@article{VandewalBenduhnSchellhammeretal.2017, author = {Vandewal, Koen and Benduhn, Johannes and Schellhammer, Karl Sebastian and Vangerven, Tim and R{\"u}ckert, Janna E. and Piersimoni, Fortunato and Scholz, Reinhard and Zeika, Olaf and Fan, Yeli and Barlow, Stephen and Neher, Dieter and Marder, Seth R. and Manca, Jean and Spoltore, Donato and Cuniberti, Gianaurelio and Ortmann, Frank}, title = {Absorption Tails of Donor}, series = {Journal of the American Chemical Society}, volume = {139}, journal = {Journal of the American Chemical Society}, number = {4}, publisher = {American Chemical Society}, address = {Washington}, issn = {0002-7863}, doi = {10.1021/jacs.6b12857}, pages = {1699 -- 1704}, year = {2017}, abstract = {In disordered organic semiconductors, the transfer of a rather localized charge carrier from one site to another triggers a deformation of the molecular structure quantified by the intramolecular relaxation energy. A similar structural relaxation occurs upon population of intermolecular charge-transfer (CT) states formed at organic electron donor (D)-acceptor (A) interfaces. Weak CT absorption bands for D A complexes occur at photon energies below the optical gaps of both the donors and the C-60 acceptor as a result of optical transitions from the neutral ground state to the ionic CT state. In this work, we show that temperature-activated intramolecular vibrations of the ground state play a major role in determining the line shape of such CT absorption bands. This allows us to extract values for the relaxation energy related to the geometry change from neutral to ionic CT complexes. Experimental values for the relaxation energies of 20 D:C-60 CT complexes correlate with values calculated within density functional theory. These results provide an experimental method for determining the polaron relaxation energy in solid-state organic D-A blends and show the importance of a reduced relaxation energy, which we introduce to characterize thermally activated CT processes.}, language = {en} } @misc{FraschettiPohl2017, author = {Fraschetti, Federico and Pohl, Martin}, title = {Two-zone model for the broadband crab nebula spectrum}, series = {The European physical journal : Web of Conferences : proceedings}, volume = {136}, journal = {The European physical journal : Web of Conferences : proceedings}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {2100-014X}, doi = {10.1051/epjconf/201713602009}, pages = {5}, year = {2017}, abstract = {We develop a simple two-zone interpretation of the broadband baseline Crab nebula spectrum between 10(-5) eV and similar to 100 TeV by using two distinct log-parabola energetic electrons distributions. We determine analytically the very-high energy photon spectrum as originated by inverse-Compton scattering of the far-infrared soft ambient photons within the nebula off a first population of electrons energized at the nebula termination shock. The broad and flat 200 GeV peak jointly observed by Fermi/LAT and MAGIC is naturally reproduced. The synchrotron radiation from a second energetic electron population explains the spectrum from the radio range up to similar to 10 keV. We infer from observations the energy dependence of the microscopic probability of remaining in proximity of the shock of the accelerating electrons.}, language = {en} } @article{SchubertFrischAllardetal.2017, author = {Schubert, Marcel and Frisch, Johannes and Allard, Sybille and Preis, Eduard and Scherf, Ullrich and Koch, Norbert and Neher, Dieter}, title = {Tuning side chain and main chain order in a prototypical donor-acceptor copolymer}, series = {Elementary Processes in Organic Photovoltaics}, volume = {272}, journal = {Elementary Processes in Organic Photovoltaics}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-319-28338-8}, issn = {0065-3195}, doi = {10.1007/978-3-319-28338-8_10}, pages = {243 -- 265}, year = {2017}, abstract = {The recent development of donor-acceptor copolymers has led to an enormous improvement in the performance of organic solar cells and organic field-effect transistors. Here we describe the synthesis, detailed characterisation, and application of a series of structurally modified copolymers to investigate fundamental structure-property relationships in this class of conjugated polymers. The interplay between chemical structure and optoelectronic properties is investigated. These are further correlated to the charge transport and solar cell performance, which allows us to link their chemical structure to the observed physical properties.}, language = {en} } @misc{LaquaiAndrienkoDeibeletal.2017, author = {Laquai, Frederic and Andrienko, Denis and Deibel, Carsten and Neher, Dieter}, title = {Charge carrier generation, recombination, and extraction in polymer-fullerene bulk heterojunction organic solar cells}, series = {Elementary processes in organic photovoltaics}, volume = {272}, journal = {Elementary processes in organic photovoltaics}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-319-28338-8}, issn = {0065-3195}, doi = {10.1007/978-3-319-28338-8_11}, pages = {267 -- 291}, year = {2017}, abstract = {In this chapter we review the basic principles of photocurrent generation in bulk heterojunction organic solar cells, discuss the loss channels limiting their efficiency, and present case studies of several polymer-fullerene blends. Using steady-state and transient, optical, and electrooptical techniques, we create a precise picture of the fundamental processes that ultimately govern solar cell efficiency.}, language = {en} } @article{AbeysekaraArchambaultArcheretal.2017, author = {Abeysekara, A. U. and Archambault, S. and Archer, A. and Benbow, Wystan and Bird, Ralph and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cerruti, M. and Chen, X. and Ciupik, L. and Cui, W. and Dickinson, H. J. and Eisch, J. D. and Errando, M. and Falcone, A. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortson, L. and Furniss, A. and Gillanders, G. H. and Griffin, S. and Grube, J. and Hutten, M. and Hakansson, N. and Hanna, D. and Holder, J. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kertzman, M. and Kieda, D. and Krause, M. and Krennrich, F. and Kumar, S. and Lang, M. J. and Maier, G. and McArthur, S. and McCann, A. and Meagher, K. and Moriarty, P. and Mukherjee, R. and Nguyen, T. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, N. and Pelassa, V. and Pohl, Martin and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rulten, C. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Staszak, D. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Wakely, S. P. and Weiner, O. M. and Weinstein, A. and Wilhelm, Alina and Williams, D. A. and Fegan, S. and Giebels, B. and Horan, D. and Berdyugin, A. and Kuan, J. and Lindfors, E. and Nilsson, K. and Oksanen, A. and Prokoph, H. and Reinthal, R. and Takalo, L. and Zefi, F.}, title = {A Luminous and Isolated Gamma-Ray Flare from the Blazar B2 1215+30}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {836}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {VERITAS Collaboration;Fermi-LAT Collaboration}, issn = {0004-637X}, doi = {10.3847/1538-4357/836/2/205}, pages = {6}, year = {2017}, abstract = {B2 1215+30 is a BL-Lac-type blazar that was first detected at TeV energies by the MAGIC atmospheric Cherenkov telescopes and subsequently confirmed by the Very Energetic Radiation Imaging Telescope Array System (VERITAS) observatory with data collected between 2009 and 2012. In 2014 February 08, VERITAS detected a large-amplitude flare from B2. 1215+30 during routine monitoring observations of the blazar 1ES. 1218+304, located in the same field of view. The TeV flux reached 2.4 times the Crab Nebula flux with a variability timescale of <3.6 hr. Multiwavelength observations with Fermi-LAT, Swift, and the Tuorla Observatory revealed a correlated high GeV flux state and no significant optical counterpart to the flare, with a spectral energy distribution where the gamma-ray luminosity exceeds the synchrotron luminosity. When interpreted in the framework of a onezone leptonic model, the observed emission implies a high degree of beaming, with Doppler factor delta > 10, and an electron population with spectral index p < 2.3.}, language = {en} } @misc{FondellEckertJayetal.2017, author = {Fondell, Mattis and Eckert, Sebastian and Jay, Raphael Martin and Weniger, Christian and Quevedo, Wilson and Niskanen, Johannes and Kennedy, Brian and Sorgenfrei, Nomi and Schick, Daniel and Giangrisostomi, Erika and Ovsyannikov, Ruslan and Adamczyk, Katrin and Huse, Nils and Wernet, Philippe and Mitzner, Rolf and F{\"o}hlisch, Alexander}, title = {Time-resolved soft X-ray absorption spectroscopy in transmission mode on liquids at MHz repetition rates}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {780}, issn = {1866-8372}, doi = {10.25932/publishup-43752}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-437529}, pages = {12}, year = {2017}, abstract = {We present a setup combining a liquid flatjet sample delivery and a MHz laser system for time-resolved soft X-ray absorption measurements of liquid samples at the high brilliance undulator beamline UE52-SGM at Bessy II yielding unprecedented statistics in this spectral range. We demonstrate that the efficient detection of transient absorption changes in transmission mode enables the identification of photoexcited species in dilute samples. With iron(II)-trisbipyridine in aqueous solution as a benchmark system, we present absorption measurements at various edges in the soft X-ray regime. In combination with the wavelength tunability of the laser system, the set-up opens up opportunities to study the photochemistry of many systems at low concentrations, relevant to materials sciences, chemistry, and biology.}, language = {en} } @article{RolandYanZhangetal.2017, author = {Roland, Steffen and Yan, Liang and Zhang, Qianqian and Jiao, Xuechen and Hunt, Adrian and Ghasemi, Masoud and Ade, Harald and You, Wei and Neher, Dieter}, title = {Charge Generation and Mobility-Limited Performance of Bulk Heterojunction Solar Cells with a Higher Adduct Fullerene}, series = {The journal of physical chemistry : C, Nanomaterials and interfaces}, volume = {121}, journal = {The journal of physical chemistry : C, Nanomaterials and interfaces}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/acs.jpcc.7b02288}, pages = {10305 -- 10316}, year = {2017}, abstract = {Alternative electron acceptors are being actively explored in order to advance the development of bulk-heterojunction (BHJ) organic solar cells (OSCs). The indene-C-60 bisadduct (ICBA) has been regarded as a promising candidate, as it provides high open-circuit voltage in BHJ solar cells; however, the photovoltaic performance of such ICBA-based devices is often inferior when compared to cells with the omnipresent PCBM electron acceptor. Here, by pairing the high performance polymer (FTAZ) as the donor with either PCBM or ICBA as the acceptor, we explore the physical mechanism behind the reduced performance of the ICBA-based device. Time delayed collection field (TDCF) experiments reveal reduced, yet field-independent free charge generation in the FTAZ:ICBA system, explaining the overall lower photocurrent in its cells. Through the analysis of the photoluminescence, photogeneration, and electroluminescence, we find that the lower generation efficiency is neither caused by inefficient exciton splitting, nor do we find evidence for significant energy back-transfer from the CT state to singlet excitons. In fact, the increase in open circuit voltage when replacing PCBM by ICBA is entirely caused by the increase in the CT energy, related to the shift in the LUMO energy, while changes in the radiative and nonradiative recombination losses are nearly absent. On the other hand, space charge limited current (SCLC) and bias-assisted charge extraction (BACE) measurements consistently reveal a severely lower electron mobilitiy in the FTAZ:ICBA blend. Studies of the blends with resonant soft X-ray scattering (R-SoXS), grazing incident wide-angle X-ray scattering (GIWAXS), and scanning transmission X-ray microscopy (STXM) reveal very little differences in the mesoscopic morphology but significantly less nanoscale molecular ordering of the fullerene domains in the ICBA based blends, which we propose as the main cause for the lower generation efficiency and smaller electron mobility. Calculations of the JV curves with an analytical model, using measured values, show good agreement with the experimentally determined JV characteristics, proving that these devices suffer from slow carrier extraction, resulting in significant bimolecular recombination losses. Therefore, this study highlights the importance of high charge carrier mobility for newly synthesized acceptor materials, in addition to having suitable energy levels.}, language = {en} } @article{BenduhnTvingstedtPiersimonietal.2017, author = {Benduhn, Johannes and Tvingstedt, Kristofer and Piersimoni, Fortunato and Ullbrich, Sascha and Fan, Yeli and Tropiano, Manuel and McGarry, Kathryn A. and Zeika, Olaf and Riede, Moritz K. and Douglas, Christopher J. and Barlow, Stephen and Marder, Seth R. and Neher, Dieter and Spoltore, Donato and Vandewal, Koen}, title = {Intrinsic non-radiative voltage losses in fullerene-based organic solar cells}, series = {Nature Energy}, volume = {2}, journal = {Nature Energy}, publisher = {Nature Publ. Group}, address = {London}, issn = {2058-7546}, doi = {10.1038/nenergy.2017.53}, pages = {6}, year = {2017}, abstract = {Organic solar cells demonstrate external quantum efficiencies and fill factors approaching those of conventional photovoltaic technologies. However, as compared with the optical gap of the absorber materials, their open-circuit voltage is much lower, largely due to the presence of significant non-radiative recombination. Here, we study a large data set of published and new material combinations and find that non-radiative voltage losses decrease with increasing charge-transfer-state energies. This observation is explained by considering non-radiative charge-transfer-state decay as electron transfer in the Marcus inverted regime, being facilitated by a common skeletal molecular vibrational mode. Our results suggest an intrinsic link between non-radiative voltage losses and electron-vibration coupling, indicating that these losses are unavoidable. Accordingly, the theoretical upper limit for the power conversion efficiency of single-junction organic solar cells would be reduced to about 25.5\% and the optimal optical gap increases to (1.45-1.65) eV, that is, (0.2-0.3) eV higher than for technologies with minimized non-radiative voltage losses.}, language = {en} } @article{HofackerNeher2017, author = {Hofacker, Andreas and Neher, Dieter}, title = {Dispersive and steady-state recombination in organic disordered semiconductors}, series = {Physical review : B, Condensed matter and materials physics}, volume = {96}, journal = {Physical review : B, Condensed matter and materials physics}, publisher = {American Physical Society}, address = {College Park}, issn = {2469-9950}, doi = {10.1103/PhysRevB.96.245204}, pages = {11}, year = {2017}, abstract = {Charge carrier recombination in organic disordered semiconductors is strongly influenced by the thermalization of charge carriers in the density of states (DOS). Measurements of recombination dynamics, conducted under transient or steady-state conditions, can easily be misinterpreted when a detailed understanding of the interplay of thermalization and recombination is missing. To enable adequate measurement analysis, we solve the multiple-trapping problem for recombining charge carriers and analyze it in the transient and steady excitation paradigm for different DOS distributions. We show that recombination rates measured after pulsed excitation are inherently time dependent since recombination gradually slows down as carriers relax in the DOS. When measuring the recombination order after pulsed excitation, this leads to an apparent high-order recombination at short times. As times goes on, the recombination order approaches an asymptotic value. For the Gaussian and the exponential DOS distributions, this asymptotic value equals the recombination order of the equilibrated system under steady excitation. For a more general DOS distribution, the recombination order can also depend on the carrier density, under both transient and steady-state conditions. We conclude that transient experiments can provide rich information about recombination in and out of equilibrium and the underlying DOS occupation provided that consistent modeling of the system is performed.}, language = {en} } @misc{GrisicHuisingaReinischetal.2017, author = {Grisic, Ana-Marija and Huisinga, Wilhelm and Reinisch, W. and Kloft, Charlotte}, title = {P485 Dosing infliximab in Crohn's disease}, series = {Journal of Crohn's and Colitis}, volume = {11}, journal = {Journal of Crohn's and Colitis}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {1873-9946}, doi = {10.1093/ecco-jcc/jjx002.609}, pages = {S325 -- S326}, year = {2017}, abstract = {Background: Infliximab (IFX), an anti-TNF monoclonal antibody approved for the treatment of inflammatory bowel disease, is dosed per kg body weight (BW). However, the rationale for body size adjustment has not been unequivocally demonstrated [1], and first attempts to improve IFX therapy have been undertaken [2]. The aim of our study was to assess the impact of different dosing strategies (i.e. body size-adjusted and fixed dosing) on drug exposure and pharmacokinetic (PK) target attainment. For this purpose, a comprehensive simulation study was performed, using patient characteristics (n=116) from an in-house clinical database. Methods: IFX concentration-time profiles of 1000 virtual, clinically representative patients were generated using a previously published PK model for IFX in patients with Crohn's disease [3]. For each patient 1000 profiles accounting for PK variability were considered. The IFX exposure during maintenance treatment after the following dosing strategies was compared: i) fixed dose, and per ii) BW, iii) lean BW (LBW), iv) body surface area (BSA), v) height (HT), vi) body mass index (BMI) and vii) fat-free mass (FFM)). For each dosing strategy the variability in maximum concentration Cmax, minimum concentration Cmin (= C8weeks) and area under the concentration-time curve (AUC), as well as percent of patients achieving the PK target, Cmin=3 μg/mL [4] were assessed. Results: For all dosing strategies the variability of Cmin (CV ≈110\%) was highest, compared to Cmax and AUC, and was of similar extent regardless of dosing strategy. The proportion of patients reaching the PK target (≈⅓ was approximately equal for all dosing strategies.}, language = {en} } @misc{ShpritsAngelopoulosRusselletal.2017, author = {Shprits, Yuri Y. and Angelopoulos, V. and Russell, C. T. and Strangeway, R. J. and Runov, A. and Turner, D. and Caron, R. and Cruce, P. and Leneman, D. and Michaelis, I. and Petrov, V. and Panasyuk, M. and Yashin, I. and Drozdov, Alexander and Russell, C. L. and Kalegaev, V. and Nazarkov, I. and Clemmons, J. H.}, title = {Scientific Objectives of Electron Losses and Fields INvestigation Onboard Lomonosov Satellite}, series = {Space science reviews}, volume = {214}, journal = {Space science reviews}, number = {1}, publisher = {Springer}, address = {Dordrecht}, issn = {0038-6308}, doi = {10.1007/s11214-017-0455-4}, pages = {19}, year = {2017}, abstract = {The objective of the Electron Losses and Fields INvestigation on board the Lomonosov satellite ( ELFIN-L) project is to determine the energy spectrum of precipitating energetic electrons and ions and, together with other polar-orbiting and equatorial missions, to better understand the mechanisms responsible for scattering these particles into the atmosphere. This mission will provide detailed measurements of the radiation environment at low altitudes. The 400-500 km sun-synchronous orbit of Lomonosov is ideal for observing electrons and ions precipitating into the atmosphere. This mission provides a unique opportunity to test the instruments. Similar suite of instruments will be flown in the future NSF-and NASA-supported spinning CubeSat ELFIN satellites which will augment current measurements by providing detailed information on pitch-angle distributions of precipitating and trapped particles.}, language = {en} } @article{ShpritsKellermanAseevetal.2017, author = {Shprits, Yuri Y. and Kellerman, Adam C . and Aseev, Nikita and Drozdov, Alexander and Michaelis, Ingo}, title = {Multi-MeV electron loss in the heart of the radiation belts}, series = {Geophysical research letters}, volume = {44}, journal = {Geophysical research letters}, number = {3}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1002/2016GL072258}, pages = {1204 -- 1209}, year = {2017}, abstract = {Significant progress has been made in recent years in understanding acceleration mechanisms in the Earth's radiation belts. In particular, a number of studies demonstrated the importance of the local acceleration by analyzing the radial profiles of phase space density (PSD) and observing building up peaks in PSD. In this study, we focus on understanding of the local loss using very similar tools. The profiles of PSD for various values of the first adiabatic invariants during the previously studied 17 January 2013 storm are presented and discussed. The profiles of PSD show clear deepening minimums consistent with the scattering by electromagnetic ion cyclotron waves. Long-term evolution shows that local minimums in PSD can persist for relatively long times. During considered interval of time the deepening minimums were observed around L* = 4 during 17 January 2013 storm and around L* = 3.5 during 1 March 2013 storm. This study shows a new method that can help identify the location, magnitude, and time of the local loss and will help quantify local loss in the future. This study also provides additional clear and definitive evidence that local loss plays a major role for the dynamics of the multi-MeV electrons.}, language = {en} } @article{SteteKoopmanBargheer2017, author = {Stete, Felix and Koopman, Wouter-Willem Adriaan and Bargheer, Matias}, title = {Signatures of strong coupling on nanoparticles}, series = {ACS Photonics}, volume = {4}, journal = {ACS Photonics}, publisher = {American Chemical Society}, address = {Washington}, issn = {2330-4022}, doi = {10.1021/acsphotonics.7b00113}, pages = {1669 -- 1676}, year = {2017}, abstract = {In the strong coupling regime, exciton and plasmon excitations are hybridized into combined system excitations. The correct identification of the coupling regime in these systems is currently debated, from both experimental and theoretical perspectives. In this article we show that the extinction spectra may show a large peak splitting, although the energy loss encoded in the absorption spectra clearly rules out the strong coupling regime. We investigate the coupling of J-aggregate excitons to the localized surface plasmon polaritons on gold nanospheres and nanorods by fine-tuning the plasmon resonance via layer-by-layer deposition of polyelectrolytes. While both structures show a characteristic anticrossing in extinction and scattering experiments, the careful assessment of the systems' light absorption reveals that strong coupling of the plasmon to the exciton is not present in the nanosphere system. In a phenomenological model of two classical coupled oscillators, a Fano-like regime causes only the resonance of the light-driven oscillator to split up, while the other one still dissipates energy at its original frequency. Only in the strong-coupling limit do both oscillators split up the frequencies at which they dissipate energy, qualitatively explaining our experimental finding.}, language = {en} } @article{StolterfohtWolffAmiretal.2017, author = {Stolterfoht, Martin and Wolff, Christian Michael and Amir, Yohai and Paulke, Andreas and Perdig{\´o}n-Toro, Lorena and Caprioglio, Pietro and Neher, Dieter}, title = {Approaching the fill factor Shockley-Queisser limit in stable, dopant-free triple cation perovskite solar cells}, series = {Energy \& Environmental Science}, volume = {10}, journal = {Energy \& Environmental Science}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1754-5692}, doi = {10.1039/c7ee00899f}, pages = {1530 -- 1539}, year = {2017}, abstract = {Perovskite solar cells now compete with their inorganic counterparts in terms of power conversion efficiency, not least because of their small open-circuit voltage (V-OC) losses. A key to surpass traditional thin-film solar cells is the fill factor (FF). Therefore, more insights into the physical mechanisms that define the bias dependence of the photocurrent are urgently required. In this work, we studied charge extraction and recombination in efficient triple cation perovskite solar cells with undoped organic electron/hole transport layers (ETL/HTL). Using integral time of flight we identify the transit time through the HTL as the key figure of merit for maximizing the fill factor (FF) and efficiency. Complementarily, intensity dependent photocurrent and V-OC measurements elucidate the role of the HTL on the bias dependence of non-radiative and transport-related loss channels. We show that charge transport losses can be completely avoided under certain conditions, yielding devices with FFs of up to 84\%. Optimized cells exhibit power conversion efficiencies of above 20\% for 6 mm(2) sized pixels and 18.9\% for a device area of 1 cm(2). These are record efficiencies for hybrid perovskite devices with dopant-free transport layers, highlighting the potential of this device technology to avoid charge-transport limitations and to approach the Shockley-Queisser limit.}, language = {en} }