatively large artificial defects, FGA formation is observed around accidental natural printing defects closer to the surface, which can still be considered as internal. The causes for this occurrence are discussed.}, language = {en} } @article{StolterfohtWolffAmiretal.2017, author = {Stolterfoht, Martin and Wolff, Christian Michael and Amir, Yohai and Paulke, Andreas and Perdig{\´o}n-Toro, Lorena and Caprioglio, Pietro and Neher, Dieter}, title = {Approaching the fill factor Shockley-Queisser limit in stable, dopant-free triple cation perovskite solar cells}, series = {Energy \& Environmental Science}, volume = {10}, journal = {Energy \& Environmental Science}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1754-5692}, doi = {10.1039/c7ee00899f}, pages = {1530 -- 1539}, year = {2017}, abstract = {Perovskite solar cells now compete with their inorganic counterparts in terms of power conversion efficiency, not least because of their small open-circuit voltage (V-OC) losses. A key to surpass traditional thin-film solar cells is the fill factor (FF). Therefore, more insights into the physical mechanisms that define the bias dependence of the photocurrent are urgently required. In this work, we studied charge extraction and recombination in efficient triple cation perovskite solar cells with undoped organic electron/hole transport layers (ETL/HTL). Using integral time of flight we identify the transit time through the HTL as the key figure of merit for maximizing the fill factor (FF) and efficiency. Complementarily, intensity dependent photocurrent and V-OC measurements elucidate the role of the HTL on the bias dependence of non-radiative and transport-related loss channels. We show that charge transport losses can be completely avoided under certain conditions, yielding devices with FFs of up to 84\%. Optimized cells exhibit power conversion efficiencies of above 20\% for 6 mm(2) sized pixels and 18.9\% for a device area of 1 cm(2). These are record efficiencies for hybrid perovskite devices with dopant-free transport layers, highlighting the potential of this device technology to avoid charge-transport limitations and to approach the Shockley-Queisser limit.}, language = {en} }