@article{YeKurthHospodarskyetal.2018, author = {Ye, S. -Y. and Kurth, William S. and Hospodarsky, George B. and Persoon, Ann M. and Gurnett, Don A. and Morooka, Michiko and Wahlund, Jan-Erik and Hsu, Hsiang-Wen and Seiss, Martin and Srama, Ralf}, title = {Cassini RPWS dust observation near the Janus/Epimetheus orbit}, series = {Journal of geophysical research : Space physics}, volume = {123}, journal = {Journal of geophysical research : Space physics}, number = {6}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9380}, doi = {10.1029/2017JA025112}, pages = {4952 -- 4960}, year = {2018}, abstract = {During the Ring Grazing orbits near the end of Cassini mission, the spacecraft crossed the equatorial plane near the orbit of Janus/Epimetheus (similar to 2.5 Rs). This region is populated with dust particles that can be detected by the Radio and Plasma Wave Science (RPWS) instrument via an electric field antenna signal. Analysis of the voltage waveforms recorded on the RPWS antennas provides estimations of the density and size distribution of the dust particles. Measured RPWS profiles, fitted with Lorentzian functions, are shown to be mostly consistent with the Cosmic Dust Analyzer, the dedicated dust instrument on board Cassini. The thickness of the dusty ring varies between 600 and 1,000 km. The peak location shifts north and south within 100 km of the ring plane, likely a function of the precession phase of Janus orbit.}, language = {en} } @article{MarschallSkorovZakharovetal.2020, author = {Marschall, Raphael and Skorov, Yuri and Zakharov, Vladimir and Rezac, Ladislav and Gerig, Selina-Barbara and Christou, Chariton and Dadzie, S. Kokou and Migliorini, Alessandra and Rinaldi, Giovanna and Agarwal, Jessica and Vincent, Jean-Baptiste and Kappel, David}, title = {Cometary comae-surface links the physics of gas and dust from the surface to a spacecraft}, series = {Space science reviews}, volume = {216}, journal = {Space science reviews}, number = {8}, publisher = {Springer}, address = {Dordrecht}, issn = {0038-6308}, doi = {10.1007/s11214-020-00744-0}, pages = {53}, year = {2020}, abstract = {A comet is a highly dynamic object, undergoing a permanent state of change. These changes have to be carefully classified and considered according to their intrinsic temporal and spatial scales. The Rosetta mission has, through its contiguous in-situ and remote sensing coverage of comet 67P/Churyumov-Gerasimenko (hereafter 67P) over the time span of August 2014 to September 2016, monitored the emergence, culmination, and winding down of the gas and dust comae. This provided an unprecedented data set and has spurred a large effort to connect in-situ and remote sensing measurements to the surface. In this review, we address our current understanding of cometary activity and the challenges involved when linking comae data to the surface. We give the current state of research by describing what we know about the physical processes involved from the surface to a few tens of kilometres above it with respect to the gas and dust emission from cometary nuclei. Further, we describe how complex multidimensional cometary gas and dust models have developed from the Halley encounter of 1986 to today. This includes the study of inhomogeneous outgassing and determination of the gas and dust production rates. Additionally, the different approaches used and results obtained to link coma data to the surface will be discussed. We discuss forward and inversion models and we describe the limitations of the respective approaches. The current literature suggests that there does not seem to be a single uniform process behind cometary activity. Rather, activity seems to be the consequence of a variety of erosion processes, including the sublimation of both water ice and more volatile material, but possibly also more exotic processes such as fracture and cliff erosion under thermal and mechanical stress, sub-surface heat storage, and a complex interplay of these processes. Seasons and the nucleus shape are key factors for the distribution and temporal evolution of activity and imply that the heliocentric evolution of activity can be highly individual for every comet, and generalisations can be misleading.}, language = {en} } @article{SramaKempfMoragasKlostermeyeretal.2006, author = {Srama, Ralf and Kempf, S. and Moragas-Klostermeyer, Georg and Helfert, S. and Ahrens, T. J. and Altobelli, N. and Auer, S. and Beckmann, U. and Bradley, J. G. and Burton, M. and Dikarev, V. V. and Economou, T. and Fechtig, H. and Green, S. F. and Grande, M. and Havnes, O. and Hillierf, J.K. and Horanyii, M. and Igenbergsj, E. and Jessberger, E. K. and Johnson, T. V. and Kr{\"u}ger, H. and Matt, G. and McBride, N. and Mocker, A. and Lamy, P. and Linkert, D. and Linkert, G. and Lura, F. and McDonnell, J.A.M. and M{\"o}hlmann, D. and Morfill, G. E. and Postberg, F. and Roy, M. and Schwehm, G.H. and Spahn, Frank and Svestka, J. and Tschernjawski, V. and Tuzzolino, A. J. and W{\"a}sch, R. and Gr{\"u}n, E.}, title = {In situ dust measurements in the inner Saturnian system}, series = {Planetary and space science}, volume = {54}, journal = {Planetary and space science}, number = {9-10}, publisher = {Elsevier}, address = {Oxford}, issn = {0032-0633}, doi = {10.1016/j.pss.2006.05.021}, pages = {967 -- 987}, year = {2006}, abstract = {In July 2004 the Cassini-Huygens mission reached the Saturnian system and started its orbital tour. A total of 75 orbits will be carried out during the primary mission until August 2008. In these four years Cassini crosses the ring plane 150 times and spends approx. 400 h within Titan's orbit. The Cosmic Dust Analyser (CDA) onboard Cassini characterises the dust environment with its extended E ring and embedded moons. Here, we focus on the CDA results of the first year and we present the Dust Analyser (DA) data within Titan's orbit. This paper does investigate High Rate Detector data and dust composition measurements. The authors focus on the analysis of impact rates, which were strongly variable primarily due to changes of the spacecraft pointing. An overview is given about the ring plane crossings and the DA counter measurements. The DA dust impact rates are compared with the DA boresight configuration around all ring plane crossings between June 2004 and July 2005. Dust impacts were registered at altitudes as high as 100 000 km above the ring plane at distances from Saturn between 4 and 10 Saturn radii. In those regions the dust density of particles bigger than 0.5 can reach values of 0.001m-3.}, language = {en} }