@phdthesis{Sommerfeld2015, author = {Sommerfeld, Anja}, title = {Quantification of internal variability of the arctic summer atmosphere based on HIRHAM5 ensemble simulations}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-85347}, school = {Universit{\"a}t Potsdam}, pages = {VII, 110, vi}, year = {2015}, abstract = {The non-linear behaviour of the atmospheric dynamics is not well understood and makes the evaluation and usage of regional climate models (RCMs) difficult. Due to these non-linearities, chaos and internal variability (IV) within the RCMs are induced, leading to a sensitivity of RCMs to their initial conditions (IC). The IV is the ability of RCMs to realise different solutions of simulations that differ in their IC, but have the same lower and lateral boundary conditions (LBC), hence can be defined as the across-member spread between the ensemble members. For the investigation of the IV and the dynamical and diabatic contributions generating the IV four ensembles of RCM simulations are performed with the atmospheric regional model HIRHAM5. The integration area is the Arctic and each ensemble consists of 20 members. The ensembles cover the time period from July to September for the years 2006, 2007, 2009 and 2012. The ensemble members have the same LBC and differ in their IC only. The different IC are arranged by an initialisation time that shifts successively by six hours. Within each ensemble the first simulation starts on 1st July at 00 UTC and the last simulation starts on 5th July at 18 UTC and each simulation runs until 30th September. The analysed time period ranges from 6th July to 30th September, the time period that is covered by all ensemble members. The model runs without any nudging to allow a free development of each simulation to get the full internal variability within the HIRHAM5. As a measure of the model generated IV, the across-member standard deviation and the across-member variance is used and the dynamical and diabatic processes influencing the IV are estimated by applying a diagnostic budget study for the IV tendency of the potential temperature developed by Nikiema and Laprise [2010] and Nikiema and Laprise [2011]. The diagnostic budget study is based on the first law of thermodynamics for potential temperature and the mass-continuity equation. The resulting budget equation reveals seven contributions to the potential temperature IV tendency. As a first study, this work analyses the IV within the HIRHAM5. Therefore, atmospheric circulation parameters and the potential temperature for all four ensemble years are investigated. Similar to previous studies, the IV fluctuates strongly in time. Further, due to the fact that all ensemble members are forced with the same LBC, the IV depends on the vertical level within the troposphere, with high values in the lower troposphere and at 500 hPa and low values in the upper troposphere and at the surface. By the same reason, the spatial distribution shows low values of IV at the boundaries of the model domain. The diagnostic budget study for the IV tendency of potential temperature reveals that the seven contributions fluctuate in time like the IV. However, the individual terms reach different absolute magnitudes. The budget study identifies the horizontal and vertical 'baroclinic' terms as the main contributors to the IV tendency, with the horizontal 'baroclinic' term producing and the vertical 'baroclinic' term reducing the IV. The other terms fluctuate around zero, because they are small in general or are balanced due to the domain average. The comparison of the results obtained for the four different ensembles (summers 2006, 2007, 2009 and 2012) reveals that on average the findings for each ensemble are quite similar concerning the magnitude and the general pattern of IV and its contributions. However, near the surface a weaker IV is produced with decreasing sea ice extent. This is caused by a smaller impact of the horizontal 'baroclinic' term over some regions and by the changing diabatic processes, particularly a more intense reducing tendency of the IV due to condensative heating. However, it has to be emphasised that the behaviour of the IV and its dynamical and diabatic contributions are influenced mainly by complex atmospheric feedbacks and large-scale processes and not by the sea ice distribution. Additionally, a comparison with a second RCM covering the Arctic and using the same LBCs and IC is performed. For both models very similar results concerning the IV and its dynamical and diabatic contributions are found. Hence, this investigation leads to the conclusion that the IV is a natural phenomenon and is independent from the applied RCM.}, language = {en} } @phdthesis{Wieland2015, author = {Wieland, Volkmar}, title = {Particle-in-cell simulations of perpendicular supernova shock fronts}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-74532}, school = {Universit{\"a}t Potsdam}, pages = {v, 89}, year = {2015}, abstract = {The origin of cosmic rays was the subject of several studies for over a century. The investigations done within this dissertation are one small step to shed some more light on this mystery. Locating the sources of cosmic rays is not trivial due to the interstellar magnetic field. However, the Hillas criterion allows us to arrive at the conclusion that supernova remnants are our main suspect for the origin of galactic cosmic rays. The mechanism by which they are accelerating particles is found within the field of shock physics as diffusive shock acceleration. To allow particles to enter this process also known as Fermi acceleration pre-acceleration processes like shock surfing acceleration and shock drift acceleration are necessary. Investigating the processes happening in the plasma shocks of supernova remnants is possible by utilising a simplified model which can be simulated on a computer using Particle-in-Cell simulations. We developed a new and clean setup to simulate the formation of a double shock, i.e., consisting of a forward and a reverse shock and a contact discontinuity, by the collision of two counter-streaming plasmas, in which a magnetic field can be woven into. In a previous work, we investigated the processes at unmagnetised and at magnetised parallel shocks, whereas in the current work, we move our investigation on to magnetised perpendicular shocks. Due to a much stronger confinement of the particles to the collision region the perpendicular shock develops much faster than the parallel shock. On the other hand, this leads to much weaker turbulence. We are able to find indications for shock surfing acceleration and shock drift acceleration happening at the two shocks leading to populations of pre-accelerated particles that are suitable as a seed population to be injected into further diffusive shock acceleration to be accelerated to even higher energies. We observe the development of filamentary structures in the shock ramp of the forward shock, but not at the reverse shock. This leads to the conclusion that the development of such structures in the shock ramp of quasi-perpendicular collisionless shocks might not necessarily be determined by the existence of a critical sonic Mach number but by a critical shock speed. The results of the investigations done within this dissertation might be useful for further studies of oblique shocks and for studies using hybrid or magnetohydrodynamic simulations. Together with more sophisticated observational methods, these studies will help to bring us closer to an answer as to how particles can be accelerated in supernova remnants and eventually become cosmic rays that can be detected on Earth.}, language = {en} } @phdthesis{Kniepert2015, author = {Kniepert, Juliane}, title = {Correlation between dynamic parameters and device performance of organic solar cells}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-90087}, school = {Universit{\"a}t Potsdam}, pages = {129}, year = {2015}, abstract = {Organic bulk heterojunction (BHJ) solar cells based on polymer:fullerene blends are a promising alternative for a low-cost solar energy conversion. Despite significant improvements of the power conversion efficiency in recent years, the fundamental working principles of these devices are yet not fully understood. In general, the current output of organic solar cells is determined by the generation of free charge carriers upon light absorption and their transport to the electrodes in competition to the loss of charge carriers due to recombination. The object of this thesis is to provide a comprehensive understanding of the dynamic processes and physical parameters determining the performance. A new approach for analyzing the characteristic current-voltage output was developed comprising the experimental determination of the efficiencies of charge carrier generation, recombination and transport, combined with numerical device simulations. Central issues at the beginning of this work were the influence of an electric field on the free carrier generation process and the contribution of generation, recombination and transport to the current-voltage characteristics. An elegant way to directly measure the field dependence of the free carrier generation is the Time Delayed Collection Field (TDCF) method. In TDCF charge carriers are generated by a short laser pulse and subsequently extracted by a defined rectangular voltage pulse. A new setup was established with an improved time resolution compared to former reports in literature. It was found that charge generation is in general independent of the electric field, in contrast to the current view in literature and opposed to the expectations of the Braun-Onsager model that was commonly used to describe the charge generation process. Even in cases where the charge generation was found to be field-dependend, numerical modelling showed that this field-dependence is in general not capable to account for the voltage dependence of the photocurrent. This highlights the importance of efficient charge extraction in competition to non-geminate recombination, which is the second objective of the thesis. Therefore, two different techniques were combined to characterize the dynamics and efficiency of non-geminate recombination under device-relevant conditions. One new approach is to perform TDCF measurements with increasing delay between generation and extraction of charges. Thus, TDCF was used for the first time to measure charge carrier generation, recombination and transport with the same experimental setup. This excludes experimental errors due to different measurement and preparation conditions and demonstrates the strength of this technique. An analytic model for the description of TDCF transients was developed and revealed the experimental conditions for which reliable results can be obtained. In particular, it turned out that the \$RC\$ time of the setup which is mainly given by the sample geometry has a significant influence on the shape of the transients which has to be considered for correct data analysis. Secondly, a complementary method was applied to characterize charge carrier recombination under steady state bias and illumination, i.e. under realistic operating conditions. This approach relies on the precise determination of the steady state carrier densities established in the active layer. It turned out that current techniques were not sufficient to measure carrier densities with the necessary accuracy. Therefore, a new technique {Bias Assisted Charge Extraction} (BACE) was developed. Here, the charge carriers photogenerated under steady state illumination are extracted by applying a high reverse bias. The accelerated extraction compared to conventional charge extraction minimizes losses through non-geminate recombination and trapping during extraction. By performing numerical device simulations under steady state, conditions were established under which quantitative information on the dynamics can be retrieved from BACE measurements. The applied experimental techniques allowed to sensitively analyse and quantify geminate and non-geminate recombination losses along with charge transport in organic solar cells. A full analysis was exemplarily demonstrated for two prominent polymer-fullerene blends. The model system P3HT:PCBM spincast from chloroform (as prepared) exhibits poor power conversion efficiencies (PCE) on the order of 0.5\%, mainly caused by low fill factors (FF) and currents. It could be shown that the performance of these devices is limited by the hole transport and large bimolecular recombination (BMR) losses, while geminate recombination losses are insignificant. The low polymer crystallinity and poor interconnection between the polymer and fullerene domains leads to a hole mobility of the order of 10^-7 cm^2/Vs which is several orders of magnitude lower than the electron mobility in these devices. The concomitant build up of space charge hinders extraction of both electrons and holes and promotes bimolecular recombination losses. Thermal annealing of P3HT:PCBM blends directly after spin coating improves crystallinity and interconnection of the polymer and the fullerene phase and results in comparatively high electron and hole mobilities in the order of 10^-3 cm^2/Vs and 10^-4 cm^2/Vs, respectively. In addition, a coarsening of the domain sizes leads to a reduction of the BMR by one order of magnitude. High charge carrier mobilities and low recombination losses result in comparatively high FF (>65\%) and short circuit current (J_SC ≈ 10 mA/cm^2). The overall device performance (PCE ≈ 4\%) is only limited by a rather low spectral overlap of absorption and solar emission and a small V_OC, given by the energetics of the P3HT. From this point of view the combination of the low bandgap polymer PTB7 with PCBM is a promising approach. In BHJ solar cells, this polymer leads to a higher V_OC due to optimized energetics with PCBM. However, the J_SC in these (unoptimized) devices is similar to the J_SC in the optimized blend with P3HT and the FF is rather low (≈ 50\%). It turned out that the unoptimized PTB7:PCBM blends suffer from high BMR, a low electron mobility of the order of 10^-5 cm^2/Vs and geminate recombination losses due to field dependent charge carrier generation. The use of the solvent additive DIO optimizes the blend morphology, mainly by suppressing the formation of very large fullerene domains and by forming a more uniform structure of well interconnected donor and acceptor domains of the order of a few nanometers. Our analysis shows that this results in an increase of the electron mobility by about one order of magnitude (3 x 10^-4 cm^2/Vs), while BMR and geminate recombination losses are significantly reduced. In total these effects improve the J_SC (≈ 17 mA/cm^2) and the FF (> 70\%). In 2012 this polymer/fullerene combination resulted in a record PCE for a single junction OSC of 9.2\%. Remarkably, the numerical device simulations revealed that the specific shape of the J-V characteristics depends very sensitively to the variation of not only one, but all dynamic parameters. On the one hand this proves that the experimentally determined parameters, if leading to a good match between simulated and measured J-V curves, are realistic and reliable. On the other hand it also emphasizes the importance to consider all involved dynamic quantities, namely charge carrier generation, geminate and non-geminate recombination as well as electron and hole mobilities. The measurement or investigation of only a subset of these parameters as frequently found in literature will lead to an incomplete picture and possibly to misleading conclusions. Importantly, the comparison of the numerical device simulation employing the measured parameters and the experimental \$J-V\$ characteristics allows to identify loss channels and limitations of OSC. For example, it turned out that inefficient extraction of charge carriers is a criticical limitation factor that is often disobeyed. However, efficient and fast transport of charges becomes more and more important with the development of new low bandgap materials with very high internal quantum efficiencies. Likewise, due to moderate charge carrier mobilities, the active layer thicknesses of current high-performance devices are usually limited to around 100 nm. However, larger layer thicknesses would be more favourable with respect to higher current output and robustness of production. Newly designed donor materials should therefore at best show a high tendency to form crystalline structures, as observed in P3HT, combined with the optimized energetics and quantum efficiency of, for example, PTB7.}, language = {en} } @phdthesis{Mitzscherling2015, author = {Mitzscherling, Steffen}, title = {Polyelectrolyte multilayers for plasmonics and picosecond ultrasonics}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-80833}, school = {Universit{\"a}t Potsdam}, pages = {93}, year = {2015}, abstract = {This thesis investigates the application of polyelectrolyte multilayers in plasmonics and picosecond acoustics. The observed samples were fabricated by the spin-assisted layer-by-layer deposition technique that allowed a precise tuning of layer thickness in the range of few nanometers. The first field of interest deals with the interaction of light-induced localized surface plasmons (LSP) of rod-shaped gold nanoparticles with the particles' environment. The environment consists of an air phase and a phase of polyelectrolytes, whose ratio affects the spectral position of the LSP resonance. Measured UV-VIS spectra showed the shift of the LSP absorption peak as a function of the cover layer thickness of the particles. The data are modeled using an average dielectric function instead of the dielectric functions of air and polyelectrolytes. In addition using a measured dielectric function of the gold nanoparticles, the position of the LSP absorption peak could be simulated with good agreement to the data. The analytic model helps to understand the optical properties of metal nanoparticles in an inhomogeneous environment. The second part of this work discusses the applicability of PAzo/PAH and dye-doped PSS/PAH polyelectrolyte multilayers as transducers to generate hypersound pulses. The generated strain pulses were detected by time-domain Brillouin scattering (TDBS) using a pump-probe laser setup. Transducer layers made of polyelectrolytes were compared qualitatively to common aluminum transducers in terms of measured TDBS signal amplitude, degradation due to laser excitation, and sample preparation. The measurements proved that fast and easy prepared polyelectrolyte transducers provided stronger TDBS signals than the aluminum transducer. AFM topography measurements showed a degradation of the polyelectrolyte structures, especially for the PAzo/PAH sample. To quantify the induced strain, optical barriers were introduced to separate the transducer material from the medium of the hypersound propagation. Difficulties in the sample preparation prohibited a reliable quantification. But the experiments showed that a coating with transparent polyelectrolytes increases the efficiency of aluminum transducers and modifies the excited phonon distribution. The adoption of polyelectrolytes to the scientific field of picosecond acoustics enables a cheap and fast fabrication of transducer layers on most surfaces. In contrast to aluminum layers the polyelectrolytes are transparent over a wide spectral range. Thus, the strain modulation can be probed from surface and back.}, language = {en} } @phdthesis{Matuschek2015, author = {Matuschek, Hannes}, title = {Applications of reproducing Kernel Hilbert spaces and their approximations}, school = {Universit{\"a}t Potsdam}, pages = {83}, year = {2015}, language = {en} } @phdthesis{Maerten2015, author = {Maerten, Lena}, title = {Spectroscopic perspectives on ultrafast coupling phenomena in perovskite oxides}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-77623}, school = {Universit{\"a}t Potsdam}, year = {2015}, abstract = {In this thesis, I study ultrafast dynamics in perovskite oxides using time resolved broadband spectroscopy. I focus on the observation of coherent phonon propagation by time resolved Brillouin scattering: following the excition of metal transducer films with a femtosecond infrared pump pulse, coherent phonon dynamics in the GHz frequency range are triggered. Their propagation is monitored using a delayed white light probe pulse. The technique is illustrated on various thin films and multilayered samples. I apply the technique to investigate the linear and nonlinear acoustic response in bulk SrTiO_3, which displays a ferroelastic phase transition from a cubic to a tetragonal structural phase at T_a=105 K. In the linear regime, I observe a coupling of the observed acoustic phonon mode to the softening optic modes describing the phase transition. In the nonlinear regime, I find a giant slowing down of the sound velocity in the low temperature phase that is only observable for a strain amplitude exceeding the tetragonality of the material. It is attributed to a coupling of the high frequency phonons to ferroelastic domain walls in the material. I propose a new mechanism for the coupling of strain waves to the domain walls that is only effective for high amplitude strain. A detailed study of the phonon attenuation across a wide temperature range shows that the phonon attenuation at low temperatures is influenced by the domain configuration, which is determined by interface strain. Preliminary measurements on magnetic-ferroelectric multilayers reveal that the excitation fluence needs to be carefully controlled when dynamics at phase transitions are studied.}, language = {en} }