@phdthesis{Kuehn2018, author = {K{\"u}hn, Danilo}, title = {Synchrotron-based angle-resolved time-of-flight electron spectroscopy for dynamics in dichalogenides}, school = {Universit{\"a}t Potsdam}, pages = {147}, year = {2018}, language = {en} } @phdthesis{Hlawenka2018, author = {Hlawenka, Peter}, title = {Samarium hexaboride}, school = {Universit{\"a}t Potsdam}, pages = {116, XXI}, year = {2018}, language = {en} } @phdthesis{SaadHassanin2018, author = {Saad Hassanin, Alshaimaa}, title = {Dynamic coronal mass ejection process and magnetic reconnection}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-419626}, school = {Universit{\"a}t Potsdam}, pages = {xix, 113}, year = {2018}, abstract = {The Sun is the nearest star to the Earth. It consists of an interior and an atmosphere. The convection zone is the outermost layer of the solar interior. A flux rope may emerge as a coherent structure from the convection zone into the solar atmosphere or be formed by magnetic reconnection in the atmosphere. A flux rope is a bundle of magnetic field lines twisting around an axis field line, creating a helical shape by which dense filament material can be supported against gravity. The flux rope is also considered as the key structure of the most energetic phenomena in the solar system, such as coronal mass ejections (CMEs) and flares. These magnetic flux ropes can produce severe geomagnetic storms. In particular, to improve the ability to forecast space weather, it is important to enrich our knowledge about the dynamic formation of flux ropes and the underlying physical mechanisms that initiate their eruption, such as a CME. A confined eruption consists of a filament eruption and usually an associated are, but does not evolve into a CME; rather, the moving plasma is halted in the solar corona and usually seen to fall back. The first detailed observations of a confined filament eruption were obtained on 2002 May 27by the TRACE satellite in the 195 A band. So, in the Chapter 3, we focus on a flux rope instability model. A twisted flux rope can become unstable by entering the kink instability regime. We show that the kink instability, which occurs if the twist of a flux rope exceeds a critical value, is capable of initiating of an eruption. This model is tested against the well observed confined eruption on 2002 May 27 in a parametric magnetohydrodynamic (MHD) simulation study that comprises all phases of the event. Very good agreement with the essential observed properties is obtained, only except for a relatively poor matching of the initial filament height. Therefore, in Chapter 4, we submerge the center point of the flux rope deeper below the photosphere to obtain a flatter coronal rope section and a better matching with the initial height profile of the erupting filament. This implies a more realistic inclusion of the photospheric line tying. All basic assumptions and the other parameter settings are kept the same as in Chapter 3. This complement of the parametric study shows that the flux rope instability model can yield an even better match with the observational data. We also focus in Chapters 3 and 4 on the magnetic reconnection during the confined eruption, demonstrating that it occurs in two distinct locations and phases that correspond to the observed brightenings and changes of topology, and consider the fate of the erupting flux, which can reform a (less twisted) flux rope. The Sun also produces series of homologous eruptions, i.e. eruptions which occur repetitively in the same active region and are of similar morphology. Therefore, in Chapter 5, we employ the reformed flux rope as a new initial condition, to investigate the possibility of subsequent homologous eruptions. Free magnetic energy is built up by imposing motions in the bottom boundary, such as converging motions, leading to flux cancellation. We apply converging motions in the sunspot area, such that a small part of the flux from the sunspots with different polarities is transported toward the polarity inversion line (PIL) and cancels with each other. The reconnection associated with the cancellation process forms more helical magnetic flux around the reformed flux rope, which leads to a second and a third eruption. In this study, we obtain the first MHD simulation results of a homologous sequence of eruptions that show a transition from a confined to two ejective eruptions, based on the reformation of a flux rope after each eruption.}, language = {en} } @phdthesis{Kegeles2018, author = {Kegeles, Alexander}, title = {Algebraic foundation of Group Field Theory}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-421014}, school = {Universit{\"a}t Potsdam}, pages = {124}, year = {2018}, abstract = {In this thesis we provide a construction of the operator framework starting from the functional formulation of group field theory (GFT). We define operator algebras on Hilbert spaces whose expectation values in specific states provide correlation functions of the functional formulation. Our construction allows us to give a direct relation between the ingredients of the functional GFT and its operator formulation in a perturbative regime. Using this construction we provide an example of GFT states that can not be formulated as states in a Fock space and lead to math- ematically inequivalent representations of the operator algebra. We show that such inequivalent representations can be grouped together by their symmetry properties and sometimes break the left translation symmetry of the GFT action. We interpret these groups of inequivalent representations as phases of GFT, similar to the classification of phases that we use in QFT's on space-time.}, language = {en} } @phdthesis{Muench2018, author = {M{\"u}nch, Thomas}, title = {Interpretation of temperature signals from ice cores}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-414963}, school = {Universit{\"a}t Potsdam}, pages = {xxi, 197}, year = {2018}, abstract = {Earth's climate varies continuously across space and time, but humankind has witnessed only a small snapshot of its entire history, and instrumentally documented it for a mere 200 years. Our knowledge of past climate changes is therefore almost exclusively based on indirect proxy data, i.e. on indicators which are sensitive to changes in climatic variables and stored in environmental archives. Extracting the data from these archives allows retrieval of the information from earlier times. Obtaining accurate proxy information is a key means to test model predictions of the past climate, and only after such validation can the models be used to reliably forecast future changes in our warming world. The polar ice sheets of Greenland and Antarctica are one major climate archive, which record information about local air temperatures by means of the isotopic composition of the water molecules embedded in the ice. However, this temperature proxy is, as any indirect climate data, not a perfect recorder of past climatic variations. Apart from local air temperatures, a multitude of other processes affect the mean and variability of the isotopic data, which hinders their direct interpretation in terms of climate variations. This applies especially to regions with little annual accumulation of snow, such as the Antarctic Plateau. While these areas in principle allow for the extraction of isotope records reaching far back in time, a strong corruption of the temperature signal originally encoded in the isotopic data of the snow is expected. This dissertation uses observational isotope data from Antarctica, focussing especially on the East Antarctic low-accumulation area around the Kohnen Station ice-core drilling site, together with statistical and physical methods, to improve our understanding of the spatial and temporal isotope variability across different scales, and thus to enhance the applicability of the proxy for estimating past temperature variability. The presented results lead to a quantitative explanation of the local-scale (1-500 m) spatial variability in the form of a statistical noise model, and reveal the main source of the temporal variability to be the mixture of a climatic seasonal cycle in temperature and the effect of diffusional smoothing acting on temporally uncorrelated noise. These findings put significant limits on the representativity of single isotope records in terms of local air temperature, and impact the interpretation of apparent cyclicalities in the records. Furthermore, to extend the analyses to larger scales, the timescale-dependency of observed Holocene isotope variability is studied. This offers a deeper understanding of the nature of the variations, and is crucial for unravelling the embedded true temperature variability over a wide range of timescales.}, language = {en} } @phdthesis{Codutti2018, author = {Codutti, Agnese}, title = {Behavior of magnetic microswimmers}, doi = {10.25932/publishup-42297}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-422976}, school = {Universit{\"a}t Potsdam}, pages = {iv, 142}, year = {2018}, abstract = {Microswimmers, i.e. swimmers of micron size experiencing low Reynolds numbers, have received a great deal of attention in the last years, since many applications are envisioned in medicine and bioremediation. A promising field is the one of magnetic swimmers, since magnetism is biocom-patible and could be used to direct or actuate the swimmers. This thesis studies two examples of magnetic microswimmers from a physics point of view. The first system to be studied are magnetic cells, which can be magnetic biohybrids (a swimming cell coupled with a magnetic synthetic component) or magnetotactic bacteria (naturally occurring bacteria that produce an intracellular chain of magnetic crystals). A magnetic cell can passively interact with external magnetic fields, which can be used for direction. The aim of the thesis is to understand how magnetic cells couple this magnetic interaction to their swimming strategies, mainly how they combine it with chemotaxis (the ability to sense external gradient of chemical species and to bias their walk on these gradients). In particular, one open question addresses the advantage given by these magnetic interactions for the magnetotactic bacteria in a natural environment, such as porous sediments. In the thesis, a modified Active Brownian Particle model is used to perform simulations and to reproduce experimental data for different systems such as bacteria swimming in the bulk, in a capillary or in confined geometries. I will show that magnetic fields speed up chemotaxis under special conditions, depending on parameters such as their swimming strategy (run-and-tumble or run-and-reverse), aerotactic strategy (axial or polar), and magnetic fields (intensities and orientations), but it can also hinder bacterial chemotaxis depending on the system. The second example of magnetic microswimmer are rigid magnetic propellers such as helices or random-shaped propellers. These propellers are actuated and directed by an external rotating magnetic field. One open question is how shape and magnetic properties influence the propeller behavior; the goal of this research field is to design the best propeller for a given situation. The aim of the thesis is to propose a simulation method to reproduce the behavior of experimentally-realized propellers and to determine their magnetic properties. The hydrodynamic simulations are based on the use of the mobility matrix. As main result, I propose a method to match the experimental data, while showing that not only shape but also the magnetic properties influence the propellers swimming characteristics.}, language = {en} } @phdthesis{Arora2018, author = {Arora, Ashima}, title = {Optical and electric field control of magnetism}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-421479}, school = {Universit{\"a}t Potsdam}, pages = {ii, 126}, year = {2018}, abstract = {Future magnetic recording industry needs a high-density data storage technology. However, switching the magnetization of small bits requires high magnetic fields that cause excessive heat dissipation. Therefore, controlling magnetism without applying external magnetic field is an important research topic for potential applications in data storage devices with low power consumption. Among the different approaches being investigated, two of them stand out, namely i) all-optical helicity dependent switching (AO-HDS) and ii) ferroelectric control of magnetism. This thesis aims to contribute towards a better understanding of the physical processes behinds these effects as well as reporting new and exciting possibility for the optical and/or electric control of magnetic properties. Hence, the thesis contains two differentiated chapters of results; the first devoted to AO-HDS on TbFe alloys and the second to the electric field control of magnetism in an archetypal Fe/BaTiO3 system. In the first part, the scalability of the AO-HDS to small laser spot-sizes of few microns in the ferrimagnetic TbFe alloy is investigated by spatially resolving the magnetic contrast with photo-emission electron microscopy (PEEM) and X-ray magnetic circular dichroism (XMCD). The results show that the AO-HDS is a local effect within the laser spot size that occurs in the ring-shaped region in the vicinity of thermal demagnetization. Within the ring region, the helicity dependent switching occurs via thermally activated domain wall motion. Further, the thesis reports on a novel effect of thickness dependent inversion of the switching orientation. It addresses some of the important questions like the role of laser heating and the microscopic mechanism driving AO-HDS. The second part of the thesis focuses on the electric field control of magnetism in an artificial multiferroic heterostructure. The sample consists of an Fe wedge with thickness varying between 0:5 nm and 3 nm, deposited on top of a ferroelectric and ferroelastic BaTiO3 [001]-oriented single crystal substrate. Here, the magnetic contrast is imaged via PEEM and XMCD as a function of out-of-plane voltage. The results show the evidence of the electric field control of superparamagnetism mediated by a ferroelastic modification of the magnetic anisotropy. The changes in the magnetoelastic anisotropy drive the transition from the superparamagnetic to superferromagnetic state at localized sample positions.}, language = {en} } @phdthesis{Hintsche2018, author = {Hintsche, Marius}, title = {Locomotion of a bacterium with a polar bundle of flagella}, doi = {10.25932/publishup-42697}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-426972}, school = {Universit{\"a}t Potsdam}, pages = {xi, 108}, year = {2018}, abstract = {Movement and navigation are essential for many organisms during some parts of their lives. This is also true for bacteria, which can move along surfaces and swim though liquid environments. They are able to sense their environment, and move towards environmental cues in a directed fashion. These abilities enable microbial lifecyles in biofilms, improved food uptake, host infection, and many more. In this thesis we study aspects of the swimming movement - or motility - of the soil bacterium (P. putida). Like most bacteria, P. putida swims by rotating its helical flagella, but their arrangement differs from the main model organism in bacterial motility research: (E. coli). P. putida is known for its intriguing motility strategy, where fast and slow episodes can occur after each other. Up until now, it was not known how these two speeds can be produced, and what advantages they might confer to this bacterium. Normally the flagella, the main component of thrust generation in bacteria, are not observable by ordinary light microscopy. In order to elucidate this behavior, we therefore used a fluorescent staining technique on a mutant strain of this species to specifically label the flagella, while leaving the cell body only faintly stained. This allowed us to image the flagella of the swimming bacteria with high spacial and temporal resolution with a customized high speed fluorescence microscopy setup. Our observations show that P. putida can swim in three different modes. First, It can swim with the flagella pushing the cell body, which is the main mode of swimming motility previously known from other bacteria. Second, it can swim with the flagella pulling the cell body, which was thought not to be possible in situations with multiple flagella. Lastly, it can wrap its flagellar bundle around the cell body, which results in a speed wich is slower by a factor of two. In this mode, the flagella are in a different physical conformation with a larger radius so the cell body can fit inside. These three swimming modes explain the previous observation of two speeds, as well as the non strict alternation of the different speeds. Because most bacterial swimming in nature does not occur in smoothly walled glass enclosures under a microscope, we used an artificial, microfluidic, structured system of obstacles to study the motion of our model organism in a structured environment. Bacteria were observed in microchannels with cylindrical obstacles of different sizes and with different distances with video microscopy and cell tracking. We analyzed turning angles, run times, and run length, which we compared to a minimal model for movement in structured geometries. Our findings show that hydrodynamic interactions with the walls lead to a guiding of the bacteria along obstacles. When comparing the observed behavior with the statics of a particle that is deflected with every obstacle contact, we find that cells run for longer distances than that model. Navigation in chemical gradients is one of the main applications of motility in bacteria. We studied the swimming response of P. putida cells to chemical stimuli (chemotaxis) of the common food preservative sodium benzoate. Using a microfluidic gradient generation device, we created gradients of varying strength, and observed the motion of cells with a video microscope and subsequent cell tracking. Analysis of different motility parameters like run lengths and times, shows that P. putida employs the classical chemotaxis strategy of E. coli: runs up the gradient are biased to be longer than those down the gradient. Using the two different run speeds we observed due to the different swimming modes, we classify runs into `fast' and `slow' modes with a Gaussian mixture model (GMM). We find no evidence that P. putida's uses its swimming modes to perform chemotaxis. In most studies of bacterial motility, cell tracking is used to gather trajectories of individual swimming cells. These trajectories then have to be decomposed into run sections and tumble sections. Several algorithms have been developed to this end, but most require manual tuning of a number of parameters, or extensive measurements with chemotaxis mutant strains. Together with our collaborators, we developed a novel motility analysis scheme, based on generalized Kramers-Moyal-coefficients. From the underlying stochastic model, many parameters like run length etc., can be inferred by an optimization procedure without the need for explicit run and tumble classification. The method can, however, be extended to a fully fledged tumble classifier. Using this method, we analyze E. coli chemotaxis measurements in an aspartate analog, and find evidence for a chemotactic bias in the tumble angles.}, language = {en} } @phdthesis{Quade2018, author = {Quade, Markus}, title = {Symbolic regression for identification, prediction, and control of dynamical systems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-419790}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 134}, year = {2018}, abstract = {In the present work, we use symbolic regression for automated modeling of dynamical systems. Symbolic regression is a powerful and general method suitable for data-driven identification of mathematical expressions. In particular, the structure and parameters of those expressions are identified simultaneously. We consider two main variants of symbolic regression: sparse regression-based and genetic programming-based symbolic regression. Both are applied to identification, prediction and control of dynamical systems. We introduce a new methodology for the data-driven identification of nonlinear dynamics for systems undergoing abrupt changes. Building on a sparse regression algorithm derived earlier, the model after the change is defined as a minimum update with respect to a reference model of the system identified prior to the change. The technique is successfully exemplified on the chaotic Lorenz system and the van der Pol oscillator. Issues such as computational complexity, robustness against noise and requirements with respect to data volume are investigated. We show how symbolic regression can be used for time series prediction. Again, issues such as robustness against noise and convergence rate are investigated us- ing the harmonic oscillator as a toy problem. In combination with embedding, we demonstrate the prediction of a propagating front in coupled FitzHugh-Nagumo oscillators. Additionally, we show how we can enhance numerical weather predictions to commercially forecast power production of green energy power plants. We employ symbolic regression for synchronization control in coupled van der Pol oscillators. Different coupling topologies are investigated. We address issues such as plausibility and stability of the control laws found. The toolkit has been made open source and is used in turbulence control applications. Genetic programming based symbolic regression is very versatile and can be adapted to many optimization problems. The heuristic-based algorithm allows for cost efficient optimization of complex tasks. We emphasize the ability of symbolic regression to yield white-box models. In contrast to black-box models, such models are accessible and interpretable which allows the usage of established tool chains.}, language = {en} } @phdthesis{Feldmann2018, author = {Feldmann, David}, title = {Light-driven diffusioosmosis}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-417184}, school = {Universit{\"a}t Potsdam}, pages = {viii, 150}, year = {2018}, abstract = {The emergence of microfluidics created the need for precise and remote control of micron-sized objects. I demonstrate how light-sensitive motion can be induced at the micrometer scale by a simple addition of a photosensitive surfactant, which makes it possible to trigger hydrophobicity with light. With point-like laser irradiation, radial inward and outward hydrodynamic surface flows are remotely switched on and off. In this way, ensembles of microparticles can be moved toward or away from the irradiation center. Particle motion is analyzed according to varying parameters, such as surfactant and salt concentration, illumination condition, surface hydrophobicity, and surface structure. The physical origin of this process is the so-called light-driven diffusioosmosis (LDDO), a phenomenon that was discovered in the framework of this thesis and is described experimentally and theoretically in this work. To give a brief explanation, a focused light irradiation induces a local photoisomerization that creates a concentration gradient at the solid-liquid interface. To compensate for the change in osmotic pressure near the surface, a hydrodynamic flow along the surface is generated. Surface-surfactant interaction largely governs LDDO. It is shown that surfactant adsorption depends on the isomerization state of the surfactant. Photoisomerization, therefore, triggers a surfactant attachment or detachment from the surface. This change is considered to be one of the reasons for the formation of LDDO flow. These flows are introduced not only by a focused laser source but also by global irradiation. Porous particles show reversible repulsive and attractive interactions when dispersed in the solution of photosensitive surfactant. Repulsion and attraction is controlled by the irradiation wavelength. Illumination with red light leads to formation of aggregates, while illumination with blue light leads to the formation of a well-separated grid with equal interparticle distances, between 2µm and 80µm, depending on the particle surface density. These long-range interactions are considered to be a result of an increase or decrease of surfactant concentration around each particle, depending on the irradiation wavelength. Surfactant molecules adsorb inside the pores of the particles. A light-induced photoisomerization changes adsorption to the pores and drives surfactant molecules to the outside. The concentration gradients generate symmetric flows around each single particle resulting in local LDDO. With a break of the symmetry (i.e., by closing one side of the particle with a metal cap), one can achieve active self-propelled particle motion.}, language = {en} } @phdthesis{vonNordheim2018, author = {von Nordheim, Danny}, title = {Dielectric non-linearities of P(VDF-TrFE) single and multilayers for memory applications}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-421778}, school = {Universit{\"a}t Potsdam}, pages = {XVI, 109}, year = {2018}, abstract = {Poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) ferroelectric thin films of different molar ratio have been studied with regard to data memory applications. Therefore, films with thicknesses of 200 nm and less have been spin coated from solution. Observations gained from single layers have been extended to multilayer capacitors and three terminal transistor devices. Besides conventional hysteresis measurements, the measurement of dielectric non-linearities has been used as a main tool of characterisation. Being a very sensitive and non-destructive method, non-linearity measurements are well suited for polarisation readout and property studies. Samples have been excited using a high quality, single-frequency sinusoidal voltage with an amplitude significantly smaller than the coercive field of the samples. The response was then measured at the excitation frequency and its higher harmonics. Using the measurement results, the linear and non-linear dielectric permittivities ɛ₁, ɛ₂ and ɛ₃ have been determined. The permittivities have been used to derive the temperature-dependent polarisation behaviour as well as the polarisation state and the order of the phase transitions. The coercive field in VDF-TrFE copolymers is high if compared to their ceramic competitors. Therefore, the film thickness had to be reduced significantly. Considering a switching voltage of 5 V and a coercive field of 50 MV/m, the film thickness has to be 100 nm and below. If the thickness becomes substantially smaller than the other dimensions, surface and interface layer effects become more pronounced. For thicker films of P(VDF-TrFE) with a molar fraction of 56/44 a second-order phase transition without a thermal hysteresis for an ɛ₁(T) temperature cycle has been predicted and observed. This however, could not be confirmed by the measurements of thinner films. A shift of transition temperatures as well as a temperature independent, non-switchable polarisation and a thermal hysteresis for P(VDF-TrFE) 56/44 have been observed. The impact of static electric fields on the polarisation and the phase transition has therefore been studied and simulated, showing that all aforementioned phenomena including a linear temperature dependence of the polarisation might originate from intrinsic electric fields. In further experiments the knowledge gained from single layer capacitors has been extended to bilayer copolymer thin films of different molar composition. Bilayers have been deposited by succeeding cycles of spin coating from solution. Single layers and their bilayer combination have been studied individually in order to prove the layers stability. The individual layers have been found to be physically stable. But while the bilayers reproduced the main ɛ₁(T) properties of the single layers qualitatively, quantitative numbers could not be explained by a simple serial connection of capacitors. Furthermore, a linear behaviour of the polarisation throughout the measured temperature range has been observed. This was found to match the behaviour predicted considering a constant electric field. Retention time is an important quantity for memory applications. Hence, the retention behaviour of VDF-TrFE copolymer thin films has been determined using dielectric non-linearities. The polarisation loss in P(VDF-TrFE) poled samples has been found to be less than 20\% if recorded over several days. The loss increases significantly if the samples have been poled with lower amplitudes, causing an unsaturated polarisation. The main loss was attributed to injected charges. Additionally, measurements of dielectric non-linearities have been proven to be a sensitive and non-destructive tool to measure the retention behaviour. Finally, a ferroelectric field effect transistor using mainly organic materials (FerrOFET) has been successfully studied. DiNaphtho[2,3-b:2',3'-f]Thieno[3,2-b]Thiophene (DNTT) has proven to be a stable, suitable organic semiconductor to build up ferroelectric memory devices. Furthermore, an oxidised aluminium bottom electrode and additional dielectric layers, i.e. parylene C, have proven to reduce the leakage current and therefore enhance the performance significantly.}, language = {en} } @phdthesis{RodriguezLoureiro2018, author = {Rodriguez Loureiro, Ignacio}, title = {Structural characterization of single and interacting soft interfaces displaying brushes of synthetic or biomolecular polymers}, doi = {10.25932/publishup-42367}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-423675}, school = {Universit{\"a}t Potsdam}, pages = {132}, year = {2018}, abstract = {The interaction between surfaces displaying end-grafted hydrophilic polymer brushes plays important roles in biology and in many wet-technological applications. The outer surfaces of Gram-negative bacteria, for example, are composed of lipopolysaccharide (LPS) molecules exposing oligo- and polysaccharides to the aqueous environment. This unique, structurally complex biological interface is of great scientific interest as it mediates the interaction of bacteria with neighboring bacteria in colonies and biofilms. The interaction between polymer-decorated surfaces is generally coupled to the distance-dependent conformation of the polymer chains. Therefore, structural insight into the interacting surfaces is a prerequisite to understand the interaction characteristics as well as the underlying physical mechanisms. This problem has been addressed by theory, but accurate experimental data on polymer conformations under confinement are rare, because obtaining perturbation-free structural insight into buried soft interfaces is inherently difficult. In this thesis, lipid membrane surfaces decorated with hydrophilic polymers of technological and biological relevance are investigated under controlled interaction conditions, i.e., at defined surface separations. For this purpose, dedicated sample architectures and experimental tools are developed. Via ellipsometry and neutron reflectometry pressure-distance curves and distance-dependent polymer conformations in terms of brush compression and reciprocative interpenetration are determined. Additional element-specific structural insight into the end-point distribution of interacting brushes is obtained by standing-wave x-ray fluorescence (SWXF). The methodology is first established for poly[ethylene glycol] (PEG) brushes of defined length and grafting density. For this system, neutron reflectometry revealed pronounced brush interpenetration, which is not captured in common brush theories and therefore motivates rigorous simulation-based treatments. In the second step the same approach is applied to realistic mimics of the outer surfaces of Gram-negative bacteria: monolayers of wild type LPSs extracted from E. Coli O55:B5 displaying strain-specific O-side chains. The neutron reflectometry experiments yield unprecedented structural insight into bacterial interactions, which are of great relevance for the properties of biofilms.}, language = {en} } @phdthesis{Ma2018, author = {Ma, Siyuan}, title = {Analysis of Teukolsky equations on slowly rotating Kerr spacetimes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-414781}, school = {Universit{\"a}t Potsdam}, pages = {vi, 89}, year = {2018}, abstract = {In this thesis, we treat the extreme Newman-Penrose components of both the Maxwell field (s=±1) and the linearized gravitational perturbations (or "linearized gravity" for short) (s=±2) in the exterior of a slowly rotating Kerr black hole. Upon different rescalings, we can obtain spin s components which satisfy the separable Teukolsky master equation (TME). For each of these spin s components defined in Kinnersley tetrad, the resulting equations by performing some first-order differential operator on it once and twice (twice only for s=±2), together with the TME, are in the form of an "inhomogeneous spin-weighted wave equation" (ISWWE) with different potentials and constitute a linear spin-weighted wave system. We then prove energy and integrated local energy decay (Morawetz) estimates for this type of ISWWE, and utilize them to achieve both a uniform bound of a positive definite energy and a Morawetz estimate for the regular extreme Newman-Penrose components defined in the regular Hawking-Hartle tetrad. We also present some brief discussions on mode stability for TME for the case of real frequencies. This says that in a fixed subextremal Kerr spacetime, there is no nontrivial separated mode solutions to TME which are purely ingoing at horizon and purely outgoing at infinity. This yields a representation formula for solutions to inhomogeneous Teukolsky equations, and will play a crucial role in generalizing the above energy and Morawetz estimates results to the full subextremal Kerr case.}, language = {en} } @phdthesis{Willner2018, author = {Willner, Sven N.}, title = {Global economic response to flood damages under climate change}, school = {Universit{\"a}t Potsdam}, pages = {v, 247}, year = {2018}, abstract = {Climate change affects societies across the globe in various ways. In addition to gradual changes in temperature and other climatic variables, global warming is likely to increase intensity and frequency of extreme weather events. Beyond biophysical impacts, these also directly affect societal and economic activity. Additionally, indirect effects can occur; spatially, economic losses can spread along global supply-chains; temporally, climate impacts can change the economic development trajectory of countries. This thesis first examines how climate change alters river flood risk and its local socio-economic implications. Then, it studies the global economic response to river floods in particular, and to climate change in general. Changes in high-end river flood risk are calculated for the next three decades on a global scale with high spatial resolution. In order to account for uncertainties, this assessment makes use of an ensemble of climate and hydrological models as well as a river routing model, that is found to perform well regarding peak river discharge. The results show an increase in high-end flood risk in many parts of the world, which require profound adaptation efforts. This pressure to adapt is measured as the enhancement in protection level necessary to stay at historical high-end risk. In developing countries as well as in industrialized regions, a high pressure to adapt is observed - the former to increase low protection levels, the latter to maintain the low risk levels perceived in the past. Further in this thesis, the global agent-based dynamic supply-chain model acclimate is developed. It models the cascading of indirect losses in the global supply network. As an anomaly model its agents - firms and consumers - maximize their profit locally to respond optimally to local perturbations. Incorporating quantities as well as prices on a daily basis, it is suitable to dynamically resolve the impacts of unanticipated climate extremes. The model is further complemented by a static measure, which captures the inter-dependencies between sectors across regions that are only connected indirectly. These higher-order dependencies are shown to be important for a comprehensive assessment of loss-propagation and overall costs of local disasters. In order to study the economic response to river floods, the acclimate model is driven by flood simulations. Within the next two decades, the increase in direct losses can only partially be compensated by market adjustments, and total losses are projected to increase by 17\% without further adaptation efforts. The US and the EU are both shown to receive indirect losses from China, which is strongly affected directly. However, recent trends in the trade relations leave the EU in a better position to compensate for these losses. Finally, this thesis takes a broader perspective when determining the investment response to the climate change damages employing the integrated assessment model DICE. On an optimal economic development path, the increase in damages is anticipated as emissions and consequently temperatures increase. This leads to a significant devaluation of investment returns and the income losses from climate damages almost double. Overall, the results highlight the need to adapt to extreme weather events - local physical adaptation measures have to be combined with regional and global policy measures to prepare the global supply-chain network to climate change.}, language = {en} } @phdthesis{Kotha2018, author = {Kotha, Sreeram Reddy}, title = {Quantification of uncertainties in seismic ground-motion prediction}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-415743}, school = {Universit{\"a}t Potsdam}, pages = {xii, 101}, year = {2018}, abstract = {The purpose of Probabilistic Seismic Hazard Assessment (PSHA) at a construction site is to provide the engineers with a probabilistic estimate of ground-motion level that could be equaled or exceeded at least once in the structure's design lifetime. A certainty on the predicted ground-motion allows the engineers to confidently optimize structural design and mitigate the risk of extensive damage, or in worst case, a collapse. It is therefore in interest of engineering, insurance, disaster mitigation, and security of society at large, to reduce uncertainties in prediction of design ground-motion levels. In this study, I am concerned with quantifying and reducing the prediction uncertainty of regression-based Ground-Motion Prediction Equations (GMPEs). Essentially, GMPEs are regressed best-fit formulae relating event, path, and site parameters (predictor variables) to observed ground-motion values at the site (prediction variable). GMPEs are characterized by a parametric median (μ) and a non-parametric variance (σ) of prediction. μ captures the known ground-motion physics i.e., scaling with earthquake rupture properties (event), attenuation with distance from source (region/path), and amplification due to local soil conditions (site); while σ quantifies the natural variability of data that eludes μ. In a broad sense, the GMPE prediction uncertainty is cumulative of 1) uncertainty on estimated regression coefficients (uncertainty on μ,σ_μ), and 2) the inherent natural randomness of data (σ). The extent of μ parametrization, the quantity, and quality of ground-motion data used in a regression, govern the size of its prediction uncertainty: σ_μ and σ. In the first step, I present the impact of μ parametrization on the size of σ_μ and σ. Over-parametrization appears to increase the σ_μ, because of the large number of regression coefficients (in μ) to be estimated with insufficient data. Under-parametrization mitigates σ_μ, but the reduced explanatory strength of μ is reflected in inflated σ. For an optimally parametrized GMPE, a ~10\% reduction in σ is attained by discarding the low-quality data from pan-European events with incorrect parametric values (of predictor variables). In case of regions with scarce ground-motion recordings, without under-parametrization, the only way to mitigate σ_μ is to substitute long-term earthquake data at a location with short-term samples of data across several locations - the Ergodic Assumption. However, the price of ergodic assumption is an increased σ, due to the region-to-region and site-to-site differences in ground-motion physics. σ of an ergodic GMPE developed from generic ergodic dataset is much larger than that of non-ergodic GMPEs developed from region- and site-specific non-ergodic subsets - which were too sparse to produce their specific GMPEs. Fortunately, with the dramatic increase in recorded ground-motion data at several sites across Europe and Middle-East, I could quantify the region- and site-specific differences in ground-motion scaling and upgrade the GMPEs with 1) substantially more accurate region- and site-specific μ for sites in Italy and Turkey, and 2) significantly smaller prediction variance σ. The benefit of such enhancements to GMPEs is quite evident in my comparison of PSHA estimates from ergodic versus region- and site-specific GMPEs; where the differences in predicted design ground-motion levels, at several sites in Europe and Middle-Eastern regions, are as large as ~50\%. Resolving the ergodic assumption with mixed-effects regressions is feasible when the quantified region- and site-specific effects are physically meaningful, and the non-ergodic subsets (regions and sites) are defined a priori through expert knowledge. In absence of expert definitions, I demonstrate the potential of machine learning techniques in identifying efficient clusters of site-specific non-ergodic subsets, based on latent similarities in their ground-motion data. Clustered site-specific GMPEs bridge the gap between site-specific and fully ergodic GMPEs, with their partially non-ergodic μ and, σ ~15\% smaller than the ergodic variance. The methodological refinements to GMPE development produced in this study are applicable to new ground-motion datasets, to further enhance certainty of ground-motion prediction and thereby, seismic hazard assessment. Advanced statistical tools show great potential in improving the predictive capabilities of GMPEs, but the fundamental requirement remains: large quantity of high-quality ground-motion data from several sites for an extended time-period.}, language = {en} } @phdthesis{Eickelmann2018, author = {Eickelmann, Stephan Felix}, title = {Experimental Study of Liquid Interfaces with Compositional Gradients}, doi = {10.17617/2.3010222}, school = {Universit{\"a}t Potsdam}, pages = {153}, year = {2018}, abstract = {Der Inhalt dieser Arbeit ist die experimentelle Untersuchung von verdunstenen d{\"u}nnen Filmen auf glatten Oberfl{\"a}chen, und die Anreicherung, das Kristallwachstum so wie Marangoni-Fluss in der N{\"a}he der Dreiphasenlinie bei partiell benetzenden Mischungen aus fl{\"u}chtigen und nichtfl{\"u}chtigen Fl{\"u}ssigkeiten. Im Detail werden die Eigenschaften von planaren Fl{\"u}ssigkeitsfilmen und d{\"u}nnen Fl{\"u}ssigkeitsabschnitten in der N{\"a}he der dreiphasigen Kontaktlinie behandelt. In beiden F{\"a}llen verliert die Fl{\"u}ssigkeit kontinuierlich eine Komponente durch Verdampfung. Ein Thema ist das ntnetzungsveralten ultrad{\"u}nner Filme aus bin{\"a}ren Mischungen eines fl{\"u}chtigen L{\"o}sungsmittels und eines nichtfl{\"u}chtigen Stoffes. Dabei wird analysiert wie die Dicke, bei der der Film reißt, mit der Kristallisation des gel{\"o}sten Stoffes an der Grenzfl{\"a}che zwischen Fl{\"u}ssigkeit und Substrat in Verbindung steht, sobald der gel{\"o}ste Stoff seine {\"U}bers{\"a}ttigung erreicht. Die Resultate dieses Projektes zeigen eine universelle Beziehung zwischen der Entnetzungdicke und dem S{\"a}ttigungsverhalten. Das zweite Forschungsgebiet sind einzelne Nanopartikel, die in molekular d{\"u}nne Filme auf planaren Substraten eingebettet sind. Es zeigt sich, dass die Nanopartikel eine unerwartet große Filmoberfl{\"a}chenverzerrung (Meniskus) verursachen. Diese Verzerrung kann durch herk{\"o}mmliche Reflexionsmikroskopie quantitativ gemessen werden, obwohl die Nanopartikel viel kleiner als die Rayleigh-Beugungsgrenze sind. Untersuchungen mit bin{\"a}ren Mischungen fl{\"u}chtiger L{\"o}sungsmittel und nichtfl{\"u}chtiger Stoffe (Polymere) zielen auf ein besseres Verst{\"a}ndnis/Vorhersage der finalen Schichtdicke, zeitaufgel{\"o}sten Verd{\"u}nnung, zeitaufgel{\"o}sten Verdunstung und der Entwicklung der Konzentration des gel{\"o}sten Stoffes innerhalb des verd{\"u}nnenden Filmes. Eine quantitative theoretische Beschreibung der experimentellen Ergebnisse wird hergeleitet. Unerwarteterweise zeigen die Experimente, mit vollst{\"a}ndig mischbarer bin{\"a}rer Mischungen fl{\"u}chtiger Fl{\"u}ssigkeiten, die einzeln glatte Filme bilden, dass Filme dieser Mischungen nicht notwendigerweise kontinuierlich und glatt sind. Vielmehr k{\"o}nnen sie Oberfl{\"a}chenwellen bilden oder sogar aufreißen. Dies wird mit Oberfl{\"a}chen-Marangoni-Str{\"o}mungen erkl{\"a}rt. Es wird eine neue Methode f{\"u}r die schnelle Herstellung von ultralang gerichtetn Diphenylalanin-Einkristallen (Dip- Casting) (mm/min) vorgestellt. Dabei viii wird gezeigt, wie die spezifischen Verdunstungsbedingen an der Dreiphasenlinie f{\"u}r einen kontrollierten Peptidkristallwachstumsprozess verwendet werden k{\"o}nnen. Abschließend wird gezeigt, wie die Beschr{\"a}nkung innerhalb einer kleinen Kapillare die Peptidkristallisation beeinflusst, diese verstanden und verwendet werden kann.}, language = {en} } @phdthesis{Koc2018, author = {Ko{\c{c}}, Azize}, title = {Ultrafast x-ray studies on the non-equilibrium of the magnetic and phononic system in heavy rare-earths}, doi = {10.25932/publishup-42328}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-423282}, school = {Universit{\"a}t Potsdam}, pages = {ii, 117}, year = {2018}, abstract = {In this dissertation the lattice and the magnetic recovery dynamics of the two heavy rare-earth metals Dy and Gd after femtosecond photoexcitation are described. For the investigations, thin films of Dy and Gd were measured at low temperatures in the antiferromagnetic phase of Dy and close to room temperature in the ferromagnetic phase of Gd. Two different optical pump-x-ray probe techniques were employed: Ultrafast x-ray diffraction with hard x-rays (UXRD) yields the structural response of heavy rare-earth metals and resonant soft (elastic) x-ray diffraction (RSXD), which allows measuring directly changes in the helical antiferromagnetic order of Dy. The combination of both techniques enables to study the complex interaction between the magnetic and the phononic subsystems.}, language = {en} } @phdthesis{Sander2018, author = {Sander, Mathias}, title = {Ultrafast tailored strain fields in nanostructures}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-417863}, school = {Universit{\"a}t Potsdam}, pages = {xvii, 119}, year = {2018}, abstract = {This publication based thesis, which consists of seven published articles, summarizes my contributions to the research field of laser excited ultrafast structural dynamics. The coherent and incoherent lattice dynamics on microscopic length scales are detected by ultrashort optical and X-ray pulses. The understanding of the complex physical processes is essential for future improvements of technological applications. For this purpose, tabletop soruces and large scale facilities, e.g. synchrotrons, are employed to study structural dynamics of longitudinal acoustic strain waves and heat transport. The investigated effects cover timescales from hundreds of femtoseconds up to several microseconds. The main part of this thesis is dedicated to the investigation of tailored phonon wave packets propagating in perovskite nanostructures. Tailoring is achieved either by laser excitation of nanostructured bilayer samples or by a temporal series of laser pulses. Due to the propagation of longitudinal acoustic phonons, the out-of-plane lattice spacing of a thin film insulator-metal bilayer sample is modulated on an ultrafast timescale. This leads to an ultrafast modulation of the X-ray diffraction efficiency which is employed as a phonon Bragg switch to shorten hard X-ray pulses emitted from a 3rd generation synchrotron. In addition, we have observed nonlinear mixing of high amplitude phonon wave packets which originates from an anharmonic interatomic potential. A chirped optical pulse sequence excites a narrow band phonon wave packet with specific momentum and energy. The second harmonic generation of these phonon wave packets is followed by ultrafast X-ray diffraction. Phonon upconversion takes place because the high amplitude phonon wave packet modulates the acoustic properties of the crystal which leads to self steepening and to the successive generation of higher harmonics of the phonon wave packet. Furthermore, we have demonstrated ultrafast strain in direction parallel to the sample surface. Two consecutive so-called transient grating excitations displaced in space and time are used to coherently control thermal gradients and surface acoustic modes. The amplitude of the coherent and incoherent surface excursion is disentangled by time resolved X-ray reflectivity measurements. We calibrate the absolute amplitude of thermal and acoustic surface excursion with measurements of longitudinal phonon propagation. In addition, we develop a diffraction model which allows for measuring the surface excursion on an absolute length scale with sub-{\"A}angstr{\"o}m precision. Finally, I demonstrate full coherent control of an excited surface deformation by amplifying and suppressing thermal and coherent excitations at the surface of a laser-excited Yttrium-manganite sample.}, language = {en} } @phdthesis{TchoumbaKwamen2018, author = {Tchoumba Kwamen, Christelle Larodia}, title = {Investigating the dynamics of polarization reversal in ferroelectric thin films by time-resolved X-ray diffraction}, doi = {10.25932/publishup-42781}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427815}, school = {Universit{\"a}t Potsdam}, pages = {xvii, 126, xxiii}, year = {2018}, abstract = {Ferroic materials have attracted a lot of attention over the years due to their wide range of applications in sensors, actuators, and memory devices. Their technological applications originate from their unique properties such as ferroelectricity and piezoelectricity. In order to optimize these materials, it is necessary to understand the coupling between their nanoscale structure and transient response, which are related to the atomic structure of the unit cell. In this thesis, synchrotron X-ray diffraction is used to investigate the structure of ferroelectric thin film capacitors during application of a periodic electric field. Combining electrical measurements with time-resolved X-ray diffraction on a working device allows for visualization of the interplay between charge flow and structural motion. This constitutes the core of this work. The first part of this thesis discusses the electrical and structural dynamics of a ferroelectric Pt/Pb(Zr0.2,Ti0.8)O3/SrRuO3 heterostructure during charging, discharging, and polarization reversal. After polarization reversal a non-linear piezoelectric response develops on a much longer time scale than the RC time constant of the device. The reversal process is inhomogeneous and induces a transient disordered domain state. The structural dynamics under sub-coercive field conditions show that this disordered domain state can be remanent and can be erased with an appropriate voltage pulse sequence. The frequency-dependent dynamic characterization of a Pb(Zr0.52,Ti0.48)O3 layer, at the morphotropic phase boundary, shows that at high frequency, the limited domain wall velocity causes a phase lag between the applied field and both the structural and electrical responses. An external modification of the RC time constant of the measurement delays the switching current and widens the electromechanical hysteresis loop while achieving a higher compressive piezoelectric strain within the crystal. In the second part of this thesis, time-resolved reciprocal space maps of multiferroic BiFeO3 thin films were measured to identify the domain structure and investigate the development of an inhomogeneous piezoelectric response during the polarization reversal. The presence of 109° domains is evidenced by the splitting of the Bragg peak. The last part of this work investigates the effect of an optically excited ultrafast strain or heat pulse propagating through a ferroelectric BaTiO3 layer, where we observed an additional current response due to the laser pulse excitation of the metallic bottom electrode of the heterostructure.}, language = {en} }