@article{SandbergKurpiersStolterfohtetal.2020, author = {Sandberg, Oskar J. and Kurpiers, Jona and Stolterfoht, Martin and Neher, Dieter and Meredith, Paul and Shoaee, Safa and Armin, Ardalan}, title = {On the question of the need for a built-in potential in Perovskite solar cells}, series = {Advanced materials interfaces}, volume = {7}, journal = {Advanced materials interfaces}, number = {10}, publisher = {Wiley}, address = {Hoboken}, issn = {2196-7350}, doi = {10.1002/admi.202000041}, pages = {8}, year = {2020}, abstract = {Perovskite semiconductors as the active materials in efficient solar cells exhibit free carrier diffusion lengths on the order of microns at low illumination fluxes and many hundreds of nanometers under 1 sun conditions. These lengthscales are significantly larger than typical junction thicknesses, and thus the carrier transport and charge collection should be expected to be diffusion controlled. A consensus along these lines is emerging in the field. However, the question as to whether the built-in potential plays any role is still of matter of some conjecture. This important question using phase-sensitive photocurrent measurements and theoretical device simulations based upon the drift-diffusion framework is addressed. In particular, the role of the built-in electric field and charge-selective transport layers in state-of-the-art p-i-n perovskite solar cells comparing experimental findings and simulation predictions is probed. It is found that while charge collection in the junction does not require a drift field per se, a built-in potential is still needed to avoid the formation of reverse electric fields inside the active layer, and to ensure efficient extraction through the charge transport layers.}, language = {en} } @article{JiangTaoStolterfohtetal.2020, author = {Jiang, Wei and Tao, Chen and Stolterfoht, Martin and Jin, Hui and Stephen, Meera and Lin, Qianqian and Nagiri, Ravi C. R. and Burn, Paul L. and Gentle, Ian R.}, title = {Hole-transporting materials for low donor content organic solar cells}, series = {Organic electronics : physics, materials and applications}, volume = {76}, journal = {Organic electronics : physics, materials and applications}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1566-1199}, doi = {10.1016/j.orgel.2019.105480}, pages = {7}, year = {2020}, abstract = {Low donor content solar cells are an intriguing class of photovoltaic device about which there is still considerable discussion with respect to their mode of operation. We have synthesized a series of triphenylamine-based materials for use in low donor content devices with the electron accepting [6,6]-phenyl-C71-butyric acid methyl ester (PC(7)0BM). The triphenylamine-based materials absorb light in the near UV enabling the PC(7)0BM to be be the main light absorbing organic semiconducting material in the solar cell. It was found that the devices did not operate as classical Schottky junctions but rather photocurrent was generated by hole transfer from the photo-excited PC(7)0BM to the triphenylamine-based donors. We found that replacing the methoxy surface groups with methyl groups on the donor material led to a decrease in hole mobility for the neat films, which was due to the methyl substituted materials having the propensity to aggregate. The thermodynamic drive to aggregate was advantageous for the performance of the low donor content (6 wt\%) films. It was found that the 6 wt\% donor devices generally gave higher performance than devices containing 50 wt\% of the donor.}, language = {en} } @article{KirchartzMarquezStolterfohtetal.2020, author = {Kirchartz, Thomas and M{\´a}rquez, Jos{\´e} A. and Stolterfoht, Martin and Unold, Thomas}, title = {Photoluminescence-based characterization of halide perovskites for photovoltaics}, series = {Advanced Energy Materials}, volume = {10}, journal = {Advanced Energy Materials}, number = {26}, publisher = {Wiley}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.201904134}, pages = {1 -- 21}, year = {2020}, abstract = {Photoluminescence spectroscopy is a widely applied characterization technique for semiconductor materials in general and halide perovskite solar cell materials in particular. It can give direct information on the recombination kinetics and processes as well as the internal electrochemical potential of free charge carriers in single semiconductor layers, layer stacks with transport layers, and complete solar cells. The correct evaluation and interpretation of photoluminescence requires the consideration of proper excitation conditions, calibration and application of the appropriate approximations to the rather complex theory, which includes radiative recombination, non-radiative recombination, interface recombination, charge transfer, and photon recycling. In this article, an overview is given of the theory and application to specific halide perovskite compositions, illustrating the variables that should be considered when applying photoluminescence analysis in these materials.}, language = {en} } @article{WangSmithSkroblinetal.2020, author = {Wang, Qiong and Smith, Joel A. and Skroblin, Dieter and Steele, Julian A. and Wolff, Christian Michael and Caprioglio, Pietro and Stolterfoht, Martin and K{\"o}bler, Hans and Turren-Cruz, Silver-Hamill and Li, Meng and Gollwitzer, Christian and Neher, Dieter and Abate, Antonio}, title = {Managing phase purities and crystal orientation for high-performance and photostable cesium lead halide perovskite solar cells}, series = {Solar RRL}, volume = {4}, journal = {Solar RRL}, number = {9}, publisher = {WILEY-VCH}, address = {Weinheim}, pages = {9}, year = {2020}, abstract = {Inorganic perovskites with cesium (Cs+) as the cation have great potential as photovoltaic materials if their phase purity and stability can be addressed. Herein, a series of inorganic perovskites is studied, and it is found that the power conversion efficiency of solar cells with compositions CsPbI1.8Br1.2, CsPbI2.0Br1.0, and CsPbI2.2Br0.8 exhibits a high dependence on the initial annealing step that is found to significantly affect the crystallization and texture behavior of the final perovskite film. At its optimized annealing temperature, CsPbI1.8Br1.2 exhibits a pure orthorhombic phase and only one crystal orientation of the (110) plane. Consequently, this allows for the best efficiency of up to 14.6\% and the longest operational lifetime, T-S80, of approximate to 300 h, averaged of over six solar cells, during the maximum power point tracking measurement under continuous light illumination and nitrogen atmosphere. This work provides essential progress on the enhancement of photovoltaic performance and stability of CsPbI3 - xBrx perovskite solar cells.}, language = {en} } @article{SamsonRechPerdigonToroetal.2020, author = {Samson, Stephanie and Rech, Jeromy and Perdig{\´o}n-Toro, Lorena and Peng, Zhengxing and Shoaee, Safa and Ade, Harald and Neher, Dieter and Stolterfoht, Martin and You, Wei}, title = {Organic solar cells with large insensitivity to donor polymer molar mass across all acceptor classes}, series = {ACS applied polymer materials}, volume = {2}, journal = {ACS applied polymer materials}, number = {11}, publisher = {American Chemical Society}, address = {Washington}, issn = {2637-6105}, doi = {10.1021/acsapm.0c01041}, pages = {5300 -- 5308}, year = {2020}, abstract = {Donor polymer number-average molar mass (M-n) has long been known to influence organic photovoltaic (OPV) performance via changes in both the polymer properties and the resulting bulk heterojunction morphology. The exact nature of these M-n effects varies from system to system, although there is generally some intermediate M-n that results in optimal performance. Interestingly, our earlier work with the difluorobenzotriazole (FTAZ)-based donor polymer, paired with either N2200 (polymer acceptor) or PC61BM (fullerene acceptor), PcBm demonstrated <10\% variation in power conversion efficiency and a consistent morphology over a large span of M-n (30 kg/mol to over 100 kg/mol). Would such insensitivity to polymer M-n still hold true when prevailing small molecular acceptors were used with FTAZ? To answer this question, we explored the impact of FTAZ on OPVs with ITIC, a high-performance small-molecule fused-ring electron acceptor (FREA). By probing the photovoltaic characteristics of the resulting OPVs, we show that a similar FTAZ mn insensitivity is also found in the FTAZ:ITIC system. This study highlights a single-donor polymer which, when paired with an archetypal fullerene, polymer, and FREA, results in systems that are largely insensitive to donor M. Our results may have implications in polymer batch-to-batch reproducibility, in particular, relaxing the need for tight M-n control during synthesis.}, language = {en} } @article{SchulzeBettBivouretal.2020, author = {Schulze, Patricia S. C. and Bett, Alexander J. and Bivour, Martin and Caprioglio, Pietro and Gerspacher, Fabian M. and Kabakl{\i}, {\"O}zde Ş. and Richter, Armin and Stolterfoht, Martin and Zhang, Qinxin and Neher, Dieter and Hermle, Martin and Hillebrecht, Harald and Glunz, Stefan W. and Goldschmidt, Jan Christoph}, title = {25.1\% high-efficiency monolithic perovskite silicon tandem solar cell with a high bandgap perovskite absorber}, series = {Solar RRL}, volume = {4}, journal = {Solar RRL}, number = {7}, publisher = {John Wiley \& Sons, Inc.}, address = {New Jersey}, pages = {10}, year = {2020}, abstract = {Monolithic perovskite silicon tandem solar cells can overcome the theoretical efficiency limit of silicon solar cells. This requires an optimum bandgap, high quantum efficiency, and high stability of the perovskite. Herein, a silicon heterojunction bottom cell is combined with a perovskite top cell, with an optimum bandgap of 1.68 eV in planar p-i-n tandem configuration. A methylammonium-free FA(0.75)Cs(0.25)Pb(I0.8Br0.2)(3) perovskite with high Cs content is investigated for improved stability. A 10\% molarity increase to 1.1 m of the perovskite precursor solution results in approximate to 75 nm thicker absorber layers and 0.7 mA cm(-2) higher short-circuit current density. With the optimized absorber, tandem devices reach a high fill factor of 80\% and up to 25.1\% certified efficiency. The unencapsulated tandem device shows an efficiency improvement of 2.3\% (absolute) over 5 months, showing the robustness of the absorber against degradation. Moreover, a photoluminescence quantum yield analysis reveals that with adapted charge transport materials and surface passivation, along with improved antireflection measures, the high bandgap perovskite absorber has the potential for 30\% tandem efficiency in the near future.}, language = {en} } @article{RaoufiHoermannLigorioetal.2020, author = {Raoufi, Meysam and H{\"o}rmann, Ulrich and Ligorio, Giovanni and Hildebrandt, Jana and P{\"a}tzel, Michael and Schultz, Thorsten and Perdig{\´o}n-Toro, Lorena and Koch, Norbert and List-Kratochvil, Emil and Hecht, Stefan and Neher, Dieter}, title = {Simultaneous effect of ultraviolet radiation and surface modification on the work function and hole injection properties of ZnO thin films}, series = {Physica Status Solidi. A , Applications and materials science}, volume = {217}, journal = {Physica Status Solidi. A , Applications and materials science}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6300}, doi = {10.1002/pssa.201900876}, pages = {1 -- 6}, year = {2020}, abstract = {The combined effect of ultraviolet (UV) light soaking and self-assembled monolayer deposition on the work function (WF) of thin ZnO layers and on the efficiency of hole injection into the prototypical conjugated polymer poly(3-hexylthiophen-2,5-diyl) (P3HT) is systematically investigated. It is shown that the WF and injection efficiency depend strongly on the history of UV light exposure. Proper treatment of the ZnO layer enables ohmic hole injection into P3HT, demonstrating ZnO as a potential anode material for organic optoelectronic devices. The results also suggest that valid conclusions on the energy-level alignment at the ZnO/organic interfaces may only be drawn if the illumination history is precisely known and controlled. This is inherently problematic when comparing electronic data from ultraviolet photoelectron spectroscopy (UPS) measurements carried out under different or ill-defined illumination conditions.}, language = {en} } @article{CabalarFandinoLierler2020, author = {Cabalar, Pedro and Fandi{\~n}o, Jorge and Lierler, Yuliya}, title = {Modular Answer Set Programming as a formal specification language}, series = {Theory and practice of logic programming}, volume = {20}, journal = {Theory and practice of logic programming}, number = {5}, publisher = {Cambridge University Press}, address = {New York}, issn = {1471-0684}, doi = {10.1017/S1471068420000265}, pages = {767 -- 782}, year = {2020}, abstract = {In this paper, we study the problem of formal verification for Answer Set Programming (ASP), namely, obtaining aformal proofshowing that the answer sets of a given (non-ground) logic programPcorrectly correspond to the solutions to the problem encoded byP, regardless of the problem instance. To this aim, we use a formal specification language based on ASP modules, so that each module can be proved to capture some informal aspect of the problem in an isolated way. This specification language relies on a novel definition of (possibly nested, first order)program modulesthat may incorporate local hidden atoms at different levels. Then,verifyingthe logic programPamounts to prove some kind of equivalence betweenPand its modular specification.}, language = {en} } @article{ChigarevKazakovPikovsky2020, author = {Chigarev, Vladimir and Kazakov, Alexey and Pikovsky, Arkady}, title = {Kantorovich-Rubinstein-Wasserstein distance between overlapping attractor and repeller}, series = {Chaos : an interdisciplinary journal of nonlinear science}, volume = {30}, journal = {Chaos : an interdisciplinary journal of nonlinear science}, number = {7}, publisher = {American Institute of Physics}, address = {Melville}, issn = {1054-1500}, doi = {10.1063/5.0007230}, pages = {10}, year = {2020}, abstract = {We consider several examples of dynamical systems demonstrating overlapping attractor and repeller. These systems are constructed via introducing controllable dissipation to prototypic models with chaotic dynamics (Anosov cat map, Chirikov standard map, and incompressible three-dimensional flow of the ABC-type on a three-torus) and ergodic non-chaotic behavior (skew-shift map). We employ the Kantorovich-Rubinstein-Wasserstein distance to characterize the difference between the attractor and the repeller, in dependence on the dissipation level.}, language = {en} } @article{SchaffenrothCasewellSchneideretal.2020, author = {Schaffenroth, Veronika and Casewell, Sarah L. and Schneider, D. and Kilkenny, David and Geier, Stephan and Heber, Ulrich and Irrgang, Andreas and Przybilla, Norbert and Marsh, Thomas R. and Littlefair, Stuart P. and Dhillon, Vik S.}, title = {A quantitative in-depth analysis of the prototype sdB plus BD system SDSS J08205+0008 revisited in the Gaia era}, series = {Monthly notices of the Royal Astronomical Society}, volume = {501}, journal = {Monthly notices of the Royal Astronomical Society}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/staa3661}, pages = {3847 -- 3870}, year = {2020}, abstract = {Subdwarf B stars are core-helium-burning stars located on the extreme horizontal branch (EHB). Extensive mass loss on the red giant branch is necessary to form them. It has been proposed that substellar companions could lead to the required mass loss when they are engulfed in the envelope of the red giant star. J08205+0008 was the first example of a hot subdwarf star with a close, substellar companion candidate to be found. Here, we perform an in-depth re-analysis of this important system with much higher quality data allowing additional analysis methods. From the higher resolution spectra obtained with ESO-VLT/XSHOOTER, we derive the chemical abundances of the hot subdwarf as well as its rotational velocity. Using the Gaia parallax and a fit to the spectral energy distribution in the secondary eclipse, tight constraints to the radius of the hot subdwarf are derived. From a long-term photometric campaign, we detected a significant period decrease of -3.2(8) x 10(-12) dd(-1). This can be explained by the non-synchronized hot subdwarf star being spun up by tidal interactions forcing it to become synchronized. From the rate of period decrease we could derive the synchronization time-scale to be 4 Myr, much smaller than the lifetime on EHB. By combining all different methods, we could constrain the hot subdwarf to a mass of 0.39-0.50 M-circle dot and a radius of R-sdB = 0.194 +/- 0.008 R-circle dot, and the companion to 0.061-0.071 M-circle dot with a radius of R-comp = 0.092 +/- 0.005 R-circle dot, below the hydrogen-burning limit. We therefore confirm that the companion is most likely a massive brown dwarf.}, language = {en} }