@article{BeckusPinchover2020, author = {Beckus, Siegfried and Pinchover, Yehuda}, title = {Shnol-type theorem for the Agmon ground state}, series = {Journal of spectral theory}, volume = {10}, journal = {Journal of spectral theory}, number = {2}, publisher = {EMS Publishing House}, address = {Z{\"u}rich}, issn = {1664-039X}, doi = {10.4171/JST/296}, pages = {355 -- 377}, year = {2020}, abstract = {LetH be a Schrodinger operator defined on a noncompact Riemannianmanifold Omega, and let W is an element of L-infinity (Omega; R). Suppose that the operator H + W is critical in Omega, and let phi be the corresponding Agmon ground state. We prove that if u is a generalized eigenfunction ofH satisfying vertical bar u vertical bar <= C-phi in Omega for some constant C > 0, then the corresponding eigenvalue is in the spectrum of H. The conclusion also holds true if for some K is an element of Omega the operator H admits a positive solution in (Omega) over bar = Omega \ K, and vertical bar u vertical bar <= C psi in (Omega) over bar for some constant C > 0, where psi is a positive solution of minimal growth in a neighborhood of infinity in Omega. Under natural assumptions, this result holds also in the context of infinite graphs, and Dirichlet forms.}, language = {en} } @article{EberhardSchaikSchibalskietal.2020, author = {Eberhard, Julius and Schaik, N. Loes M. B. and Schibalski, Anett and Gr{\"a}ff, Thomas}, title = {Simulating future salinity dynamics in a coastal marshland under different climate scenarios}, series = {Vadose zone journal}, volume = {19}, journal = {Vadose zone journal}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {1539-1663}, doi = {10.1002/vzj2.20008}, pages = {15}, year = {2020}, abstract = {Salinization is a well-known problem in agricultural areas worldwide. In the last 20-30 yr, rising salinity in the upper, unconfined aquifer has been observed in the Freepsumer Meer, a grassland near the German North Sea coast. For investigating long-term development of salinity and water balance during 1961-2099, the one-dimensional Soil-Water-Atmosphere-Plant (SWAP) model was set up and calibrated for a soil column in the area. The model setup involves a deep aquifer as the source of salt through upward seepage. In the vertical salt transport equation, dispersion and advection are included. Six different regional outputs of statistical downscaling methods were used as climate scenarios. These comprise different rates of increasing surface temperature and different trends in seasonal rainfall. The simulation results exhibit opposing salinity trends for topsoil and deeper layers. Although projections of some scenarios entail decreasing salinities near the surface, most of them project a rise in subsoil salinity, with the strongest trends of up to +0.9 mg cm(-3) 100 yr(-1) at -65 cm. The results suggest that topsoil salinity trends in the study area are affected by the magnitude of winter rainfall trends, whereas high subsoil salinities correspond to low winter rainfall and high summer temperature. How these projected trends affect the vegetation and thereby future land use will depend on the future management of groundwater levels in the area.}, language = {en} } @article{RaoufiHoermannLigorioetal.2020, author = {Raoufi, Meysam and H{\"o}rmann, Ulrich and Ligorio, Giovanni and Hildebrandt, Jana and P{\"a}tzel, Michael and Schultz, Thorsten and Perdig{\´o}n-Toro, Lorena and Koch, Norbert and List-Kratochvil, Emil and Hecht, Stefan and Neher, Dieter}, title = {Simultaneous effect of ultraviolet radiation and surface modification on the work function and hole injection properties of ZnO thin films}, series = {Physica Status Solidi. A , Applications and materials science}, volume = {217}, journal = {Physica Status Solidi. A , Applications and materials science}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6300}, doi = {10.1002/pssa.201900876}, pages = {1 -- 6}, year = {2020}, abstract = {The combined effect of ultraviolet (UV) light soaking and self-assembled monolayer deposition on the work function (WF) of thin ZnO layers and on the efficiency of hole injection into the prototypical conjugated polymer poly(3-hexylthiophen-2,5-diyl) (P3HT) is systematically investigated. It is shown that the WF and injection efficiency depend strongly on the history of UV light exposure. Proper treatment of the ZnO layer enables ohmic hole injection into P3HT, demonstrating ZnO as a potential anode material for organic optoelectronic devices. The results also suggest that valid conclusions on the energy-level alignment at the ZnO/organic interfaces may only be drawn if the illumination history is precisely known and controlled. This is inherently problematic when comparing electronic data from ultraviolet photoelectron spectroscopy (UPS) measurements carried out under different or ill-defined illumination conditions.}, language = {en} } @article{RosenauPikovskij2020, author = {Rosenau, Philip and Pikovskij, Arkadij}, title = {Solitary phase waves in a chain of autonomous oscillators}, series = {Chaos : an interdisciplinary journal of nonlinear science}, volume = {30}, journal = {Chaos : an interdisciplinary journal of nonlinear science}, number = {5}, publisher = {American Institute of Physics, AIP}, address = {Melville, NY}, issn = {1054-1500}, doi = {10.1063/1.5144939}, pages = {8}, year = {2020}, abstract = {In the present paper, we study phase waves of self-sustained oscillators with a nearest-neighbor dispersive coupling on an infinite lattice. To analyze the underlying dynamics, we approximate the lattice with a quasi-continuum (QC). The resulting partial differential model is then further reduced to the Gardner equation, which predicts many properties of the underlying solitary structures. Using an iterative procedure on the original lattice equations, we determine the shapes of solitary waves, kinks, and the flat-like solitons that we refer to as flatons. Direct numerical experiments reveal that the interaction of solitons and flatons on the lattice is notably clean. All in all, we find that both the QC and the Gardner equation predict remarkably well the discrete patterns and their dynamics.}, language = {en} } @article{SilantevaKomolkinMamontovaetal.2020, author = {Silanteva, Irina A. and Komolkin, Andrei and Mamontova, Veronika V. and Vorontsov-Velyaminov, Pavel N. and Santer, Svetlana and Kasyanenko, Nina A.}, title = {Some features of surfactant organization in DNA solutions at various NaCl concentrations}, series = {ACS omega / American Chemical Society}, volume = {5}, journal = {ACS omega / American Chemical Society}, number = {29}, publisher = {ACS Publications}, address = {Washington}, issn = {2470-1343}, doi = {10.1021/acsomega.0c01850}, pages = {18234 -- 18243}, year = {2020}, abstract = {The photosensitive azobenzene-containing surfactant C-4-Azo-OC(6)TMAB is a promising agent for reversible DNA packaging in a solution. The simulation of the trans-isomer surfactant organization into associates in a solution with and without salt as well as its binding to DNA at different NaCl concentrations was carried out by molecular dynamics. Experimental data obtained by spectral and hydrodynamic methods were used to verify the results of simulation. It was shown that head-to-tail aggregates with close to antiparallel orientation of surfactant molecules were formed at certain NaCl and surfactant concentrations (below critical micelle concentration). Such aggregates have two positively charged ends, and therefore, they can be attracted to negatively charged DNA phosphates far located along the chain, as well as those that belong to different molecules. This contributes to the formation of intermolecular DNA-DNA contacts, and this way, the experimentally observed precipitation of DNA can be explained.}, language = {en} } @article{MardoukhiChechkinMetzler2020, author = {Mardoukhi, Yousof and Chechkin, Aleksei V. and Metzler, Ralf}, title = {Spurious ergodicity breaking in normal and fractional Ornstein-Uhlenbeck process}, series = {New Journal of Physics}, volume = {22}, journal = {New Journal of Physics}, publisher = {IOP}, address = {London}, issn = {1367-2630}, doi = {10.1088/1367-2630/ab950b}, pages = {18}, year = {2020}, abstract = {The Ornstein-Uhlenbeck process is a stationary and ergodic Gaussian process, that is fully determined by its covariance function and mean. We show here that the generic definitions of the ensemble- and time-averaged mean squared displacements fail to capture these properties consistently, leading to a spurious ergodicity breaking. We propose to remedy this failure by redefining the mean squared displacements such that they reflect unambiguously the statistical properties of any stochastic process. In particular we study the effect of the initial condition in the Ornstein-Uhlenbeck process and its fractional extension. For the fractional Ornstein-Uhlenbeck process representing typical experimental situations in crowded environments such as living biological cells, we show that the stationarity of the process delicately depends on the initial condition.}, language = {en} } @article{Schirdewahn2020, author = {Schirdewahn, Daniel}, title = {Stability of a parametric harmonic oscillator with dichotomic noise}, series = {Chaos : an interdisciplinary journal of nonlinear science}, volume = {30}, journal = {Chaos : an interdisciplinary journal of nonlinear science}, number = {9}, publisher = {American Institute of Physics}, address = {Melville}, issn = {1054-1500}, doi = {10.1063/5.0012946}, pages = {7}, year = {2020}, abstract = {The harmonic oscillator is a powerful model that can appear as a limit case when examining a nonlinear system. A well known fact is that, without driving, the inclusion of a friction term makes the origin of the phase space-which is a fixed point of the system-linearly stable. In this work, we include a telegraph process as perturbation of the oscillator's frequency, for example, to describe the motion of a particle with fluctuating charge gyrating in an external magnetic field. Increasing intensity of this colored noise is capable of changing the quality of the fixed point. To characterize the stability of the system, we use a stability measure that describes the growth of the displacement of the system's phase space position and express it in a closed form. We expand the respective exponent for light friction and low noise intensity and compare both the exact analytic solution and the expansion to numerical values. Our findings allow stability predictions for several physical systems.}, language = {en} } @article{ZhongCausaMooreetal.2020, author = {Zhong, Yufei and Causa, Martina and Moore, Gareth John and Krauspe, Philipp and Xiao, Bo and G{\"u}nther, Florian and Kublitski, Jonas and BarOr, Eyal and Zhou, Erjun and Banerji, Natalie}, title = {Sub-picosecond charge-transfer at near-zero driving force in polymer:non-fullerene acceptor blends and bilayers}, series = {Nature Communications}, volume = {11}, journal = {Nature Communications}, number = {1}, publisher = {Nature Publishing Group UK}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-020-14549-w}, pages = {1 -- 10}, year = {2020}, abstract = {Organic photovoltaics based on non-fullerene acceptors (NFAs) show record efficiency of 16 to 17\% and increased photovoltage owing to the low driving force for interfacial charge-transfer. However, the low driving force potentially slows down charge generation, leading to a tradeoff between voltage and current. Here, we disentangle the intrinsic charge-transfer rates from morphology-dependent exciton diffusion for a series of polymer:NFA systems. Moreover, we establish the influence of the interfacial energetics on the electron and hole transfer rates separately. We demonstrate that charge-transfer timescales remain at a few hundred femtoseconds even at near-zero driving force, which is consistent with the rates predicted by Marcus theory in the normal region, at moderate electronic coupling and at low re-organization energy. Thus, in the design of highly efficient devices, the energy offset at the donor:acceptor interface can be minimized without jeopardizing the charge-transfer rate and without concerns about a current-voltage tradeoff.}, language = {en} } @article{HempelAdolphsLandwehretal.2020, author = {Hempel, Sabrina and Adolphs, Julian and Landwehr, Niels and Willink, Dilya and Janke, David and Amon, Thomas}, title = {Supervised machine learning to assess methane emissions of a dairy building with natural ventilation}, series = {Applied Sciences}, volume = {10}, journal = {Applied Sciences}, number = {19}, publisher = {MDPI}, address = {Basel}, issn = {2076-3417}, doi = {10.3390/app10196938}, pages = {21}, year = {2020}, abstract = {A reliable quantification of greenhouse gas emissions is a basis for the development of adequate mitigation measures. Protocols for emission measurements and data analysis approaches to extrapolate to accurate annual emission values are a substantial prerequisite in this context. We systematically analyzed the benefit of supervised machine learning methods to project methane emissions from a naturally ventilated cattle building with a concrete solid floor and manure scraper located in Northern Germany. We took into account approximately 40 weeks of hourly emission measurements and compared model predictions using eight regression approaches, 27 different sampling scenarios and four measures of model accuracy. Data normalization was applied based on median and quartile range. A correlation analysis was performed to evaluate the influence of individual features. This indicated only a very weak linear relation between the methane emission and features that are typically used to predict methane emission values of naturally ventilated barns. It further highlighted the added value of including day-time and squared ambient temperature as features. The error of the predicted emission values was in general below 10\%. The results from Gaussian processes, ordinary multilinear regression and neural networks were least robust. More robust results were obtained with multilinear regression with regularization, support vector machines and particularly the ensemble methods gradient boosting and random forest. The latter had the added value to be rather insensitive against the normalization procedure. In the case of multilinear regression, also the removal of not significantly linearly related variables (i.e., keeping only the day-time component) led to robust modeling results. We concluded that measurement protocols with 7 days and six measurement periods can be considered sufficient to model methane emissions from the dairy barn with solid floor with manure scraper, particularly when periods are distributed over the year with a preference for transition periods. Features should be normalized according to median and quartile range and must be carefully selected depending on the modeling approach.}, language = {en} } @article{YestePrimusAlcantaraetal.2020, author = {Yeste, Maria Pilar and Primus, Philipp-Alexander and Alcantara, Rodrigo and Cauqui, Miguel Angel and Calvino, Juan Jose and Pintado, Jos{\´e} Mar{\´i}a and Blanco, Ginesa}, title = {Surface characterization of two Ce0.62Zr0.38O2 mixed oxides with different reducibility}, series = {Applied surface science : a journal devoted to applied physics and chemistry of surfaces and interfaces}, volume = {503}, journal = {Applied surface science : a journal devoted to applied physics and chemistry of surfaces and interfaces}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0169-4332}, doi = {10.1016/j.apsusc.2019.144255}, pages = {9}, year = {2020}, abstract = {This paper presents a study of the surface properties of two Ce/Zr mixed oxides with different reducibility, obtained by applying distinct thermal ageing treatments to an oxide with the composition Ce0.62Zr0.38O2. The surface composition was investigated by XPS. Chemical reactivity of the surface was studied by adsorption of the probe molecules CO2, D-2 and methanol. Nanostructural characterization was carried out by XRD, Raman and high-resolution Eu3+ spectroscopy (FLNS). The characterization showed only slight variations in surface composition and bulk Ce-Zr distribution, but hardy differences concerning the type and strength of acidic surface centres, as well as strong differences in the ability to dissociate hydrogen. Structural variations between both samples were identified by comparing the optical spectra of Eu3+ in surface doped samples.}, language = {en} }